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Preface

This volume contains the papers presented at the 10th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX 2007) and the 11th International Workshop on Randomization and
Computation (RANDOM 2007), which took place concurrently at Princeton
University, on August 20–22, 2007. APPROX focuses on algorithmic and com-
plexity issues surrounding the development of efficient approximate solutions
to computationally difficult problems, and this was the 10th in the series after
Aalborg (1998), Berkeley (1999), Saarbrücken (2000), Berkeley (2001), Rome
(2002), Princeton (2003), Cambridge (2004), Berkeley (2005), and Barcelona
(2006). RANDOM is concerned with applications of randomness to computa-
tional and combinatorial problems, and this was the 11th workshop in the series
following Bologna (1997), Barcelona (1998), Berkeley (1999), Geneva (2000),
Berkeley (2001), Harvard (2002), Princeton (2003), Cambridge (2004), Berkeley
(2005), and Barcelona (2006).

Topics of interest for APPROX and RANDOM are: design and analysis of
approximation algorithms, hardness of approximation, small space and data
streaming algorithms, sub-linear time algorithms, embeddings and metric space
methods, mathematical programming methods, coloring and partitioning, cuts
and connectivity, geometric problems, game theory and applications, network
design and routing, packing and covering, scheduling, design and analysis of ran-
domized algorithms, randomized complexity theory, pseudorandomness and de-
randomization, random combinatorial structures, random walks/Markov chains,
expander graphs and randomness extractors, probabilistic proof systems, ran-
dom projections and embeddings, error-correcting codes, average-case analysis,
property testing, computational learning theory, and other applications of ap-
proximation and randomness.

The volume contains 21 contributed papers, selected by the APPROX Pro-
gram Committee out of 49 submissions, and 23 contributed papers, selected by
the RANDOM Program Committee out of 50 submissions.

We would like to thank all of the authors who submitted papers and the
members of the Program Committees:

APPROX 2007

Nikhil Bansal, IBM T J Watson
Moses Charikar, Princeton University (chair)
Chandra Chekuri, University of Illinois, Urbana-Champaign
Julia Chuzhoy, IAS
Venkatesan Guruswami, University of Washington
Howard Karloff, AT&T Labs Research
Guy Kortsarz, Rutgers, Camden
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Robert Krauthgamer, IBM Almaden
Claire Mathieu, Brown University
Seffi Naor, Microsoft Research and Technion
Chaitanya Swamy, University of Waterloo
Lisa Zhang, Bell Labs

RANDOM 2007

Irit Dinur, Hebrew University
Thomas Hayes, Toyota Technological Institute at Chicago
Piotr Indyk, MIT
Russell Martin, University of Liverpool
Dieter van Melkebeek, University of Wisconsin, Madison
Michael Mitzenmacher, Harvard University
Michael Molloy, University of Toronto
Cristopher Moore, University of New Mexico
Sofya Raskhodnikova, Penn State University
Omer Reingold, Weizmann Institute (chair)
Ronen Shaltiel, University of Haifa
Asaf Shapira, Microsoft Research
Aravind Srinivasan, University of Maryland
Angelika Steger, ETH Zürich
Emanuele Viola, IAS

We would also like to thank the external subreferees: Scott Aaronson, Dim-
itris Achlioptas, Nir Ailon, Gorjan Alagic, Christoph Ambühl, Matthew An-
drews, Arash Asadpour, Ziv Bar-Yossef, Petra Berenbrink, Nicla Bernasconi,
Andrej Bogdanov, Niv Buchbinder, Sourav Chakraborty, Ho-Leung Chan, Aaron
Clauset, Anne Condon, Artur Czumaj, Varsha Dani, Aparna Das, Roee Engel-
berg, Eldar Fischer, Abraham Flaxman, Tom Friedetzky, Rajiv Gandhi, Leszek
G ↪asieniec, Daniel Golovin, Ronen Gradwohl, Anupam Gupta, Dan Gutfreund,
Magnus M. Halldorsson, Prahladh Harsha, Gabor Ivanyos, Mark Jerrum, Valen-
tine Kabanets, Shiva Kasiviswanathan, Jonathan Katz, Neeraj Kayal, David
Kempe, Rohit Khandekar, Sanjeev Khanna, Lefteris Kirousis, Phil Klein, Jochen
Konemann, Roman Kotecky, Robert Krauthgamer, Michael Krivelevich, Fabian
Kuhn, Eyal Kushilevitz, Emmanuelle Lebhar, Michael Landberg, Ron Lavi, Liane
Lewin-Eytan, Avner Magen, Martin Marciniszyn, Frank McSherry, Julian Mestre,
Vahab S. Mirrokni, Torsten Muetze, Ashwin Nayak, Ofer Neiman, Ilan Newman,
Zeev Nutov, Konstantinos Panagiotou, Rina Panigrahy, Konstantin Pervyshev,
Boris Pittel, Yuval Rabani, Prasad Raghavendra, Rajmohan Rajaraman, Dror
Rawitz, Daniel Reichman, Dana Ron, Eyal Rozenman, Alex Russell, Jared Saia,
Mohammad R Salavatipour, Alex Samorodnitsky, Rahul Santhanam, Warren
Schudy, Justus Schwartz, Roy Schwartz, Amir Shpilka, Nikolai Simonov, Adam
Smith, Joel Spencer, Reto Spöhel, Venkatesh Srinivasan, Mukund Sundarara-
jan, Maxim Sviridenko, Jan Vondrak, John Watrous, Ryan Williams, David



Preface VII

Williamson, Prudence Wong, Orly Yahalom, Sergey Yekhanin, Neal Young, and
Michele Zito.

We gratefully acknowledge the support from the Department of Computer
Science at the Princeton University, the Faculty of Mathematics and Computer
Science of the Weizmann Institute of Science, the Institute of Computer Science
of the Christian-Albrechts-Universität zu Kiel and the Department of Computer
Science of the University of Geneva.

August 2007 Moses Charikar and Omer Reingold, Program Chairs
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Approximation Algorithms and Hardness for

Domination with Propagation

Ashkan Aazami1 and Michael D. Stilp2

1 Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Ontario N2L3G1, Canada

aaazami@uwaterloo.ca
2 School of Industrial and Systems Engineering, Georgia Institute of Technology,

Atlanta, Georgia 30332, USA
mstilp3@isye.gatech.edu

Abstract. The power dominating set (PDS) problem is the following
extension of the well-known dominating set problem: find a smallest-size
set of nodes S that power dominates all the nodes, where a node v is
power dominated if (1) v is in S or v has a neighbor in S, or (2) v has
a neighbor w such that w and all of its neighbors except v are power
dominated. Note that rule (1) is the same as for the dominating set
problem, and that rule (2) is a type of propagation rule that applies it-
eratively. We use n to denote the number of nodes. We show a hardness

of approximation threshold of 2log1−ε n in contrast to the logarithmic
hardness for dominating set. This is the first result separating these two
problem. We give an O(

√
n) approximation algorithm for planar graphs,

and show that our methods cannot improve on this approximation guar-
antee. We introduce an extension of PDS called �-round PDS; for � = 1
this is the dominating set problem, and for � ≥ n − 1 this is the PDS
problem. Our hardness threshold for PDS also holds for �-round PDS
for all � ≥ 4. We give a PTAS for the �-round PDS problem on planar
graphs, for � = O( log n

log log n
). We study variants of the greedy algorithm,

which is known to work well on covering problems, and show that the
approximation guarantees can be Θ(n), even on planar graphs. Finally,
we initiate the study of PDS on directed graphs, and show the same

hardness threshold of 2log1−ε n for directed acyclic graphs.

Keywords: Approximation Algorithms, Hardness of Approximation,
PTAS, Dominating Set, Power Dominating Set, Planar Graphs, Integer
Programming, Greedy Algorithms.

1 Introduction

A Dominating Set of an (undirected) graphG = (V,E) is a set of nodes S such
that every node in the graph is in S or has a neighbor in S. The problem of finding
a dominating set of minimum size is an important problem that has been exten-
sively studied, especially in the last twenty years, see the books by Haynes et al.
[16,17]. Our focus is on an extension called the Power Dominating Set

M. Charikar et al. (Eds.): APPROX and RANDOM 2007, LNCS 4627, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 A. Aazami and M.D. Stilp

(abbreviated as PDS) problem. Power domination is defined by two rules; the
first rule is the same as for the Dominating Set problem, but the second rule
allows a type of indirect propagation. More precisely, given a set of nodes S, the
set of nodes that are power dominated by S, denoted P(S), is obtained as follows

(Rule 1) if node v is in S, then v and all of its neighbors are in P(S);
(Rule 2) (propagation) if node v is in P(S), one of its neighbors w is not in

P(S), and all other neighbors of v are in P(S), then w is inserted into
P(S).

It can be seen that the set P(S) is independent of the sequence in which nodes
are inserted into P(S) by Rule 2. The PDS problem is to find a node-set S of
minimum size that power dominates all the nodes (i.e., find S ⊆ V with |S|
minimum such that P(S) = V ). We use Opt(G) to denote the size of an optimal
solution for graph G. We use n to denote |V (G)|, the number of nodes in the
input graph.

For example, consider the planar graph in Figure 1; the graph has t disjoint
triangles, and three (mutually disjoint) paths such that each path has exactly
one node from each triangle; note that |V | = 3t. The minimum dominating set
has size Θ(|V |), since the maximum degree is 4. The minimum power dominating
set has size one – if S has any one node of the innermost (first) triangle (like v),
then P(S) = V 1.

v

Fig. 1. Example for PDS

P2

P1

Pm

X1 X2 X3 Xk

v

Fig. 2. Example for �-round PDS

The PDS problem arose in the context of the monitoring of electric power net-
works. A power network contains a set of nodes and a set of edges connecting the
nodes. A power network also contains a set of generators, which supply power, and
a set of loads, where the power is directed to. In order to monitor a power network

1 In more detail, we apply Rule 1 to see that all the nodes of the innermost (first)
triangle and one node of the second triangle are in P(S); then by two applications
of Rule 2 (to each of the nodes in the first triangle not in S), we see that the other
two nodes of the second triangle are in P(S); then by three applications of Rule 2
(to each of the nodes in the second triangle) we see that all three nodes of the third
triangle are in P(S); etc.
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we need to measure all the state variables of the network by placing measurement
devices. A Phasor Measurement Unit (PMU) is a measurement device placed on a
node that has the ability to measure the voltage of the node and the current phase
of the edges connected to the node; PMUs are expensive devices. The goal is to in-
stall the minimum number of PMUs such that the whole system can be monitored.
These units have the capability of monitoring remote elements via propagation (as
in Rule 2); see Brueni [8], Baldwin et al. [5], and Mili et al. [24]. Most measure-
ment systems require one measurement device per node, but this does not apply
to PMUs; hence, PMUs give a huge advantage. To see this in more detail consider
a power network G = (V,E), and assume that the resistances of the edges in the
power network are known, and the goal is to measure the voltages of all nodes.
For simplicity, assume that there are no generators and loads. By placing a PMU
at node v we can measure the voltage of v and the electrical current on each edge
incident to v. Next, by using Ohm’s law we can compute the voltage of any node
in the neighborhood of v (Rule 1). Now assume that the voltage on v and all of
its neighbors except w is known. By applying ohm’s law we can compute the cur-
rent on the edges incident to v except {v, w}. Next by using Kirchhoff’s law we
compute the current on the edge {v, w}. Finally, applying Ohm’s law on the edge
{v, w} gives us the voltage of w (Rule 2).

PMUs are used to monitor large system stability and to give warnings of
system-wide failures. PMUs have become increasingly popular for monitoring
power networks, and have been installed by several electricity companies since
1988 [23,6]. For example, the USA Western States Coordinating Council (WSCC)
had installed around 34 PMUs by 1999 [6]. By now, several hundred PMUs
have been installed world wide [26]. Some researchers in electrical engineer-
ing regard PMUs as the most important device for the future of power
systems [25].

Our motivation comes from the area of approximation algorithms and hard-
ness results. The Dominating Set problem is a so-called covering problem; we
wish to cover all the nodes of the graph by choosing as few node neighborhoods
as possible. In fact, the Dominating Set problem is a special case of the well-
known Set Covering

2 problem. Such covering problems have been extensively
investigated. One of the key positive results dates from the 1970’s, when Johnson
[18] and Lovász [21] showed that the greedy method achieves an approximation
guarantee of O(log n) where n denotes the size of the ground set.

Several negative results (on the hardness of approximation) have been dis-
covered over the last few years: Lund and Yannakakis [22] showed that Set

Covering is hard to approximate within a ratio of Ω(log n), modulo some vari-
ants of the P �= NP assumption. Later, Feige [12] showed that Set Covering

is hard to approximate within (1− ε) lnn, modulo some variants of the P �= NP
assumption. A natural question is what happens to covering problems (in the
setting of approximation algorithms and hardness results) when we augment the
covering rule with a propagation rule. PDS seems to be a key problem of this

2 Given a family of sets on a groundset, find the minimum number of sets whose union
equals the groundset.
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type, since it is obtained from the Dominating Set problem by adding a simple
propagation rule.

Previous literature: Apparently, the earliest theoretical publications on PDS
are Brueni [8], Baldwin et al. [5], Mili set al. [24]. Later, Haynes et al. [15]
showed that the problem is NP-complete even when the input graph is bipartite;
they presented a linear-time algorithm to solve PDS optimally on trees. Kneis
et al. [19] generalized this result to a linear-time algorithm that finds an optimal
solution for graphs that have bounded tree-width, relying on earlier results of
Courcelle et al. [10]. Kneis et al. [19] also showed that PDS is a generalization
of Dominating Set. Guo et al. [14] developed a combinatorial algorithm based
on dynamic programming for optimally solving PDS on graphs with bounded
tree-width in linear-time. Even for planar graphs, the Dominating Set problem
is NP-hard [13], and the same holds for PDS [14]. Brueni and Heath [9] have
more results on PDS, including the NP-completeness of PDS on planar bipartite
graphs.
Our contributions: Our results substantially improve on the understanding of
PDS in the context of approximation algorithms.

– For general graphs, we show that PDS cannot be approximated better than
2log1−ε n, unless NP ⊆ DTIME(npolylog(n)). This is a substantial improvement
over the previous logarithmic hardness result. This seems to be the first
known “separation” result between PDS and Dominating Set.

– We introduce an extension of PDS called the �-round PDS problem by adding
a parameter � to PDS which restricts the number of “parallel” rounds of
propagation that can be applied (see Section 3.2 for formal definitions). The
rules are the same as PDS, except we apply the propagation rule in paral-
lel, in contrast to PDS where we apply the propagation rule sequentially.
This problem has applications to monitoring power networks when there is
a time constraint that should be met; deducing information through a par-
allel round of propagation takes one unit of time and in some applications
we want to detect a failure in the network after at most � units of time.
Moreover, the �-round PDS problem has theoretical significance because it
allows one to study the spectrum of problems between Dominating Set

and PDS, and see how the hardness threshold changes as we change the �
parameter. We show that �-round PDS for � ≥ 4 cannot be approximated
better than 2log1−ε n, unless NP ⊆ DTIME(npolylog(n)).

– We focus on planar graphs, and give a PTAS for �-round PDS for � =
O( log n

log logn ). Baker’s PTAS [4] for the Dominating Set problem on pla-
nar graphs is a special case of our result with � = 1, and no similar result
of this type was previously known for � > 1. Note that the �-round PDS
problem remains NP-hard on planar graphs (for all � ≥ 1). Also, note that
our PTAS does not apply to PDS in general, because the running time is
super-polynomial for � = ω( logn

log logn ).
– We introduce the notion of strong regions and weak regions as a means of

obtaining lower bounds on the size of an optimal solution for PDS. Based on
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this, we develop an approximation algorithm3 for PDS that gives a guar-
antee of O(k) given a (not necessarily optimal) tree decomposition of the
input graph with width k (see Definition 1). Note that the (optimal) tree-
width of the input graph is some integer, denoted by tw, between 1 and
n − 1 and is NP-hard to compute, but there are efficient approximation
algorithms that find a tree decomposition of width O(tw · logn) [7]. Our al-
gorithm requires the tree decomposition as part of the input. Guo et al. [14]
developed a dynamic programming algorithm for optimally solving PDS on
graphs of tree-width k in time exponential in k2. In contrast, our algorithm
runs in time polynomial in n (independent of k). So our approximation algo-
rithm runs in polynomial time on graphs with arbitrarily large tree-width,
unlike the algorithm by Guo et al.[14]. Our algorithm provides an O(

√
n)-

approximation algorithm for PDS on planar graphs because a tree decompo-
sition of a planar graph with width O(

√
n) can be computed efficiently [3].

Moreover, we show that our methods (specifically, the lower bounds used
in our analysis) cannot improve on the O(

√
n) approximation guarantee for

planar graphs.
– Greedy algorithms provide a successful approach (sometimes the best) for

lots of problems including the Set Covering problem and the Domi-

nating Set problem. We focus on different variations of the greedy al-
gorithm for PDS and we show that they perform very poorly, even on planar
graphs.

– We study an integer programming formulation for �-round PDS; this extends
to PDS.

– We extend PDS in a natural way to directed graphs and prove that even for
directed acyclic graphs, PDS is hard to approximate within the same thresh-
old as for undirected graphs, modulo the same complexity assumption. We
give a linear-time algorithm based on dynamic programming for directed
PDS when the underlying undirected graph has bounded tree-width. This
builds on results and methods of Guo et al. [14].

2 Hardness of PDS and �-Round PDS

In this section we prove that PDS (and �-round PDS for � ≥ 4) cannot be
approximated better than 2log1−ε n ratio, for any ε > 0. We will prove this result
by a reduction from the Minrep problem.

Theorem 1. The PDS (and �-round PDS for � ≥ 4) problem cannot be approx-
imated within ratio 2log1−ε n, for any ε > 0, unless NP ⊆ DTIME(npolylog(n)).

3 An approximation algorithm for a (minimization) optimization problem means an
algorithm that runs in polynomial time and computes a solution whose cost is within
a guaranteed factor of the optimal cost; the approximation guarantee is the worst-
case ratio, over all inputs of a given size, of the cost of the solution computed by the
algorithm to the optimal cost.
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In the MinRep problem we are given a bipartite graph G = (A,B,E) with a
partitioning of A and B into (equal size) subsets, say A =

⋃qA

i=1Ai and B =
⋃qB

i=1 Bi , where |Ai| = mA = |A|
qA

and |Bi| = mB = |B|
qB

. This partitioning
naturally defines a super bipartite graph H = (A,B, E). The super nodes of H
are A = {A1, A2, · · · , AqA} and B = {B1, B2, · · · , BqB}, and the super edges
are E = {AiBj |∃a ∈ Ai, b ∈ Bj : ab ∈ E(G)}. We say that super edge AiBj is
covered by ab ∈ E(G) if a ∈ Ai and b ∈ Bj . The goal in MinRep is to pick
the minimum number of nodes, A′ ∪ B′ ⊆ V (G), from G such that all the
super edges in H are covered. The following theorem states the hardness of the
MinRep problem [20].

Theorem 2. [20] MinRep cannot be approximated within ratio 2log
1−εn, for

any ε > 0, unless NP ⊆ DTIME(npolylog(n)), where n = |V (G)|.

The reduction: Theorem 1 is proved by a reduction from the MinRep problem.
The reduction works for PDS and �-round PDS (for � ≥ 4) at the same time. In
the following we create an instance of PDS (�-round PDS), G = (V ,E), from an
instance G = (A,B,E)(H = (A,B, E)) of the MinRep problem.

1. Add a new node w∗ (master node) to the graph G, and add an edge between
w∗ and all the nodes in G. Also add new nodes w∗

1 , w
∗
2 , w

∗
3 and connect them

by an edge to w∗.
2. ∀i ∈ {1, . . . , qA} , j ∈ {1, . . . , qB} do the following:

(a) Let Eij={e1, e2, . . . , eκ} be the set of edges between Ai=
{
ai1 , . . . , aimA

}

and Bj =
{
bj1 , . . . , bjmB

}
in G, where κ is the number of edges between

Ai and Bj .
(b) Remove Eij from G.
(c) Let the edge eq ∈ Ei,j be incident to aiq and bjq (in G). In this labeling

for simplicity the same node might get different labels. Let Dij be the
graph in Figure 3 (A dashed line shows an edge between the master node
w∗ and that node). Make k = 4 new copies of the graph Dij and then
identify nodes aiq ’s, bjq ’s with the corresponding nodes in Ai and Bj (in
G). Note that the k copies are sharing the same set of nodes, Ai and Bj ,
but other nodes are disjoint.

3. Let G = (V ,E) be the obtained graph.

The analysis: The key part of the analysis is to show that the size of an optimal
solution in �-round PDS (for � ≥ 4) is equal to the size of an optimal solution for
PDS, and they are exactly one more than the size of an optimal solution in the
MinRep instance (Lemma 1). The number of nodes in the constructed graph is
at most

∣
∣V (G)

∣
∣ ≤ 4+ |V (G)|+10k |E(G)|. This shows that the above reduction

is a gap preserving reduction from MinRep to PDS and �-round PDS (for � ≥ 4)
with the same gap (hardness ratio) as the MinRep problem.

Lemma 1. (A∗, B∗) is an optimal solution to the instance G = (A,B,E) of the
MinRep problem if and only if Π∗ = A∗ ∪ B∗ ∪ {w∗} ⊆ V (G) is an optimal
solution to the instance G of PDS (and �-round PDS for all � ≥ 4).
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Fig. 3. Dij graph

Proof. The node w∗ should be in any optimal solution in order to power
dominate w∗

1 , w
∗
2 , w

∗
3 , since otherwise we need to have at least 2 nodes from

{w∗
1 , w

∗
2 , w

∗
3} to get a feasible solution. By taking w∗ all the nodes in A ∪ B

(and also the nodes inside Dij ’s that are the neighbors of w∗) will be power
dominated.

First assume that A∗ ∪ B∗ is an optimal solution for the MinRep instance
G. Now let us show that Π = A∗ ∪B∗ ∪ {w∗} is a feasible solution to the PDS
instanceG. As described above the nodes inA∪B and some nodes insideDij ’s are
power dominated by w∗. Consider a pair of subsets (Ai, Bj) in G. The set A∗∪B∗

covers all the super edges in H. So there exists an edge eq =
{
aiq , bjq

}
∈ E(G)

such that aiq ∈ A∗, bjq ∈ B∗, where it covers the super edge (Ai, Bj). Since aiq
and bjq are in Π they will power dominates their neighbors, uq and vq, in all
the k = 4 copies of Dij in G. After uq and vq become power dominated, the
node dq will power dominate the center node in Dij . It is easy to check that
after the center node become power dominated all of the nodes in Dij will be
power dominated (through the gadgets on α, β, γ nodes). This shows that Π is
a feasible solution for PDS in G. Also it is straightforward to check that such
a solution will power dominate the entire graph in at most 4 parallel rounds.
Therefore, Opt(G) ≤ Opt�(G) ≤ |A∗ ∪B∗| + 1. The size of an optimal solution
for PDS is a lower bound on the size of an optimal solution for the �-round PDS;
this follows from the fact the an optimal solution for �-round PDS is a feasible
solution for PDS. So it is enough to prove that the above upper bound is also
a lower bound for PDS in G. And this also proves that the size of an optimal
solution for PDS and �-round PDS (for � ≥ 4) is equal on G.

LetΠ∗ ⊆ V (G) be an optimal solution for PDS. As we saw above w∗ should be
in any optimal solution for PDS. Now define A′ = A∩Π∗ and B′ = B∩Π∗. First
we prove that any optimal solution of PDS only contains nodes from A∪B∪{w∗},
and then we show that (A′, B′) covers all the super edges. Suppose for the
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contradiction thatΠ∗ contains some nodes not in A∪B∪{w∗}. So there are some
Dij graphs that cannot be power dominated completely by Π∗∩ (A∪B∪{w∗}).
By symmetry all the k = 4 copies of Dij are not completely power dominated.
So the optimal solution Π∗ needs to have at least one node from at least 3 of
the 4 copies, and the remaining one might be power dominated by applying the
propagation rule. By removing these 3 nodes from Π∗ and adding aiq ∈ Ai and
bjq ∈ Bj to Π∗ for some arbitrary eq =

{
aiq , bjq

}
∈ E(G) we can power dominate

all of the 4 copies of Dij . This is a contradiction with the optimality of Π∗. This
proves that any optimal solution will consist of only nodes from A ∪B ∪ {w∗}.
To show that (A′, B′) covers all super edges, it is enough to note the following:
suppose no node from the inside of any copy of Dij is in the optimal solution;
then any Dij can be power dominated only by taking both end points of an edge
between the corresponding partitions (Ai, Bj). This shows that the size of an
optimal solution for PDS on G is at least the size of an optimal solution for the
MinRep problem on G plus 1. This completes the proof of the lemma. ��

3 Approximation Algorithms on Planar Graphs

There has been a lot of research previously on designing polynomial time ap-
proximation schemes4 (PTAS) for problems on planar graphs. Some of the most
important results are the outerplanar layering technique by Baker [4], and the
bidimensionality theory by Demaine and Hajiaghayi [11]. Baker [4] showed that
the dominating set problem in planar graphs has a PTAS. Demaine and Haji-
aghayi obtained PTASs for some variants of the Dominating Set problem on
planar graphs (such as connected dominating sets). We have examples showing
that none of these successful approaches applies to PDS and �-round PDS.

In the Baker method we first partition the graph into smaller graphs. Then
we solve the problem optimally on the subgraphs and finally we return the union
of the solutions as a solution for the original graph. Consider the graph shown in
Figure 1. The size of an optimal solution for PDS is 1 but if we apply the Baker
method the size of the output solution will be at least as large as the number
of small graphs in the partition which can be Θ(n). An important property of
bidimensionality is that the size of an optimal solution should not increase when
we contract any edge. We have examples showing that this property does not
apply to PDS nor to �-round PDS [2].

3.1 PDS on Planar Graphs

In this section we will describe a (k + 1)-approximation algorithm for PDS in
graphs with tree-width k. This will imply that PDS on planar graphs can be
approximated within ratio O(

√
n), since the tree-width of a planar graph G

with n nodes is O(
√
n) and in O(n

3
2 ) time such a tree decomposition can be

4 A polynomial time approximation scheme (PTAS) is an algorithm that for any fixed
ε > 0 can provide a solution with cost within (1 + ε) ratio of the optimal solution in
polynomial time.
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found [3]. The algorithm makes one bottom-to-top pass over the tree T of the
tree decomposition of the graph G (see Definition 1) and constructs a solution
Π for PDS (initially, Π = ∅). At each node rj of T we check whether every
solution of PDS that contains Π has at least one node from the bags of subtree
rooted at rj ; if yes, then Xrj (the bag corresponding to rj) is added to Π
(Π := Π ∪Xrj ), otherwise Π is not updated. The key point in the analysis is to
show that Opt(G) ≥ m, where m is the number of nodes of T where we updated
Π . To get this lower bound, we introduce the notion of strong regions.

Definition 1. A tree decomposition of a graph G = (V,E) is a pair
〈{Xi ⊆ V | i ∈ I} , T 〉, where T = (I, F ) is a tree, satisfying the following three
properties: (1)

⋃
i∈I Xi = V ; (2) For all edges {u, v} ∈ E there is an i ∈ I

such that {u, v} ⊆ Xi; (3) For all i, j, k ∈ I, if j is on the unique path from i
to k in T , then we have: Xi ∩Xk ⊆ Xj . The width of 〈{Xi | i ∈ I} , T 〉 is the
maxi∈I |Xi| − 1. The tree-width of G is defined as the minimum width over all
tree decompositions. The nodes of the tree T are called T -nodes and each Xi is
called a bag.

Let us define some concepts needed for the analysis of our algorithm. Con-
sider the given graph G = (V,E), the neighborhood of R ⊆ V is nbr(R) =
{v ∈ V |∃uv ∈ E, u ∈ R, v /∈ R}, and the exterior of R is defined by ext(R) =
nbr(V \ R), i.e., ext(R) consists of the nodes in R that are adjacent to a node
in V \R.

Definition 2. Given a graph G = (V,E) and a set Π ⊆ V , the subset R ⊆ V is
called Π-strong region if R �⊆ P(Π ∪ nbr(R)), otherwise the set R is called Π-
weak region. The region R is called minimal Π-strong if it is a Π-strong region
and ∀r ∈ R, R− r is a Π-weak region.

It is easy to check from the definition that a Π-strong region is also ∅-strong
(or shortly strong) region. Also it can be checked that the subset R ⊆ V is a
Π-strong region iff for every feasible solution Π ∪Π∗ for G, where Π ∩Π∗ = ∅,
we have R ∩Π∗ �= ∅.

Theorem 3. [2] Given a graph G = (V,E) with its tree decomposition of width
k as an input, Algorithm 1 is a k + 1-approximation algorithm.

As we mention earlier, the planar graphs have tree-width O(
√
n), and such a

tree-width decomposition can be found in O(n
3
2 ) time [3]. This fact together

with the above theorem provides a O(
√
n)-approximation algorithm for PDS on

planar graphs.

Corollary 1. Algorithm 1 is an O(
√
n)-approximation algorithm for the PDS

problem on planar graphs.

The analysis of our algorithm is tight; moreover, we can prove that any ap-
proximation algorithm for planar graphs that uses the number of disjoint strong
regions as a lower bound has the approximation guarantee of Ω(

√
n) (the details

are given in [2]). This is shown by proving that the
√
n ×
√
n grid has no two
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Algorithm 1. (k + 1)-approximation Algorithm
1: Given a tree decomposition 〈{Xi|i ∈ I} , T 〉, take an arbitrary node, r, as a root of

T .
2: Let I� be the set of T -nodes of distance � from the root, and let d be the maximum

distance from r.
3: Π ← ∅, a ← 0
4: for i = d to 0 do
5: Let Ii = {r1, . . . , rk} and let Tj be the subtree in T rooted at rj .
6: Let Yj be the set of nodes in G corresponding to the T -nodes in Tj .
7: for all induced subgraph Gj = G[Yj ] do
8: if Gj is Π-strong then
9: Π ← Π ∪ Xrj , a ← a + 1, STa ← Yj \

⋃a−1
s=1 STs; where STa is the a-th

strong region found.
10: end if
11: end for
12: end for
13: Output ΠO = Π

disjoint strong regions, while having an optimal solution of size Θ(
√
n). This

means that we cannot improve the approximation guarantee without finding a
better lower bounding technique.

3.2 �-Round PDS on Planar Graphs

In this section we present a PTAS for the �-round PDS problem on planar graphs
when � = O( log n

log logn ). Baker’s PTAS [4] for the Dominating Set problem on
planar graphs is a special case of our result with � = 1, but there are no previous
results of this type for � > 1. Our PTAS works in the same fashion as Baker’s
PTAS, but our analysis and proofs are novel contributions of this paper. It is
known that PDS remains NP-hard even on planar graphs [19,14]. The same
reduction used in [19,14] also proves that �-round PDS is NP-hard on planar
graphs [1].

First let us formally define the �-round PDS problem. Given a graph G =
(V,E) and a subset of nodes S ⊆ V , the set of nodes, Pk(S), that can be
power dominated by applying at most k rounds of parallel propagation is defined
recursively as follows:

Pk(S) =
{⋃

v∈S N [v] k = 1
Pk−1(S)

⋃{
v : (u, v) ∈ E,N [u] \ {v} ⊆ Pk−1(S)

}
k ≥ 2

where N [u] is the closed neighborhood of u in G, i.e. N [u] = {u} ∪
{w : {u,w} ∈ E(G)}. The goal in the �-round PDS problem is to find a min-
imum size subset of nodes S ⊆ V , such that P�(S) = V . We denote by Opt�(G)
the size of an optimal solution for the �-round PDS problem. For example con-
sider the G graph given in Figure 2; note that the graph has k ·m+ 1 nodes. It
is easy to check that the node v can power dominate the entire graph in exactly
k parallel rounds; the set Xi will be power dominated at the i-th parallel round.
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Hence Opt�(G) = 1 for all � ≥ k. Also it is easy to prove that Opt�(G) = m
for � = k − 1; we need to take a node other than v from each path Pi to power
dominate G in k − 1 parallel rounds.

Our PTAS needs to solve instances of the “generalized” �-round PDS problem,
where the goal is to power dominate at least all nodes of a given subset V ′ ⊆ V ;
we denote the instance of generalized �-round PDS of G with respect to the
subset V ′ by 〈G, V ′〉. The following result is proved by designing a dynamic
programming algorithm (the details are given in [1]).

Proposition 1. Given a pair 〈G, V ′〉 where G = (V,E) is a planar graph with
tree-width k and V ′ ⊆ V , a minimum size set S ⊆ V such that V ′ ⊆ P�(S) can
be obtained in time O(ck log � · |V |), for a constant c.

Now we describe our PTAS for solving �-round PDS on planar graphs for small
values of �. First we provide some useful definitions and notations. Consider an
embedding of a planar graph G, we define the nodes at level i, Li, as follows [4].
Let L1 be the set of nodes on the exterior face in the given embedding of G. For
i > 1, the set Li is defined as the set of nodes on the exterior face of the graph
induced on V \∪i−1

j=1Lj. We denote by L(a, b) = ∪bi=aLi the set of nodes at levels
a through level b. A planar graph is called d-outerplanar if it has an embedding
with all nodes of level ≤ d. Given a graph G = (V,E) and X ⊆ V , we denote by
G[X ] the subgraph induced on the set of nodes X .

Now let us describe our PTAS informally. Consider a parameter k, which is
a function of the parameter � and the approximation factor (1 + ε), that will
be defined later in the formal description of our algorithm. Consider a fixed
embedding of G. We decompose the graph in k different ways, D1, . . . ,Dk. In
each decomposition the graph is decomposed into blocks of k+4�−2 consecutive
levels. The block j inDi is defined asBi,j = L(jk+i−2�+1, (j+1)k+i−1+2�−1).
We denote the k middle levels of the block Bi,j by Ci,j = L(jk+i, (j+1)k+i−1).
In our PTAS, for each decomposition Di, we optimally solve instances of the
generalized �-round PDS problem (Ii,j = 〈G[Bi,j ], Ci,j〉) defined for each block
in Di. Note that each instance Ii,j can be optimally solved by using the dynamic
programming algorithm from Proposition 1. Let Oi,j denote the optimal solution
for this instance. Then we take the union of the solutions corresponding to blocks
in Di, Πi = ∪j≥0Oi,j . By doing this for all k decompositions we get k different
feasible solutions for the original graph G. Finally, we chose the solution with
minimum size among these k solutions. The 2� − 1 extra levels around the k
middle levels plays an important role in the feasibility and the near optimality
of the final output of the algorithm.
Theorem 4. [1] Let � be a given parameter, where � = O( logn

log log n ). Then Algo-
rithm 2 is a PTAS for the �-round PDS problem on planar graphs.

4 Greedy Algorithm for PDS

In this section we consider some variations of greedy algorithms for PDS and show
that they perform very poorly even on planar graphs. In contrast, for other prob-
lems such as Dominating Set and Set Covering, greedy algorithms perform
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Algorithm 2. PTAS for �-round PDS
1: Given a planar embedding of G, and the parameter 0 < ε ≤ 1.
2: Let k = 4 · � �

ε
�.

3: for i = 1 to k do
4: for all j ≥ 0 do
5: Solve “generalized” �-round PDS on 〈G[Bi,j ], Ci,j〉
6: Let Oi,j be an optimal solution for 〈G[Bi,j ], Ci,j〉
7: end for
8: Πi = ∪j≥0Oi,j

9: end for
10: r ← argmin{|Πi| : i = 1, · · · , k}
11: Output ΠO = Πr.

well since they achieve a logarithmic approximation guarantee, and no substantial
improvement is possible by any polynomial-time algorithm, under complexity as-
sumptions like P �= NP. The most natural greedy algorithm is the one that in each
step, adds a new node v to the current solutionΠ such that v power dominates the
maximum number of new nodes (v = argmax {|P(Π ∪ {v})\P(Π)| : v ∈ V \Π}).
Unfortunately, this greedy algorithm might find a solution of size Θ(n) on planar
graphs that have an optimal solution of size Θ(1).
Proposition 2. The greedy algorithm may find a solution Π such that |Π | ≥
Θ(n) · Opt(G).

Proof. Consider a graphG that is obtained from a 9�×9m grid by subdividing all
row-edges, except with minor changes in the four corners as shown in the Fig4(a).
Partition the graph G into (� · m) 9 × 9 grids (ignoring the nodes introduced
by subdivision), Fig. 4(b). It is easy to check that any single node can power
dominate at most 7 nodes, and center nodes of any one of the 9×9 grids achieve
this maximum. So the greedy algorithm at the first iteration may take the center
node of any one of the 9 × 9 grids. Assuming all nodes taken by the algorithm
so far have been these center nodes, we see that taking another center node
maximizes |P(Π ∪ {v})− P(Π)| over all v ∈ V . So the greedy algorithm could
continue taking all center nodes and after that taking possibly other nodes until
it finds a feasible solution. Let Π be the output of the greedy algorithm that
contains all the center nodes. The size of the output is at least m · � = Θ(n).
By taking all of the nodes in the first column it is easy to check that they
will power dominate G. Hence Opt(G) ≤ �. Now by fixing � = Θ(1) we get:
|Π | ≥ � ·m ≥ Opt(G) ·m = Opt(G) ·Θ(n). ��
We considered two other variations of the greedy algorithm, namely Proximity
and Cleanup, and show that they are not promising [2]. In each step of the
Proximity algorithm we chose a node such that the set of all power dominated
nodes induces a connected subgraph, and subject to this, the number of newly
power dominated nodes is maximized. Informally, this is to escalate the use of the
propagation rule. In the Cleanup algorithm, we first run the greedy algorithm,
to find a solution (node set) Π , then we repeatedly remove nodes from Π , until
Π is an inclusionwise minimal power dominating set.
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(a) Grid (b) 9 × 9 grid

Fig. 4. Bad example for the greedy algorithm

5 Integer Programming Formulation for �-Round PDS

In this section we present an integer programming (IP) formulation for the �-
round PDS. Then we consider its LP relaxation, and we show that it has inte-
grality ratio of Ω(n).

Given an undirected graph G = (V,E) and parameter 1 ≤ � ≤ n, where
n = |V |. Define the set of parallel rounds T = {1, . . . , �}. The variables in the
IP formulation are as follows. Let S∗ be an optimal solution. We have a binary
variable xv for each node v, where it is equal to 1 if and only if node v is in S∗

(S∗ = {v ∈ V : xv = 1}). The goal is to minimize
∑

v xv subjects to the following
constraints. For each node v and “parallel” round t ∈ T we have a binary variable
ztv , where ztv = 1 means that node v is power dominated on (or before) parallel
round t. Also we have binary variables Y tu→v and Y tv→u for each edge {u, v} ∈ E
and each parallel round t ∈ T, where Y tu→v = 1 means that node u can power
dominate node v at the parallel round t + 1. We have a set of constraints for
the termination condition saying that every node should be power dominated at
the end of the last round (∀v ∈ V : 1 ≤ z�v). The second set of constraints are
for power dominating all the nodes in the closed neighborhood of a node that
is in the optimal solution (∀v ∈ V : z1

v ≤
∑

u∈N [v] xu). We have another set of
constraints for each edge {u, v} ∈ E that checks if the propagation rule (Rule 2)
can be applied to u to power dominate v at the next round; node u is ready
only if u and all of its neighbors except v are already power dominated (∀(u, v) :
{u, v} ∈ E, ∀w ∈ N [u]\{v} , ∀t ∈ T : Y tu→v ≤ ztw). The last set of constraints are
for checking if node v is power dominated at time t; node v is power dominated
only if either it is in the optimal solution or at least one of its neighbors can power
dominate v at time t−1 (∀v ∈ V, ∀t ∈ T\{1} : ztv ≤

∑
u∈N(v) Y

t−1
u→v + xv). When

a node v becomes power dominated, it should stay power dominated. Although
it may seem redundant, we need to have the second term, +xv, in the right
hand side of the last constraint to have the monotonicity of the z variables.
To get an LP relaxation, we relax the variables to be non-negative instead of
being binary. We can show that this LP relaxation has integrality ratio of Ω(n)
provided � = Ω(logn), even for planar graphs (the proof is given in [1]).
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6 PDS in Directed Graphs

In this section we extend power domination to directed graphs to get the Di-

rected Power Dominating Set (DPDS) problem. We prove that DPDS is
hard to approximate within the same ratio as the undirected case even when the
input is restricted to directed acyclic graphs.

Let G be a directed graph, and S ⊆ V (G). For any node u let N+(u) denote
the out-neighbors of u, i.e. N+(u) := {w : (u,w) ∈ E(G)}. The DPDS problem
has the following set of rules: (D1) The node v is power dominated if v ∈ S or
∃u ∈ S : v ∈ N+(u), and (D2) The node v ∈ N+(u) is power dominated if u and
all out-neighbors of u except v are power dominated. The set of nodes that can
be power dominated by the above two rules is denoted by P(S). We say S power
dominates G if P(S) = V (G). The goal in the DPDS problem is to find a node
set S with minimum size that power dominates all the nodes, i.e. P(S) = V .
Our main results on DPDS are as follows (the proofs are given in [2]).

Theorem 5. DPDS even when restricted to directed acyclic graphs can-
not be approximated within ratio 2log1−ε n, for any ε > 0, unless NP ⊆
DTIME(npolylog(n)).

Guo et al. [14] designed a dynamic programming algorithm for optimally solv-
ing PDS on graphs with bounded tree-width. The key idea in their dynamic
programming algorithm is a new formulation of PDS in terms of a valid ori-
entation of edges. We extend the valid orientation in [14] to valid colorings for
directed graphs [2]. This gives a reformulation for directed PDS and leads to our
linear-time algorithm for directed PDS when the underlying undirected graph
has bounded tree-width.

Theorem 6. Given a directed graph G and tree width-k decomposition (not nec-
essarily an optimal decomposition) of its underlying undirected graph, DPDS can
be optimally solved in O(ck

2 · n) time for a global constant c.
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Abstract. We consider situations in which a decision-maker with a fixed
budget faces a sequence of options, each with a cost and a value, and
must select a subset of them online so as to maximize the total value.
Such situations arise in many contexts, e.g., hiring workers, scheduling
jobs, and bidding in sponsored search auctions.

This problem, often called the online knapsack problem, is known to
be inapproximable. Therefore, we make the enabling assumption that
elements arrive in a random order. Hence our problem can be thought
of as a weighted version of the classical secretary problem, which we
call the knapsack secretary problem. Using the random-order assumption,
we design a constant-competitive algorithm for arbitrary weights and
values, as well as a e-competitive algorithm for the special case when all
weights are equal (i.e., the multiple-choice secretary problem). In contrast
to previous work on online knapsack problems, we do not assume any
knowledge regarding the distribution of weights and values beyond the
fact that the order is random.

1 Introduction

Allocation of resources under uncertainty is a very common problem in many
real-world scenarios. Employers have to decide whether or not to hire candi-
dates, not knowing whether future candidates will be stronger or more desirable.
Machines need to decide whether to accept jobs without knowledge of the im-
portance or profitability of future jobs. Consulting companies must decide which
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jobs to take on, not knowing the revenue and resources associated with potential
future requests.

More recently, online auctions have proved to be a very important resource
allocation problem. Advertising auctions in particular provide the main source
of monetization for a variety of Internet services including search engines, blogs,
and social networking sites. Additionally, they are the main source of customer
acquisition for a wide array of small online businesses, the so-called “mom and
pop shops” of the networked world. In bidding for the right to appear on a web
page (such as a search engine), advertisers have to trade off between large num-
bers of parameters, including keywords and viewer attributes. In this scenario,
an advertiser may be able to estimate accurately the bid required to win a par-
ticular auction, and the benefit either in direct revenue or name recognition to
be gained, but may not know about the trade off for future auctions.

All of these problems involve an online scenario, wherein an algorithm has
to make decisions on whether to accept an offer (such as a candidate, job, or
a bidding opportunity), based solely on the required resource investment (or
weight) w and projected value v of the current offer, without knowledge of the
weights or values of future offers. The total weight of all selected offers may
not exceed a given budget W . Thus, the problem we are concerned with is an
online knapsack problem. In general, this problem does not permit any good
competitive ratio, as evidenced by trivial bad examples. Instead, we focus on
the case where the offers arrive in a uniformly random order.

Summary of Results: In this model, we prove two results: for the case of
general weights and values, we give a constant-competitive online algorithm
(specifically, it is 10e-competitive). For the special case where all the weights
are uniform, and the weight constraint thus poses a constraint on the total num-
ber of offers that can be accepted, we improve the approximation factor to e,
via two simple and natural algorithms.

Secretary Problems: When the weights are uniform and equal to the weight
constraint, our problem reduces to the famous secretary problem, or the problem
of selecting online an element of maximum value in a randomly-ordered sequence.
This problem was first introduced by Dynkin [9] in 1963. His paper gives an al-
gorithm which selects the maximum value element with probability that tends
to 1/e as n tends to infinity and hence is e-competitive. Many generalizations
of this problem have been studied in the literature. In one natural generaliza-
tion, Kleinberg [11] considers the multiple-choice secretary problem in which k
elements need to be selected and the goal is to maximize the combined value
(sum) of the selected elements. Kleinberg presents an asymptotically optimal
1/(1 − 5/

√
k)-competitive algorithm for this problem. Another closely related

generalization considered in the literature is the matroid secretary problem, in-
troduced by Babaioff et al. [2], in which the elements of a weighted matroid
arrive in a random order. As each element is observed, the algorithm makes an
irrevocable decision to choose it or skip it, with the constraint that the chosen el-
ements must constitute an independent set. Again, the objective is to maximize
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the combined weight of the chosen elements. Babaioff et al. give an O(log k)-
competitive algorithm for the matroid secretary problem, where k is the rank
of the matroid, as well as constant-competitive algorithms for several specific
matroids.

In this paper, we study both the multiple-choice secretary problem and a
weighted generalization, which we call the knapsack secretary problem. The
multiple-choice secretary problem is a special case of the matroid secretary prob-
lem (for the truncated uniform matroid). We show how to apply an intuitive
algorithmic idea proposed by Babaioff et al. [2] to get a e-competitive algorithm
for this problem for any k. Hence, our result improves upon the competitive
ratio of the algorithm by Kleinberg [11] for small k and is significantly simpler.
The knapsack secretary problem, on the other hand, can not be interpreted as a
matroid secretary problem, and hence none of the previous results apply. In this
paper, we give the first constant-competitive algorithm for this problem, using
intuition from the standard 2-approximation algorithm for the offline knapsack
problem.

Knapsack Problems: Our work builds upon the literature for knapsack prob-
lems. It is well known that the NP-complete (offline) knapsack problem admits an
FPTAS as well as a simple 2-approximation, whereas the online knapsack problem
is inapproximable to within any non-trivial multiplicative factor. Assuming that
the density (value to weight ratio) of every element is in a known range [L, U ], and
that each weight is much smaller than the capacity of the knapsack (or that the
packing is allowed to be fractional), Buchbinder and Naor [4,5] give an algorithm
with a multiplicative competitive ratio of O(log(U/L)) for online knapsack based
on a general online primal-dual framework. They also show an Ω(log(U/L)) lower
bound on the competitive ratio of any algorithm under such assumptions.

Several papers have also considered a stochastic online knapsack problem
[12,13] in which the value and/or weight of elements are drawn according to
a known distribution. These papers provide algorithms with an additive approx-
imation ratio of Θ(log n) as well as showing that no online algorithm can achieve
a constant additive approximation. Dean et al. [7,8] consider a stochastic offline
knapsack problem where the algorithm knows the values and the distribution
of the weights of the elements. They present an involved way for choosing the
order of the elements so as to achieve a constant-competitive outcome in the
multiplicative sense. The main difficulty in their model is that the weight of an
element is not revealed until it is actually selected.

Our results show that a constant-competitive algorithm exists for any se-
quence when elements arrive in a random order. The random order assumption
allows us to eliminate all assumptions from previous papers, e.g., that elements
have small weights [4,5], and densities are bounded [4,5] or drawn according to
a known distribution [7,8,12,13].1 In return, we are able to design a constant-
competitive online algorithm for our setting. In contrast, for the online setting

1 In contrast to the Dean et al. [7,8] models, our model and the others mentioned make
the stronger assumption that the weights of elements are learned before deciding
whether or not to select them.
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of Buchbinder and Naor, there is a super-constant lower bound of Ω(ln(U/L))
for a worst-case order of arrivals [4,5].

Sponsored Search: Several recent papers have considered applications of the
knapsack problem to auction design. Aggarwal and Hartline [1] design truthful
auctions which are revenue competitive when the auctioneer is constrained to
choose agents with private values and publicly known weights that fit into a knap-
sack. Knapsack algorithms have also been used to design bidding strategies for
budget-constrained advertisers in sponsored search auctions. That the bidding
problem in such settings is similar to knapsack was first noted by Borgs et al. [3]
(who considered using knapsack to model slot selection) and Rusmevichientong
and Williamson [16] (who considered using stochastic knapsack to model key-
word selection). The bidding problem was further studied in papers by Feldman
et al. [10] and Muthukrishnan et al. [15] which consider the problem of slot selec-
tion in more complicated settings, including interactions between keywords and
stochastic information. All these papers assume that the set of keywords and
distributional information regarding values and weights are known upfront by
the algorithm; hence the algorithms they develop are inspired by offline knap-
sack problems. Recently, Chakrabarty et al. [6] modeled the bidding problem
using online knapsack. Under the same assumptions as the paper of Buchbinder
and Naor [4,5] mentioned above, Chakrabarty et al. design a (ln(U/L) + 1)-
competitive online algorithm for a worst case sequence of keywords.

Outline of paper: In Section 2, we introduce a formal model for the knap-
sack secretary problem. We then give a pair of e-competitive algorithms for the
unweighted knapsack secretary problem in Section 3. Finally, in Section 4, we
design a constant-competitive algorithm for the general case.

2 Model

In formalizing the resource allocation problem, we will adopt the terminology of
the secretary problem, and think of our problem as a weighted secretary problem.
A set U = {1, . . . , n} of n elements or secretaries each have non-negative weight
w(i) and value v(i). We extend the notation to sets by writing w(S) :=

∑
i∈S w(i)

and v(S) :=
∑

i∈S v(i).
The algorithm will be given a weight bound W , and must select, in an on-

line fashion, a set S ⊆ U of secretaries (approximately) solving the following
knapsack problem:

Maximize
∑

i∈S

v(i) subject to
∑

i∈S

w(i) ≤W. (1)

We assume that the secretaries in U are presented to the algorithm in a uniformly
random order. In order to be able to number the elements by their arrival order,
we assume that the actual weights and values are obtained as v = v0 ◦ π, w =
w0 ◦ π, where π is a uniformly random permutation of n elements, and v0, w0

are arbitrary initial weight and value functions. For simplicity, we also assume
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that no two secretaries have the same values v(i), v(j). This is easy to ensure,
by fixing a random (but consistent) tie-breaking between elements of the same
value, based for instance on the identifier of the element.2

The algorithm is online in the following sense: initially, the algorithm knows
only n, the total number of secretaries, but knows nothing about the distribution
of weights or values. Whenever a secretary i arrives, the algorithm learns its
weight w(i) and value v(i). It must then irrevocably decide whether to select i
or pass: a selected secretary cannot later be discarded, nor can a passed secretary
be added. Thus, the algorithm maintains a set S of currently selected secretaries,
which grows over the course of the execution, but must always satisfy w(S) ≤W .

Clearly, this setting does not permit the design of an optimal algorithm.
Hence, we look for algorithms which are constant-competitive in that the ex-
pected value of the selected set S is within a constant of the optimum value.
More precisely, we say an algorithm is α-competitive for the weighted secretary
problem if for any initial weight and value functions v0, w0

α · E [v(S)] ≥ v(S∗),

where S∗ is the optimal solution to Program 1 and the expectation is over all
permutations π.

Note that this is a generalization of the classical secretary problem of
Dynkin [9]. In the classical secretary problem, all weights are one (i.e., w(i) = 1
for all i) and the weight bound W is also one; thus, the algorithm is to select ex-
actly one secretary. Dynkin gives a e-competitive algorithm for this special case.
Our formulation can also be used to capture the k-secretary problem by setting
all weights equal to one and the weight bound W equal to k. This case has been
studied by Kleinberg [11], who gave a 1/(1− 5/

√
k)-competitive algorithm.

In the following sections, we first present two algorithms for the k-secretary
problem. Our algorithms are simpler than those of Kleinberg and show that
there is a e-competitive algorithm for all k (Kleinberg’s result is strictly worse
than e for small k). We then present a constant-competitive algorithm for the
general case of weighted secretaries, although the constant is worse than that of
k-secretaries.

3 The Unweighted Case

In this section we present two simple algorithms for the unweighted case (i.e., the
multiple-choice secretary problem), in which all weights w(i) are equal to 1 and
the knapsack capacity W is equal to k. Both algorithms will achieve a competitive
guarantee no worse than e. While the second algorithm, called the “optimistic
algorithm” is perhaps more natural (and our analysis is almost certainly not
tight), the first algorithm, called the “virtual algorithm”, has a significantly
simpler analysis, yielding essentially a tight bound on its performance.

Both algorithms are based on the same idea of a sampling period of t ∈ {k +
1, . . . , n} steps (during which the algorithm passes on all candidates), followed
2 Note that such a tie-breaking can be accomplished in polynomial time.



A Knapsack Secretary Problem with Applications 21

by hiring some of the secretaries for the remaining n − t steps. We call t the
threshold time of the algorithms, and denote the set of sampled elements by T .
We leave t unspecified for now; after analyzing the algorithm, we will specify the
optimal value of t, which will be approximately n/e.

Both algorithms use the first t time steps to assemble a reference set R,
consisting of the k elements with the largest v(i) values seen during the first t
steps. These elements are kept for comparison, but not selected. Subsequently,
when an element i > t with value v(i) is observed, a decision of whether to
select i into the set S is made based on v(i) and R, and the set R is possibly
updated. At any given time, let j1, j2, . . . , j|R| be the elements of R, sorted by
decreasing v(ji).

Virtual: In the virtual algorithm, i is selected if and only if v(i) > v(jk), and
jk ≤ t (jk is in the sample). In addition, whenever v(i) > v(jk) (regardless
of whether jk ≤ t), element i is added to R, while element jk is removed
from R.

Thus, R will always contain the best k elements seen so far (in particular,
|R| = k), and i is selected if and only if its value exceeds that of the kth best
element seen so far, and the kth best element was seen during the sampling
period.

Optimistic: In the optimistic algorithm, i is selected if and only if v(i) >
v(j|R|). Whenever i is selected, j|R| is removed from the set R, but no new
elements are ever added to R. Thus, intuitively, elements are selected when
they beat one of the remaining reference points from R.

We call this algorithm “optimistic” because it removes the reference point
j|R| even if v(i) exceeds, say, v(j1). Thus, it implicitly assumes that it will see
additional very valuable elements in the future, which will be added when
their values exceed those of the remaining, more valuable, ji.

We first observe that neither algorithm ever selects more than k secretaries.
Each selection involves the removal of a sample ji ∈ R ∩ T from R, and no
elements from T are ever added to R by either algorithm after time t. Since R
starts with only k samples, no more than k elements can be selected.

Next, we prove that both the virtual and the optimistic Algorithm are e-
competitive, if t = �n/e� elements are sampled.

Theorem 1. The competitive ratio of both the Virtual and the Optimistic Algo-
rithm approaches e as n tends to infinity, when the algorithms sample t = �n/e�
elements.

The proof of the theorem for both algorithms follows from stronger lemmas,
establishing that each of the top k elements is selected with probability at
least 1/e. Specifically, let v∗1 , v∗2 , . . . , v∗k denote the k largest elements of the set
{v(1), v(2), . . . , v(n)}, and for a = 1, 2, . . . , k let i∗a = v−1(v∗a) be the index in
the sequence v(i) at which v∗a appeared. We will then establish the following
lemmas:
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Lemma 1. For all a ≤ k, the probability that the virtual algorithm selects ele-
ment v∗a is

Prob[i∗a ∈ S] ≥ t
n ln(n/t).

Lemma 2. For all a ≤ k, the probability that the optimistic algorithm selects
element v∗a is

Prob[i∗a ∈ S] ≥ t
n ln(n/t).

Proof of Theorem 1. The theorem follows immediately from these two lem-
mas, as the expected gain of the algorithm is

E [v(S)] ≥
∑k

a=1 Prob[i∗a ∈ S] · v∗a > t
n ln(n/t) · v(S∗).

t
n ln(n/t) is maximized for t = n/e, and setting t = �n/e� gives us that t/n → 1/e
as n → ∞. Thus, the algorithms’ competitive ratios approach e as n tends to
infinity.

The proof of Lemma 1 turns out to be surprisingly simple and elegant, while
the proof of Lemma 2 for the optimistic algorithm is significantly more complex,
and will be given in the full version of this paper.

Proof of Lemma 1. If v∗a is observed at time i∗a = i > t, it will be selected
if and only if the kth smallest element of R at that time was sampled at or
before time t. Because the permutation is uniformly random, this happens with
probability t/(i − 1). Each i is equally likely to be the time at which v∗a is
observed, so the probability of selecting v∗a is

Prob[i∗a ∈ S] =
∑n

i=t+1
1
n ·

t
i−1 = t

n

∑n
i=t+1

1
i−1 > t

n

∫ n

t
dx
x = t

n ln
(

n
t

)
.

Notice that the proof of Lemma 1 is essentially tight. Each of the top k elements
is selected with probability approaching 1/e in the limit for our choice of t.

4 The Weighted Case

In this section, we present an algorithm for the weighted case, with a competitive
ratio of 10e. The algorithm is based on the familiar paradigm of sampling a
constant fraction of the input and using the sample to define a selection criterion
which is then applied to the subsequent elements observed by the algorithm. One
complication which arises in designing algorithms for the weighted case is the
need to address at least two cases: either there is a single element (or, more
generally, a bounded number of elements) whose value constitutes a constant
fraction of the optimal knapsack solution, or there is no such element3. In the
former case(s), we use a selection criterion based on the values of elements but
ignoring their sizes. In the latter case, we use a selection criterion based on the
value density, i.e., the ratio of value to weight. To incorporate both cases, we
randomize the selection criterion.
3 This type of case analysis is reminiscent of the case analysis which underlies the de-

sign of polynomial-time approximation schemes for the offline version of the knapsack
problem.
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4.1 Notation

For i ∈ U , we define the value density (or simply “density”) of i to be the ratio

ρ(i) =
v(i)
w(i)

.

We will assume throughout this section that distinct elements of U have distinct
densities; this assumption is justified for the same reason our assumption of
distinct values is justified. (See Section 2.) If Q ⊆ U and x > 0, it will be useful
to define the “optimum fractional packing of elements of Q into a knapsack of
size x.” This is defined to be a vector of weights (y(x)

Q (i))n
i=1 which is a solution

of the following linear program (that is, y
(x)
Q (i) = y(i)).

max
∑n

i=1 v(i)y(i)
s.t.

∑n
i=1 w(i)y(i) ≤ x

y(i) = 0 ∀i /∈ Q
y(i) ∈ [0, 1] ∀i.

(2)

The reader may verify the following easy fact about y
(x)
Q (i): there exists a thresh-

old density ρ
(x)
Q such that y

(x)
Q (i) = 1 for all i ∈ Q such that ρ(i) > ρ

(x)
Q and

y
(x)
Q (i) = 0 for all i ∈ Q such that ρ(i) < ρ

(x)
Q . Finally, for a set R ⊆ U we will

define v
(x)
Q (R), w(x)

Q (R) by

v
(x)
Q (R) =

∑

i∈R

v(i)y(x)
Q (i)

w
(x)
Q (R) =

∑

i∈R

w(i)y(x)
Q (i).

4.2 The Algorithm

For convenience, we assume in this section that W = 1. (To reduce from the
general case to the W = 1 case, simply rescale the weight of each element
by a factor of 1/W .) Our algorithm begins by sampling a random number a ∈
{0, 1, 2, 3, 4} from the uniform distribution. The case a = 4 is a special case which
will be treated in the following paragraph. If 0 ≤ a ≤ 3, then the algorithm sets
k = 3a and runs the k-secretary algorithm from Section 3 (with t = �n/e�) to
select at most k elements. If the k-secretary algorithm selects an element i whose
weight w(i) is greater than 1/k, we override this decision and do not select the
element.

If a=4, our algorithm operates as follows. It samples a random t ∈ {1, 2, . . . , n}
from the binomial distribution B(n, 1/2), i.e. the distribution of the number of
heads observed when a fair coin is tossed n times. Let X = {1, 2, . . . , t} and Y =
{t + 1, t + 2, . . . , n}. For every element i ∈ X , the algorithm observes v(i) and
w(i) but does not select i. It then sets ρ̂ = ρ

(1/2)
X and selects every element i ∈ Y

which satisfies w(i) ≤ 3−4, ρ(i) ≥ ρ̂, and w(S<i∪{i}) ≤ 1, where S<i denotes the
set of elements which were already selected by the algorithm before observing i.
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4.3 Analysis of the Algorithm

Theorem 2. The algorithm in Section 4.2 is (10e)-competitive.

Proof. Let OPT ⊆ U denote the maximum-value knapsack solution, and suppose
that i1, i2, . . . , im are the elements of OPT arranged in decreasing order of weight.
Partition OPT into five sets B0, B1, . . . , B4. For 0 ≤ j ≤ 3,

Bj = {i� | 3j ≤ � < 3j+1},

while for j = 4, B4 = {i81, i82, . . . , im}. Let bj = v(Bj) for 0 ≤ j ≤ 4.
Let S denote the set of elements selected by the algorithm. For 0 ≤ j ≤ 4,

define
gj = E [v(S) | a = j]

where a denotes the random element of {0, 1, 2, 3, 4} sampled in the first step of
the algorithm. In Lemmas 3 and 4 below, we prove that bj ≤ 2egj for 0 ≤ j ≤ 4.
Summing over j, we obtain:

v(OPT) = b0 + b1 + b2 + b3 + b4

≤ 2e(g0 + g1 + g2 + g3 + g4)

= (10e)
4∑

j=0

Prob[a = j]gj

= 10e E[v(S)].

This establishes the theorem.

Lemma 3. For 0 ≤ j ≤ 3, bj ≤ 2egj.

Proof. Let k = 3j . Recall that every element i ∈ Bj appears in at least the kth

position on a list of elements of OPT arranged in decreasing order of weight.
Since the sum of the weights of all elements of OPT is at most 1, we have that
w(i) ≤ 1/k for every i ∈ Bj . Let Q = {i ∈ U |w(i) ≤ 1/k}, and let R be the
maximum-value k-element subset of Q. Since Bj ⊆ Q and |Bj | ≤ 2k, we have
v(Bj) ≤ 2v(R). On the other hand, Theorem 1 implies that gj ≥ v(R)/e. The
lemma follows by combining these two bounds.

Lemma 4. b4 ≤ 2eg4.

Proof. Assuming the algorithm chooses a = 4, recall that it splits the input into
a “sample set” X = {1, 2, . . . , t} and its complement Y = {t + 1, . . . , n}, where
t is a random sample from the binomial distribution B(n, 1/2). Recall that in
the case a = 4, the algorithm aims to fill the knapsack with multiple items of
weight at most 1/81, and value density at least equal to the value density of the
optimal solution for the sample (and a knapsack of size 1/2). Thus, let Q ⊆ U
consist of all elements i ∈ U such that w0(i) ≤ 1/81. We will show that with
sufficiently high constant probability, the algorithm obtains a “representative”
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sample, in the sense that the optimal value density estimated from X is bounded
from above and below in terms of the optimal value density for all of Q (with
different knapsack sizes). This in turn will imply that each element of Q is picked
by the algorithm with constant probability, more specifically, with probability
at least 0.3.

To obtain sufficiently high probability, we rely on the independence of mem-
bership in X between elements, which in turn allows us to apply Chernoff
Bounds. Recall that we encoded the random ordering of the input by assum-
ing that there exists a fixed pair of functions v0, w0 and a uniformly random
permutation π on U , such that v = v0 ◦ π, w = w0 ◦ π. This implies that, con-
ditional on the value of t, π−1(X) is a uniformly-random t-element subset of U .
Since t itself has the same distribution as the cardinality of a uniformly-random
subset of U , it follows that π−1(X) is a uniformly-random subset of U . For each
i ∈ U , if we define

ζi =
{

1 if π(i) ∈ X
0 otherwise,

then the random variables ζi are mutually independent, each uniformly dis-
tributed in {0, 1}.

Since B4 ⊆ Q and w(B4) ≤ 1,

b4 ≤ v
(1)
Q (Q) ≤ 4

3
v
(3/4)
Q (Q). (3)

For every j such that y
(3/4)
π(Q) (π(j)) > 0 we will prove that Prob[π(j)∈ S | a = 4]

> 0.3. This implies the first inequality in the following line, whose remaining
steps are clear from the definitions.

v
(3/4)
π(Q) (π(Q)) < E

[
10
3 v

(3/4)
π(Q) (S) | a = 4

]
≤ 10

3 E[v(S) | a = 4] = 10
3 g4. (4)

Combining (3) and (4) we will have derived b4 ≤ (40/9)g4 < 2eg4, thus estab-
lishing the lemma.

Note that for all i ∈ U, x > 0, the number y
(x)
π(Q)(π(i)) does not depend on the

random permutation π, since it is the i-th component of the solution of linear
program (2) with v0 and w0 in place of v and w, and the solution to the linear
program does not depend on π. We will use the notation y(i, x) as shorthand for
y
(x)
π(Q)(π(i)). Fix any j ∈ Q. We will show that j will be picked by the algorithm

with probability at least 0.3. To prove this, we will upper and lower bound the
total weight of π(Q) (scaled by the fractional solutions for knapsacks of different
sizes) seen in X and Y . This will allow us to reason that j will have density
exceeding ρ̂, and there will still be room in S by the time j is encountered.

We will reason about the expected fractional weight of items other than j in
X in a knapsack of size 3/4, and of items other than j in Y in a knapsack of size
3/2. Formally, we define the random variables
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Z1 = w
(3/4)
π(Q) (X \ {π(j)}) =

∑

i∈Q\{j}
w0(i)y(i, 3/4)ζi (5)

Z2 = w
(3/2)
π(Q) (Y \ {π(j)}) =

∑

i∈Q\{j}
w0(i)y(i, 3/2)(1− ζi) (6)

Since Z1, Z2 are sums of independent random variables taking values in the
interval [0, 1/81], we can use the following form of the Chernoff bound, obtained
from standard forms [14] by simple scaling: If z1, z2, . . . , zn are independent
random variables taking values in an interval [0, zmax] and if Z =

∑n
i=1 zi, μ =

E[Z], then for all δ > 0,

Prob[Z ≥ (1 + δ)μ] < exp
(

− μ

zmax
[(1 + δ) ln(1 + δ)− δ]

)

.

Because the expectations of Z1 and Z2 are

E[Z1] = 1
2w

(3/4)
π(Q) (π(Q) \ {π(j)}) = 1

2

(
3
4 − w0(j)y(j, 3/4)

)
∈
[

3
8 −

1
162 , 3

8

]
,

E[Z2] = 1
2w

(3/2)
π(Q) (π(Q) \ {π(j)}) = 1

2

(
3
2 − w0(j)y(j, 3/2)

)
∈
[

3
4 −

1
162 , 3

4

]
,

applying the Chernoff Bound to Z1 and Z2 with zmax = 1/81, δ = 1
3 −

8
243 yields

Prob[Z1 ≥ 1/2− 1/81] < 0.3 and Prob[Z2 ≥ 1− 2/81] < 0.1.
Let E denote the event that Z1 < 1

2 −
1
81 and Z2 < 1− 2

81 . By a union bound,
Prob[E | a = 4] > 0.6. Conditional on the event E (and on the event that a = 4),
the element π(j) can add no more than 1/81 to the weight of X or Y (whichever
one it belongs to). Hence, w

(3/4)
π(Q) (X) < 1/2 and w

(3/2)
π(Q) (Y ) < 1 − 1

81 , which in

turn implies w
(3/2)
π(Q) (X) > 1/2 > w

(3/4)
π(Q) (X), since every element of π(Q) belongs

to either X or Y and w
(3/2)
π(Q) (π(Q)) = 3/2. Because the threshold density for a

fractionally packed knapsack with larger capacity cannot be larger than for a
knapsack with smaller capacity, the above bounds on the weight imply that

ρ
(3/4)
π(Q) ≥ ρ

(1/2)
X ≥ ρ

(3/2)
π(Q) . (7)

Let S+ denote the set of all elements of Y \{π(j)} whose value density is greater
than or equal to ρ̂ = ρ

(1/2)
X . (Note that the algorithm will pick every element of

S+ that it sees until it runs out of capacity, and it will not pick any element
which does not belong to S+ except possibly π(j).) We claim that the combined
size of the elements of S+ is at most 1− 1

81 . This can be seen from the fact that
for all but at most one i ∈ S+, the coefficient y

(3/2)
π(Q) (i) is equal to 1. Hence the

combined size of all the elements of S+ is bounded above by

1
81 + w

(3/2)
π(Q) (Y \ {π(j)}) = 1

81 + Z2 < 1− 1
81 ,

from which it follows that the algorithm does not run out of room in its knapsack
before encountering π(j). If y(j, 3/4) > 0, then ρ(π(j)) ≥ ρ

(3/4)
π(Q) and (7) implies
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that ρ(π(j)) ≥ ρ̂. Thus, the algorithm will select π(j) if π(j) ∈ Y . Finally, note
that the event π(j) ∈ Y is independent of E , so

Prob[π(j) ∈ S | E ∧ (a = 4)] = Prob[π(j) ∈ Y | E ∧ (a = 4)] = 1
2 .

Combining this with the bound Prob[E | a = 4] > 0.6 established earlier, we
obtain

Prob[π(j) ∈ S | a = 4] > 0.3,

which completes the proof of the lemma.

5 Conclusion

In this paper, we have presented algorithms for a knapsack version of the sec-
retary problem, in which an algorithm has to select, in an online fashion, a
maximum-value subset from among the randomly ordered items of a knapsack
problem. We gave a constant-competitive algorithm in this model, as well as a
e-approximation for the k-secretary problem, in which all items have identical
weights.

The competitive ratios we obtain are certainly not tight, and it appears that
the analysis for the “optimistic algorithm” is not tight, either. Determining the
exact competitive ratio for this algorithm, as well as improving the algorithm
for the knapsack problem, are appealing directions for future work.

Furthermore, many natural variants of the secretary problem remain to be
studied. How general a class of set systems admits a constant-factor (or even
a e) approximation in the random ordering model? An appealing conjecture of
Babaioff et al. [2] states that a e approximation should be possible for all ma-
troids. We have shown that there is an interesting class of non-matroid domains -
knapsack secretary problems - that admits a constant-factor approximation. Are
there other natural classes of non-matroid domains that admit a constant-factor
approximation?

An interesting question is how the random ordering model relates with other
models of stochastic optimization. In particular, the “sample-and-optimize” ap-
proach taken in all algorithms in this paper bears superficial similarity to the
standard techniques in multi-stage stochastic optimization. It would be interest-
ing to formalize this similarity, and perhaps derive new insights into both classes
of problems.
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Abstract. We consider the metric uncapacitated facility location prob-
lem(UFL). In this paper we modify the (1 + 2/e)-approximation
algorithm of Chudak and Shmoys to obtain a new (1.6774,1.3738)-
approximation algorithm for the UFL problem. Our linear programing
rounding algorithm is the first one that touches the approximability limit
curve (γf , 1+2e−γf ) established by Jain et al. As a consequence, we ob-
tain the first optimal approximation algorithm for instances dominated
by connection costs.

Our new algorithm - when combined with a (1.11,1.7764)-approxima-
tion algorithm proposed by Jain, Mahdian and Saberi, and later analyzed
by Mahdian, Ye and Zhang - gives a 1.5-approximation algorithm for the
metric UFL problem. This algorithm improves over the previously best
known 1.52-approximation algorithm by Mahdian, Ye and Zhang, and it
cuts the gap with the approximability lower bound by 1/3.

The algorithm is also used to improve the approximation ratio for the
3-level version of the problem.

1 Introduction

The Uncapacitated Facility Location (UFL) problem is defined as follows. We
are given a set F of nf facilities and a set C of nc clients. For every facility
i ∈ F , there is a nonnegative number fi denoting the opening cost of the facility.
Furthermore, for every client j ∈ C and facility i ∈ F , there is a connection cost
cij between facility i and client j. The goal is to open a subset of the facilities
F ′ ⊆ F , and connect each client to an open facility so that the total cost is
minimized. The UFL problem is NP-complete, and max SNP-hard (see [8]). A
UFL instance is metric if its connection cost function satisfies a kind of triangle
inequality, namely if cij ≤ cij′ + ci′j′ + ci′j for any i, i′ ∈ C and j, j′ ∈ F .

The UFL problem has a rich history starting in the 1960’s. The first results on
approximation algorithms are due to Cornuéjols, Fisher, and Nemhauser [7] who
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considered the problem with an objective function of maximizing the “profit” of
connecting clients to facilities minus the cost of opening facilities. They showed
that a greedy algorithm gives an approximation ratio of (1 − 1/e) = 0.632 . . . ,
where e is the base of the natural logarithm. For the objective function of min-
imizing the sum of connection cost and opening cost, Hochbaum [9] presented
a greedy algorithm with an O(log n) approximation guarantee, where n is the
number of clients. The first approximation algorithm with constant approxima-
tion ratio for the minimization problem where the connection costs satisfy the
triangle inequality, was developed by Shmoys, Tardos, and Aardal [14]. Several
approximation algorithms have been proposed for the metric UFL problem after
that, see for instance [8,4,5,6,15,10,12]. Up to now, the best known approxi-
mation ratio was 1.52, obtained by Mahdian, Ye, and Zhang [12]. Many more
algorithms have been considered for the UFL problem and its variants. We refer
an interested reader to survey papers by Shmoys [13] and Vygen [16].

We will say that an algorithm is a λ-approximation algorithm for a minimiza-
tion problem if it computes, in polynomial time, a solution that is at most λ
times more expensive than the optimal solution. Specifically, for the UFL prob-
lem we consider the notion of bifactor approximation studied by Charikar and
Guha [4]. We say that an algorithm is a (λf ,λc)-approximation algorithm if the
solution it delivers has total cost at most λf · F ∗ + λc · C∗, where F ∗ and C∗

denote, respectively, the facility and the connection cost of an optimal solution.
Guha and Khuller [8] proved by a reduction from Set Cover that there is

no polynomial time λ-approximation algorithm for the metric UFL problem
with λ < 1.463, unless NP ⊆ DTIME(nlog logn). Sviridenko showed that the
approximation lower bound of 1.463 holds, unless P = NP (see [16]). Jain et
al. [10] generalized the argument of Guha and Khuller to show that the existence
of a (λf ,λc)-approximation algorithm with λc < 1 + 2e−λf would imply NP ⊆
DTIME(nlog logn).

1.1 Our Contribution

We modify the (1+2/e)-approximation algorithm of Chudak [5], see also Chudak
and Shmoys [6], to obtain a new (1.6774,1.3738)-approximation algorithm for
the UFL problem. Our linear programing (LP) rounding algorithm is the first
one that achieves an optimal bifactor approximation due to the matching lower
bound of (λf , 1+2e−λf ) established by Jain et al. In fact we obtain an algorithm
for each point (λf , 1+ 2e−λf ) such that λf ≥ 1.6774, which means that we have
an optimal approximation algorithm for instances dominated by connection cost
(see Figure 1).

Our main technique is to modify the support graph corresponding to the LP
solution before clustering, and to use various average distances in the fractional
solution to bound the cost of the obtained solution. Modifying the solution in
such a way was introduced by Lin and Vitter [11] and is called filtering. Through-
out this paper we will use the name sparsening technique for the combination of
filtering with our new analysis.
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Fig. 1. Bifactor approximation picture. The gray area corresponds to the improvement
due to our algorithm.

One could view our contribution as an improved analysis of a minor modifi-
cation of the algorithm by Sviridenko [15], which also introduces filtering to the
algorithm of Chudak and Shmoys. The filtering process that is used both in our
algorithm and in the algorithm by Sviridenko is relatively easy to describe, but
the analysis of the impact of this technique on the quality of the obtained solu-
tion is quite involved in each case. Therefore, we prefer to state our algorithm
as an application of the sparsening technique to the algorithm of Chudak and
Shmoys, which in our opinion is relatively easy do describe and analyze.

The motivation for the sparsening technique is the “irregularity” of instances
that are potentially tight for the original algorithm of Chudak and Shmoys. We
propose a way of measuring and controlling this irregularity. In fact our cluster-
ing is the same as the one used by Sviridenko in his 1.58-approximation algo-
rithm [15], but we continue our algorithm in the spirit of Chudak and Shmoys’
algorithm, which leads to an improved bifactor approximation guaranty.

Our new algorithm may be combined with the (1.11, 1.7764)-approximation
algorithm of Jain et al. to obtain a 1.5-approximation algorithm for the UFL
problem. This is an improvement over the previously best known 1.52-
approximation algorithm of Mahdian et al., and it cuts of a 1/3 of the gap with
the approximation lower bound by Guha and Khuler [8].

We also note that the new (1.6774,1.3738)-approximation algorithm may be
used to improve the approximation ratio for the 3-level version of the UFL
problem to 2.492.
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2 Preliminaries

We will review the concept of LP-rounding algorithms for the metric UFL prob-
lem. These are algorithms that first solve the linear relaxation of a given integer
programing (IP) formulation of the problem, and then round the fractional so-
lution to produce an integral solution with a value not too much higher than
the starting fractional solution. Since the optimal fractional solution is at most
as expensive as an optimal integral solution, we obtain an estimation of the
approximation factor.

2.1 IP Formulation and Relaxation

The UFL problem has a natural formulation as the following integer program-
ming problem.

minimize
∑
i∈F ,j∈C cijxij +

∑
i∈F fiyi

subject to
∑
i∈F xij = 1 for all j ∈ C (1)

xij − yi ≤ 0 for all i ∈ F , j ∈ C (2)
xij , yi ∈ {0, 1} for all i ∈ F , j ∈ C (3)

A linear relaxation of this IP formulation is obtained by replacing Condition
(3) by the condition xij ≥ 0 for all i ∈ F , j ∈ C . The value of the solution to this
LP relaxation will serve as a lower bound for the cost of the optimal solution.
We will also make use of the following dual formulation of this LP.

maximize
∑
j∈C vj

subject to
∑
j∈C wij ≤ fi for all i ∈ F (4)

vj − wij ≤ cij for all i ∈ F , j ∈ C (5)
wij ≥ 0 for all i ∈ F , j ∈ C (6)

2.2 Clustering

The first constant factor approximation algorithm for the metric UFL problem by
Shmoys et al., but also the algorithms by Chudak and Shmoys, and by Sviridenko
are based on the following clustering procedure. Suppose we are given an optimal
solution to the LP relaxation of our problem. Consider the bipartite graph G
with vertices being the facilities and the clients of the instance, and where there
is an edge between a client j and a facility i if the corresponding variable xij in
the optimal solution to the LP relaxation is positive. We call G a support graph
of the LP solution. If two clients are both adjacent to the same facility in graph
G, we will say that they are neighbors in G.

The clustering of this graph is a partitioning of clients into clusters together
with a choice of a leading client for each of the clusters. This leading client
is called a cluster center. Additionally we require that no two cluster centers
are neighbors in the support graph. This property helps us to open one of the
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open facility

cluster center
j j’

cluster

a path from client j to the facility
serving his cluster center j’

Fig. 2. A cluster. If we make sure that at least one facility is open around a cluster
center j′ , then any other client j from the cluster may use this facility. Because the
connection costs are assumed to be metric, the distance to this facility is at most the
length of the shortest path from j to the open facility.

adjacent facilities for each cluster center. Formally we will say that a clustering
is a function g : C → C that assigns each client to the center of his cluster. For
a picture of a cluster see Figure 2.

All the above mentioned algorithms use the following procedure to obtain the
clustering. While not all the clients are clustered, choose greedily a new cluster
center j, and build a cluster from j and all the neighbors of j that are not
yet clustered. Obviously the outcome of this procedure is a proper clustering.
Moreover, it has a desired property that clients are close to their cluster centers.
Each of the mentioned LP-rounding algorithms uses a different greedy criterion
for choosing new cluster centers. In our algorithm we will use the clustering with
the greedy criterion of Sviridenko [15].

2.3 Scaling and Greedy Augmentation

The techniques described here are not directly used by our algorithm, but they
help to explain why the algorithm of Chudak and Shmoys is close to optimal.
We will discuss how scaling facility opening costs before running an algorithm,
together with another technique called greedy augmentation may help to balance
the analysis of an approximation algorithm for the UFL problem.

The greedy augmentation technique introduced by Guha and Khuller [8] (see
also [4]) is the following. Consider an instance of the metric UFL problem and a
feasible solution. For each facility i ∈ F that is not opened in this solution, we
may compute the impact of opening facility i on the total cost of the solution, also
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called the gain of opening i, denoted by gi. The greedy augmentation procedure,
while there is a facility i with positive gain gi, opens a facility i0 that maximizes
the ratio of saved cost to the facility opening cost gi

fi
, and updates values of gi.

The procedure terminates when there is no facility whose opening would decrease
the total cost.

Suppose we are given an approximation algorithm A for the metric UFL
problem and a real number δ ≥ 1. Consider the following algorithm Sδ(A).

1. scale up all facility opening costs by a factor δ;
2. run algorithm A on the modified instance;
3. scale back the opening costs;
4. run the greedy augmentation procedure.

Following the analysis of Mahdian, Ye, and Zhang [12] one may prove the
following lemma.

Lemma 1. Suppose A is a (λf ,λc)-approximation algorithm for the metric UFL
problem, then Sδ(A) is a (λf + ln(δ),1+ λc−1

δ )-approximation algorithm for this
problem.

This method may be applied to balance an (λf ,λc)-approximation algorithm
with λf << λc. However, our 1.5-approximation algorithm is balanced differ-
ently. It is a composition of two algorithms that have opposite imbalances.

3 Sparsening the Graph of the Fractional Solution

In this section we describe a technique that we use to control the expected
connection cost of the obtained solution. It is based on modifying a fractional
solution in a way introduced by Lin and Vitter [11] and called filtering.

The filtering technique has been successfully applied to the facility location
problem, also in the algorithms of Shmoys, Tardos, and Aardal [14] and of Sviri-
denko [15]. We will give an alternative analysis of what is the effect of applying
filtering on a fractional solution to the LP relaxation of the UFL problem.

Suppose that for a given UFL instance we have solved its LP relaxation, and
that we have an optimal primal solution (x∗, y∗) and the corresponding optimal
dual solution (v∗, w∗). Such a fractional solution has facility cost F ∗ =

∑
i∈F fiy

∗
i

and connection cost C∗ =
∑
i∈F ,j∈C cijx

∗
ij . Each client j has its share vj of the

total cost. This cost may again be divided into a client’s fractional connection
cost C∗

j =
∑

i∈F cijx
∗
ij , and his fractional facility cost F ∗

j = v∗j − C∗
j .

3.1 Motivation and Intuition

The idea behind the sparsening technique is to make use of some irregularities
of an instance if they occur. We call an instance regular if the facilities that
fractionally serve a client j are all at the same distance from j. For such an
instance the algorithm of Chudak and Shmoys produces a solution whose cost is
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bounded by F ∗ + (1 + 2
e )C

∗, which also follows from our analysis in Section 4.
It remains to use the technique described in section 2.3 to obtain an optimal
1.463 . . .-approximation algorithm for such regular instances.

The instances that are not regular are called irregular. Difficult to understand
are the irregular instances. In fractional solutions for these instances particular
clients are fractionally served by facilities at different distances. Our approach
is to divide facilities serving a client into two groups, namely close and distant
facilities. We will remove links to distant facilities before the clustering step, so
that if there are irregularities, distances to cluster centers should decrease.

We measure the local irregularity of an instance by comparing a fractional
connection cost of a client to the average distance to his distant facilities. In
the case of a regular instance, the sparsening technique gives the same results
as technique described in section 2.3, but for irregular instances sparsening also
takes some advantage of the irregularity.

3.2 Details

We will start by modifying the primal optimal fractional solution (x∗, y∗) by
scaling the y-variables by a constant γ > 1 to obtain a suboptimal fractional
solution (x∗, γ ·y∗). Now suppose that the y-variables are fixed, but that we now
have a freedom to change the x-variables in order to minimize the total cost.
For each client j we change the corresponding x-variables so that he uses his
closest facilities in the following way. We choose an ordering of facilities with
nondecreasing distances to client j. We connect client j to the first facilities in
the ordering so that among facilities fractionally serving j only the latest one
in the chosen ordering may be opened more then it serves j. Formally, for any
facilities i and i′ such that i′ is later in the ordering, if xij < yi then xi′j = 0.

Without loss of generality, we may assume that this solution is complete (i.e.
there are no i ∈ F , j ∈ C such that 0 < xij < yi). Otherwise we may split facilities
to obtain an equivalent instance with a complete solution - see [15][Lemma 1]
for a more detailed argument.

Let (x, y) denote the obtained complete solution. For a client j we say that a
facility i is one of his close facilities if it fractionally serves client j in (x, y). If
xij = 0, but facility i was serving client j in solution (x∗, y∗), then we say, that
i is a distant facility of client j.

Definition 1. Let

rγ(j) =

{ γ
γ−1

∑
i∈{i∈F|xij=0} cijx

∗
ij−C

∗
j

F∗
j

for F ∗
j > 0

0 for F ∗
j = 0.

The value rγ(j) is a measure of the irregularity of the instance around client j.
It is the average distance to a distant facility minus the fractional connection
cost C∗

j (C∗
j is the general average distance to both close and distant facilities)

divided by the fractional facility cost of a client j; or it is equal 0 if F ∗
j = 0.

Observe, that rγ(j) takes values between 0 and 1. rγ(j) = 0 means that client j
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10 distant
facilities

close facilities

distance

average distance to distant facilities

average distance to close facilities

1
γ

v∗
j = C∗

j + F ∗
j

C∗
j + rγ(j) · F ∗

j

C∗
j

C∗
j − r′

γ(j) · F ∗
j

Fig. 3. Distances to facilities serving client j; the width of a rectangle corresponding
to facility i is equal to x∗

ij . Figure explains the meaning of rγ(j).

is served in the solution (x∗, y∗) by facilities that are all at the same distance.
In the case of rγ(j) = 1 the facilities are at different distances and the distant
facilities are all so far from j that j is not willing to contribute to their opening.
In fact, for clients j with F ∗

j = 0 the value of rγ(j) is not relevant for our analysis.
To get some more intuition for the F ∗

j and rγ(j) values, imagine that you
know F ∗

j and C∗
j , but the adversary is constructing the fractional solution and

he decided about distances to particular facilities fractionally serving client j.
One could interpret F ∗

j as a measure of freedom the adversary has when he
chooses those distances. In this language, rγ(j) is a measure of what fraction of
this freedom is used to make distant facilities more distant than average facilities.

Let r′γ(j) = rγ(j) ∗ (γ − 1). For client j with F ∗
j > 0 we have r′γ(j) =

C∗
j −
∑

i∈F cijxij

F∗
j

which is the fractional connection cost minus the average dis-
tance to a close facility, divided by the fractional facility cost of a client j.

Observe, that for every client j the following hold (see Figure 3):

– his average distance to a close facility equals DC
av(j) = C∗

j − r′γ(j) · F ∗
j ,

– his average distance to a distant facility equals DD
av(j) = C∗

j + rγ(j) · F ∗
j ,

– his maximal distance to a close facility is at most the average distance to a
distant facility, DC

max(j) ≤ DD
av(j) = C∗

j + rγ(j) · F ∗
j .
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Consider the bipartite graph G obtained from the solution (x, y), where each
client is directly connected to his close facilities. We will greedily cluster this
graph in each round choosing the cluster center to be an unclustered client j
with the minimal value of DC

av(j) + DC
max(j). In this clustering, each cluster

center has a minimal value of DC
av(j) +DC

max(j) among clients in his cluster.

4 Our New Algorithm

Consider the following algorithm A1(γ):

1. Solve the LP relaxation of the problem to obtain a solution (x∗, y∗).
2. Scale up the value of the facility opening variables y by a constant γ > 1,

then change the value of the x-variables so as to use the closest possible
fractionally open facilities (see Section 3.2).

3. If necessary, split facilities to obtain a complete solution (x, y).
4. Compute a greedy clustering for the solution (x, y), choosing as cluster cen-

ters unclustered clients minimizing DC
av(j) +DC

max(j).
5. For every cluster center j, open one of his close facilities randomly with

probabilities xij .
6. For each facility i that is not a close facility of any cluster center, open it

independently with probability yi.
7. Connect each client to an open facility that is closest to him.

In the analysis of this algorithm we will use the following result:

Lemma 2. Given n independent events e1, e2, . . . , en that occur with probabil-
ities p1, p2, . . . , pn respectively, the event e1 ∪ e2 ∪ . . . ∪ en (i.e. at least one of
ei) occurs with probability at least 1 − 1

e
∑n

i=1 pi
, where e denotes the base of the

natural logarithm.

Theorem 1. Algorithm A1(γ = 1.67736) produces a solution with expected cost
E[cost(SOL)] ≤ 1.67736 · F ∗ + 1.37374 · C∗.

Proof. The expected facility opening cost of the solution is
E[FSOL] =

∑
i∈F fiyi = γ ·

∑
i∈F fiy

∗
i = γ · F ∗.

To bound the expected connection cost we show that for each client j there
is an open facility within a certain distance with a certain probability. If j is a
cluster center, one of his close facilities is open and the expected distance to this
open facility is DC

av(j) = C∗
j − r′γ(j) · F ∗

j .
If j is not a cluster center, he first considers his close facilities (see Figure 4).

If any of them is open, the expected distance to the closest open facility is at
most DC

av(j). From Lemma 2, with probability pc ≥ (1 − 1
e ), at least one close

facility is open.
Suppose none of the close facilities of j is open, but at least one of his dis-

tant facilities is open. Let pd denote the probability of this event. The expected
distance to the closest facility is then at most DD

av(j).
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j
cluster center j’

close facilities of j

distant facilities of j

close facilities of j’

Fig. 4. Facilities that client j may consider: his close facilities, distant facilities, and
close facilities of cluster center j′

If neither any close nor any distant facility of client j is open, then he connects
himself to the facility serving his cluster center g(j) = j′. Again from Lemma 2,
such an event happens with probability ps ≤ 1

eγ . In the following we will show
that if γ < 2 then the expected distance from j to the facility serving j′ is at most
DD
av(j)+DC

max(j
′)+DC

av(j
′). Let Cj (Dj) be the set of close (distant) facilities of

j. For any set of facilitiesX ⊂ F , let d(j,X) denote the weighted average distance
from j to i ∈ X (with values of opening variables yi as weights).

If the distance between j and j′ is at mostDD
av(j)+DC

av(j′), then the remaining
DC
max(j

′) is enough for the distance from j′ to any of his close facilities. Suppose
now that the distance between j and j′ is bigger than DD

av(j) + DC
av(j

′) (*).
We will bound d(j′, Cj′ \ (Cj ∪ Dj)), the average distance from cluster center
j′ to his close facilities that are neither close nor distant facilities of j (since
the expected connection cost that we compute is on the condition that j was
not served directly). The assumption(*) implies that d(j′, Cj ∩ Cj′) > DC

av(j′).
Therefore, if d(j′,Dj ∩ Cj′) ≥ DC

av(j
′), then d(j′,Dj \ (Cj ∪ Dj)) ≤ DC

av(j
′) and

the total distance from j is small enough.
The remaining case is that d(j′,Dj∩Cj′ ) = DC

av(j
′)−z for some positive z (**).

Let ŷ =
∑
i∈(Cj′∩Dj)

yi be the total fractional opening of facilities in Cj′ ∪Dj in
the modified fractional solution (x, y). From (*) we conclude, that d(j,Dj∩Cj′ ) ≥
DD
av(j)+z, which implies d(j,Dj\Cj′) ≤ DD

av(j)−z· ŷ
γ−1−ŷ (note that (**) implies

(Dj \Cj′) �= ∅ and γ−1− ŷ > 0), hence DC
max(j) ≤ DD

av(j)− z · ŷ
γ−1−ŷ . Combin-

ing this with assumption (*) we conclude that the minimal distance from j′ to a
facility in Cj ∩ Cj′ is at least DD

av(j) +DC
av(j

′)−DC
max(j) ≥ DC

av(j
′) + z · ŷ

γ−1−ŷ .
Assumption (**) implies d(j′, Cj′ \Dj) = DC

av(j′) + z · ŷ
1−ŷ . Concluding, if γ < 2

then d(j′, Cj′ \ (Dj ∪ Cj)) ≤ DC
av(j

′) + z · ŷ
γ−1−ŷ .
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Fig. 5. Figure presents performance of our algorithm for different values of parameter
γ. The solid line corresponds to regular instances with rγ(j) = 0 for all j and it
coincides with the approximability lower bound curve. The dashed line corresponds
to instances with rγ(j) = 1 for all j. For a particular choice of γ we get a horizontal
segment connecting those two curves; for γ ≈ 1.67736 the segment becomes a single
point. Observe that for instances dominated by connection cost only a regular instance
may be tight for the lower bound.

Therefore, the expected connection cost from j to a facility in Cj′ \ (Dj ∪ Cj)
is at most

DC
max(j) +DC

max(j
′) + d(j′, Cj′ \ (Dj ∪ Cj))

≤ DD
av(j)− z · ŷ

γ−1−ŷ +DC
max(j

′) +DC
av(j

′) + z · ŷ
γ−1−ŷ

= DD
av(j) +DC

max(j
′) +DD

av(j
′).

Putting all the cases together, the expected total connection cost is

E[CSOL] ≤
∑

j∈C
(
pc ·DC

av(j)+pd ·DD
av(j)+ps · (DD

av(j)+D
C
max(j

′)+DC
av(j

′))
)

≤
∑

j∈C
(
(pc + ps) ·DC

av(j) + (pd + 2ps) ·DD
av(j)

)

=
∑

j∈C
(
(pc + ps) · (C∗

j − r′γ(j) · F ∗
j )+(pd + 2ps) · (C∗

j + rγ(j) · F ∗
j )
)

= ((pc + pd + ps) + 2ps) · C∗

+
∑
j∈C
(
(pc+ps) · (−rγ(j) · (γ − 1) · F ∗

j ) + (pd + 2ps) · (rγ(j) · F ∗
j )
)

= (1 + 2ps) · C∗ +
∑

j∈C
(
F ∗
j · rγ(j) · (pd+2ps − (γ − 1) · (pc + ps))

)

≤ (1+ 2
eγ ) · C∗+

∑
j∈C
(
F ∗
j · rγ(j) · (1

e + 1
eγ − (γ − 1) · (1 − 1

e + 1
eγ ))
)
.

By setting γ = γ0 ≈ 1.67736 such that 1
e + 1

eγ0 − (γ0 − 1) · (1 − 1
e+ 1

eγ0 )=0,
we obtain E[CSOL] ≤ (1 + 2

eγ0 ) · C∗ ≤ 1.37374 · C∗. ��

The algorithm A1 with γ = 1+ ε (for a sufficiently small positive ε) is essentially
the algorithm of Chudak and Shmoys.
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5 The 1.5-Approximation Algorithm

In this section we will combine our algorithm with an earlier algorithm of Jain
et al. to obtain an 1.5-approximation algorithm for the metric UFL problem.

In 2002 Jain, Mahdian and Saberi [10] proposed a primal-dual approximation
algorithm (the JMS algorithm). Using a dual fitting approach they have shown
that it is a 1.61-approximation algorithm. In a later work of Mahdian, Ye and
Zhang [12] the following was proven.

Lemma 3 ([12]). The cost of a solution produced by the JMS algorithm is at
most 1.11 × F ∗ + 1.7764 × C∗, where F ∗ and C∗ are facility and connection
costs in an optimal solution to the linear relaxation of the problem.

Theorem 2. Consider the solutions obtained with the A1 and JMS algorithms.
The cheaper of them is expected to have a cost at most 1.5 times the cost of the
optimal fractional solution.

Proof. Consider the algorithm A2 that with probability p = 0.313 runs the
JMS algorithm and with probability 1− p runs the A1 algorithm. Suppose that
you are given an instance, and F ∗ and C∗ are facility and connection costs in
an optimal solution to the linear relaxation of the problem for this instance.
Consider the expected cost of the solution produced by algorithm A2 for this
instance. E[cost] ≤ p·(1.11·F ∗+1.7764·C∗)+(1−p)·(1.67736·F ∗+1.37374·C∗) =
1.4998 · F ∗ + 1.4998 · C∗ < 1.5 ∗ (F ∗ + C∗) ≤ 1.5 ∗OPT. ��

Instead of the JMS algorithm we could take the algorithm of Machdian et al.
[12] - the MYZ(δ) algorithm that scales the facility costs by δ, runs the JMS
algorithms, scales back the facility costs and finally runs the greedy augmen-
tation procedure. With a notation introduced in Section 2.3, the MYZ(δ) algo-
rithm is the Sδ(JMS) algorithm. The MYZ(1.504) algorithm was proven [12]
to be a 1.52-approximation algorithm for the metric UFL problem. We may
change the value of δ in the original analysis to observe that MYZ(1.1) is a
(1.2053,1.7058)-approximation algorithm. This algorithm combined with our A1
(1.67736,1.37374)-approximation algorithm gives a 1.4991-approximation algo-
rithm, which is even better than just using JMS and A1, but it gets more com-
plicated and the additional improvement is tiny.

6 Multilevel Facility Location

In the k-level facility location problem the clients need to be connected to open
facilities on the first level, and each open facility ,except on the last, k-th level,
needs to be connected to an open facility on the next level. Aardal, Chudak, and
Shmoys [1] gave a 3-approximation algorithm for the k-level problem with ar-
bitrary k. Ageev, Ye, and Zhang [2] proposed a reduction of a k-level problem
to a (k − 1)-level and a 1-level problem, which results in a recursive algorithm.
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This algorithm uses an approximation algorithm for the single level problem and
has a better approximation ratio, but only for instances with small k. Using our
new (1.67736,1.37374)-approximation algorithm instead of the JMS algorithm
within this framework improves approximation for each level. In particular, in
the limit as k tends to ∞ we get 3.236-approximation which is the best possible
for this construction.

By a slightly different method, Zhang [17] obtained a 1.77-approximation
algorithm for the 2-level problem. By reducing to a problem with smaller number
of levels, he obtained 2.5231 and 2.81 approximation algorithms for the 3-level
and the 4-level version of the problem. If we modiffy the algorithm by Zhang for
the 3-level problem, and use the new (1.67736,1.37374)-approximation algorithm
for the single level part, we obtain a 2.492-approximation, which improves on
the previously best known approximation by Zhang. Note, that for k > 4 the
best known approximation factor is still due to Aardal et al. [1].

7 Concluding Remarks

The presented algorithm was described as a procedure of rounding a particu-
lar fractional solution to the LP relaxation of the problem. In the presented
analysis we compared the cost of the obtained solution with the cost of the
starting fractional solution. If we appropriately scale the cost function in the LP
relaxation before solving the relaxation, we easily obtain an algorithm with a
bifactor approximation guaranty in a stronger sense. Namely, we get a compar-
ison of the produced solution with any feasible solution to the LP relaxation of
the problem. Such a stronger guaranty was, however, not necessary to construct
the 1.5-approximation algorithm for the metric UFL problem.

With the 1.52-approximation algorithm of Mahdian et al. it was not clear for
the authors if a better analysis of the algorithm could close the gap with the ap-
proximation lower bound of 1.463 by Guha and Khuler. Byrka and Aardal [3] have
recently given a negative answer to this question by constructing instances that
are hard for the MYZ algorithm. Similarly, we now do not know if our new al-
gorithm A1(γ) could be analyzed better to close the gap. Construction of hard
instances for our algorithm remains an open problem.

The technique described in Section 2.3 enables to move the bifactor approx-
imation guaranty of an algorithm along the approximability lower bound of
Jain et al. (see Figure 1) towards higher facility opening costs. If we developed
a technique to move the analysis in the opposite direction, together with our
new algorithm, it would imply closing the approximability gap for the metric
UFL problem. It seems that with such an approach we would have to face the
difficulty of analyzing an algorithm that closes some of the previously opened
facilities.

1 This value deviates slightly from the value 2.51 given in the paper. The original
argument contained a minor calculation error.
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Abstract. A star graph is a tree of diameter at most two. A star forest
is a graph that consists of node-disjoint star graphs. In the spanning star
forest problem, given an unweighted graph G, the objective is to find
a star forest that contains all the vertices of G and has the maximum
number of edges. This problem is the complement of the dominating set
problem in the following sense: On a graph with n vertices, the size of
the maximum spanning star forest is equal to n minus the size of the
minimum dominating set.

We present a 0.71-approximation algorithm for this problem, im-
proving upon the approximation factor of 0.6 of Nguyen et al. [9]. We
also present a 0.64-approximation algorithm for the problem on node-
weighted graphs. Finally, we present improved hardness of approximation
results for the weighted versions of the problem.

1 Introduction

A star graph is a tree of diameter at most two. Equivalently, a star graph consists
of a vertex designated center along with a set of leaves adjacent to it. In partic-
ular, a singleton vertex is a star as well. Given an undirected graph, a spanning
star forest consists of a set of node-disjoint stars that cover all the nodes in the
graph. In the spanning star forest problem, the objective is to maximize the
number of edges (or equivalently, leaves) present in the forest.

A dominating set of a graph is a subset of the vertices such that every other
vertex is adjacent to a vertex in the dominating set. Observe that in a spanning
star forest solution, each vertex is either a center or adjacent to a center. Hence
the set of centers form a dominating set of the graph. Therefore, the size of the
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maximum spanning star forest is the number of vertices minus the size of the
minimum dominating set. Computing the maximum spanning star forest of a
graph is NP-hard because computing the minimum dominating set is NP-hard.

The spanning star forest problem has found applications in computational bi-
ology. Nguyen et al. [9] use the spanning star forest problem to give an algorithm
for the problem of aligning multiple genomic sequences, which is a basic bioin-
formatics task in comparative genomics. The spanning star forest problem and
its directed version have found applications in the comparison of phylogenetic
trees [3] and the diversity problem in the automobile industry [1].

Surprisingly, even though the maximum spanning star forest is a natural NP-
hard problem, there is not much literature on approximation algorithms for this
problem. In fact, the first approximation algorithms for this problem appeared
recently in the work of Nguyen et al. [9]. They gave a number of approximation
algorithms: the most general one being a 0.6-approximation algorithm on an
unweighted graph. This should be contrasted with the complementary problem
of minimizing the size of the dominating set of the graph which is known to be
hard to approximate within a factor of (1 − ε)ln n for any ε > 0 unless NP is
in DTIME(nlog logn) [4,8]. This disparity in approximability of complementary
problems is fairly commonplace (for example the maximum independent set is
not approximable to within any polynomial factor while its complement problem
of minimum vertex cover can be approximated to within a factor of 2). Nguyen et
al. [9] also showed that the spanning star forest problem is hard to approximate
to within a factor of 545

546 + ε unless P=NP. The paper also gave algorithms with
better approximation factors for special graphs such as planar graphs and trees
(in fact, for trees the optimal spanning star forest can be computed in linear
time).

There are some natural weighted generalizations of the spanning star forest
problem. The first generalization is when edges have weights and the objective
is to maximize the weights of the edges in the spanning star forest solution.
There is a simple 0.5-approximation algorithm for this case [9]. Note that the
edge-weighted version is no longer the complement of the (weighted) dominat-
ing set problem. Another generalization is the case when nodes have weights.
The objective now is to maximize the weights of nodes that are leaves in the
spanning star forest solution. This problem is the natural complement of the
weighted minimum dominating set problem. To the best of our knowledge, the
approximability of the node-weighted spanning star forest problem has not been
considered before.

1.1 Our Results and Techniques

We prove the following results in this paper. First, we improve the result of [9] by
giving a 0.71-approximation algorithm for the unweighted spanning star forest
problem. Second, we give a 0.64-approximation algorithm for the node-weighted
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spanning star forest problem. Finally, we prove better hardness of approxima-
tion results for the weighted versions of the problem. In particular, we show that
the node and edge-weighted spanning star forest problem cannot be approxi-
mated to within a factor of 31

32 + ε and 19
20 + ε, respectively, for any ε > 0 unless

P=NP.
Our algorithms are based on an LP relaxation of the spanning star forest prob-

lem and randomized rounding. For each vertex we have a variable xi which is 1 if
xi is a leaf. However, the natural rounding scheme of making vertex i a leaf with
probability xi does not give a good approximation ratio. Instead, we make ver-
tex i a leaf with probability f(t, xi) = e−t(1−xi), where the value of t is carefully
chosen. Note that for fixed t, the function f(t, xi) is non-linear in xi. Non-linear
rounding schemes used in ([5,7]) round with probability xci , where c is a fixed
constant or is a value that depends on the input1. An interesting point about the
rounding is that the function f(t, xi) is nonzero even for xi = 0, so with some low
probability, the rounding can round a variable xi = 0 to 1.

The nonlinear rounding algorithm, obtains an approximation factor of ln n
OPT

+O(1) for the dominating set problem, where n is the number of vertices in the
graph and OPT is the value of the optimal (fractional) dominating set. This
almost matches the best known approximation factor due to Slav́ık (for the
more general set cover problem) [10].

However, the LP rounding only provides a 0.5 approximation, when the dom-
inating set is large (say 0.5n). To get the claimed factor of 0.71 for unweighted
graphs, we use the LP algorithm in conjunction with another algorithm. The
idea is to divide the input graph G into the union of a subgraph G′ and some
trees, where in G′ the minimum degree is at least 2. Given a spanning star forest
solution for G′, we can “lift” back the solution to the original graph G. Then we
use as a black box the algorithm from [9] that produces a spanning star forest
of size at least 3

5n on a n-vertex graph of minimum degree 2.
We now turn to the node-weighted spanning star forest problem. Our LP

rounding algorithm can be easily generalized to the node-weighted case. As in
the unweighted case, the LP rounding algorithm by itself does not give us the
stated factor of 0.64. To get the claimed approximation factor, we combine our
rounding algorithm with the following trivial factor 0.5 algorithm: Compute any
spanning tree, designate an arbitrary vertex as root. Divide the tree in to levels
based on distance from the root. Make nodes at alternate levels as centers. It is
easy to check that one of the two solutions will have weight at least 1

2 times the
sum of the weights of all nodes.

Finally, we turn to our hardness of approximation results. The hardness results
are obtained by gadget reductions from the result of H̊astad [6] that states that
MAX3SAT is NP-hard to approximate to within a factor of 7

8 +ε, for any ε > 0,
unless P=NP.

1 For the problem of maximum k-densest subgraph, a randomized rounding using c =
0.5 appears to be a folklore result that is attributed to Goemans [5].
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2 Preliminaries

In this paper, we will consider undirected simple graphs that can be unweighted,
node-weighted (where weights are on the nodes) or edge-weighted (where the
weights are on the edges). Without loss of generality, assume that G is connected,
otherwise we can consider each connected components separately. We say a graph
is a star if there is one vertex (called the center) incident to all edges in the graph
(all other vertices are called leaves). The size of a star is the number of edges in
the star (for weighted case, it is the sum of weights of the edges or the sum of
the weights of the leaves in the star, for edge-weighted and node-weighted stars
respectively). In particular, a singleton vertex is a star of size 0.

A spanning star forest of a graph G is a collection of node disjoint stars that
covers all vertices of G. The problem we are interested in is to find a spanning
star forest that maximizes the sum of the sizes of its constituent stars. The un-
weighted, node-weighted and edge-weighted versions of the problem are denoted
by Unweighted Spanning Star Forest, Node-Weighted Spanning Star

Forest and Edge-Weighted Spanning Star Forest, respectively.
We will now fix some notation. Unless mentioned otherwise, a graph G =

(V,E) will be an unweighted graph. For a node-weighted graph, for any vertex
vi ∈ V , its weight will be denoted by wi ≥ 0. For an edge-weighted graph, for any
edge e ∈ E, its weight will be denoted by we ≥ 0. Further, for a vertex vi ∈ V ,
N(i) will denote the neighbor set of vi in G, that is, N(i) = {vj | (vi, vj) ∈ E}.
We will usually denote |V | by n. By abuse of notation, we will use OPT (G)
to denote the optimal spanning star forest for G as well as its the total size.
Given a maximization problem, we say that an algorithm is an α-approximation
for 0 < α ≤ 1, if for every input instance the algorithm produces a solution whose
objective value is at least α times that of the optimal solution for that instance.

3 An LP-Based Algorithm

In this section we will present a linear programming based algorithm for the
Node-Weighted Spanning Star Forest problem. Towards this, we define
the following linear programming relaxation. For every vertex i, the variable xi
has the following meaning: xi = 1 if vi is a leaf in the spanning star forest and is
0 otherwise. For a vertex vi, it is not possible to have all vertices in N(i) ∪ {vi}
as leaves. These constraints have been included in the linear program.

max
∑

vi∈V
wi · xi

s.t. xi +
∑

vj∈N(i)

xj ≤ |N(i)|, ∀ vi ∈ V

0 ≤ xi ≤ 1, ∀ vi ∈ V
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Let LPOPT (G) be the value of the optimal solution of the LP. For the rest of
the section, fix an optimal solution {xi}i∈V . Let W =

∑n
i=1 wi be the sum of

the weights of all the nodes in G. Define

a =
∑n

i=1 wixi∑n
i=1 wi

=
∑n

i=1 wixi
W

. (1)

Notice that this implies that the optimal objective value is aW . Note that setting
all xi = 1/2 gives a feasible solution with value W/2. Thus, a ≥ 1/2. We will
round the given optimal LP solution using the following rounding algorithm.

Rounding-Alg.

1. Make vertex vi a leaf with probability e−t(a)(1−xi),

where t(a) = 1
a

ln
(

1
1−a

)
. (Note that as 1/2 ≤ a < 1, t(a) ≥ 0.)

2. Let L1 denote the set of vertices declared leaves in the first
step.

3. Let L2 = {vi ∈ V | vi ∪ N(i) ⊆ L1}. Declare all vertices in L1 \ L2

as leaves.
4. Assign every leaf vertex to one of its neighbors that is not

declared a leaf. Ties are broken arbitrarily.

We have the following approximation guarantee for the above rounding
algorithm.

Lemma 1. Given an LP solution {xi}i∈V , Rounding-Alg outputs a spanning
star forest with expected size at least aW (1− a)

1
a−1. That is, it is a (1− a)

1
a−1

factor approximation algorithm for the spanning star forest problem.

Proof. It is easy to verify that Rounding-Alg does indeed generate a valid
spanning star forest. For notational convenience let t = t(a) where a is as defined
in (1). Now the expected total weight of all leaves after step 2 of Rounding-Alg

is

E(�1) =
n∑

i=1

wie
−t(1−xi) = e−tW

(∑n
i=1 wie

txi

W

)

≥ e−tW (etaW )
1

W = We−t(1−a)

The inequality above is obtained by the fact that the arithmetic mean is larger
than the geometric mean, and then using

∑n
i=1 wixi = aW . Now after step 3, a

vertex vi can cease to be a leaf with probability exactly

e−t(1−xi)
∏

j∈N(i)

e−t(1−xj).
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Thus, if �2 is the total weight of vertices that were leaves after step 2 but ceased
to be leaves after step 3, then its expectation is given by

E(�2) =
n∑

i=1

wi

⎛

⎝e−t(1−xi)
∏

j∈N(i)

e−t(1−xj)

⎞

⎠

=
n∑

i=1

wie
−t
(
e−t(|N(i)|−

∑
j∈N(i) xj−xi)

)

≤
n∑

i=1

wie
−t = We−t

The inequality follows from the fact that the xi’s form a feasible solution. Now
the expected value of the solution produced by Rounding-Alg is the expected
total weight of leaves at the end of step 3. In other words, the expected value is
given by

E(�1)− E(�2) ≥ W

(
eat − 1
et

)

Now substituting the value t = 1
a ln
(

1
1−a

)
completes the proof. �

We have the following remarks concerning Rounding-Alg.

– The integrality gap of the LP is at most 3/4: consider a 4-cycle. Note that
setting all xi = 2/3 is a valid solution, giving an LP optimal value of 8/3.
However, the integral optimum value is 2.

– The randomized rounding algorithm can easily be derandomized using the
method of conditional expectations [2]. In fact, exact formulas for E(�1) and
E(�2) are presented in the proof and the conditional expectations are easy
to compute from these formulas.

– In the worst case where a = 1/2, the approximation ratio of Rounding-Alg

for spanning star forest is rather bad (equal to 0.5). However, as we will see
in the next two sections, we will take advantage of Rounding-Alg to get
good approximation algorithms.

3.1 Application of Rounding-Alg to Dominating Set

Observe that the approximation ratio in Lemma 1 improves as the value of a
increases. In particular, the approximation ratio tends to 1 as a approaches 1.
This suggests that the above rounding scheme yields an approximation algorithm
for the complementary objective of minimizing the dominating set. In fact, by
analyzing the behavior of the function as a approaches 1, we obtain the following
result.



50 N. Chen et al.

Theorem 1. The Rounding-Alg computes a
(
ln W

OPTf
+ 1 + 2OPTf

W ln W
OPTf

)

approximation ratio solution for the weighted dominating set problem, where
OPTf is the total weight of the optimal fractional dominating set solution.

Proof. Let the optimal LP value for the spanning star forest be given by aW ,
where W is the sum of all the node weights. This implies that the optimal
(fractional) dominating set has size OPTf = (1− a)W .

Now, the dominating set returned by Rounding-Alg has size

W − aW (1− a)
1
a −1 = OPTf ·

1− (1− a)
1
a−1

a

1− a
Let a = 1− ε. We have

1− (1− a)
1
a−1

a

1− a =
1− ε 1

1−ε−1(1 − ε)
ε

=
1− ε ε

1−ε

ε
+ ε

ε
1−ε

As ε < 1, ε
ε

1−ε ≤ 1. Thus, the approximation ratio (for the dominating set
problem) is at most:

1− ε ε
1−ε

ε
+ 1 =

1− e ε
1−ε ln ε

ε
+ 1 ≤

1−
(
1− ε

1−ε ln ε
)

ε
+ 1

=
ε

1−ε ln 1
ε

ε
+ 1 ≤ ln

1
ε
(1 + 2ε) + 1 = ln

1
ε

+ 2ε ln
1
ε

+ 1,

where in the above we have used that since 0 < ε ≤ 1, ε
1−ε ln 1

ε < 1. Further, for
any 0 < y < 1 and 0 < x ≤ 1/2, we have the following inequalities: e−y ≥ 1− y
and 1

1−x ≤ 1 + 2x. Note that for our case we can always find a dominating set
of size at most W/2, that is, ε ≤ 1/2. The proof is complete by noting that
ε = OPTf/W . �

We remark that ε = OPTf

W ln W
OPTf

in general is at most 1. However, if
OPTf = o(W ), then ε = o(1). This result is close to the best known bound
of
(
OPTf − 1

2

)
ln n

OPTf
+ OPTf from the analysis of greedy algorithm for set

cover (and hence, applicable to dominating set too) in [10].

4 An Approximation Algorithm for the Unweighted

Spanning Star Forest Problem

In this section, we will describe a 0.71-approximation algorithm for the Un-

weighted Spanning Star Forest problem. We will use the following two
known results.

Theorem 2 ([9]). For any connected unweighted graph G of minimum degree
at least 2, if the number of vertices n ≥ 8, there is a polynomial time algorithm
(denoted by Oracle-Alg) to compute a spanning star forest of G of size at
least 3n/5.
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Theorem 3 ([9]). For any tree T rooted at r, let OPTct(T ) and OPTlf (T )
be the optimal value of spanning star forest of T given the condition that r is
declared a center and leaf, respectively. Then OPTct(T ) and OPTlf (T ) can be
computed in polynomial time.

Starting with the given connected graph G, we will generate a subgraph from G

recursively as follows: Whenever there is a vertex in the current graph of degree
1, remove the vertex and the edge incident to it from the graph. Denote the final
resulting subgraph to be G′. Note that G′ is connected and every vertex in it
has degree at least 2. Let

S = {vi ∈ G′ | at least one edge incident to vi is dropped in the above process}.

For simplicity, assume S = {v1, . . . , vh} and let (G \G′) ∪ S denote the induced
subgraph on the vertex set (V (G) \ V (G′)) ∪ S.

Consider the subgraph (G \ G′) ∪ S: it is easy to verify that (G \ G′) ∪ S
is composed of h disconnected trees rooted at vertices in S. Denote these trees
by T1, . . . , Th, where the root of Tj is vj . Let OPTct(Tj) and OPTlf (Tj) be
the optimal value of spanning star forest for Tj with the condition that vj is
declared a center and leaf, respectively. According to Theorem 3, OPTct(Tj)
and OPTlf (Tj) can be computed in polynomial time. Define

S1 = {vj ∈ S | OPTct(Tj) < OPTlf (Tj)}
S2 = {vj ∈ S | OPTct(Tj) ≥ OPTlf (Tj)}

Let N ′(S2) be the set of neighbors of S2 in G′. Observe that |N ′(S2)| ≥ 2
(otherwise, all vertices in S2 would have been removed earlier). Consider the
subgraph G′ \ S2 and assume that there are k vertices in G′ \ S2. We add two
extra vertices u and v and connect u and v to all vertices in N ′(S2). Let the
resulting graph be G∗ (see Figure 1 for an example). Note that G∗ is a connected
graph of minimum degree at least 2. Thus by Theorem 2, we can compute a
spanning star forest of G∗ of size at least 3

5 · (k + 2) in polynomial time.
Now we are ready to describe our algorithm.

TreeCutting-Alg.

1. For each i ∈ S2, declare i a center.
2. If the number of vertices in G′ \ S2 is smaller than (say) 1000,
3. compute the optimal spanning star forest of G′ given vertices

in S2 are centers.
4. Else,
5. compute spanning star forests of G∗ by Oracle-Alg and

Rounding-Alg.
6. declare each vi ∈ G′ \ S2 either a center of leaf according to

max{Oracle-Alg(G∗),Rounding-Alg(G∗)}.
7. Given the choices made for the vertices in S, compute the best

possible spanning star forest for T1, . . . , Th.
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Fig. 1. Illustration of Graph G (left) and G∗ (right)

Note that all vertices in S2 are declared centers. Thus, in Step 6, the declara-
tion of each vertex vi ∈ G′ \ S2 is feasible (it is either covered by another vertex
in G′ \ S2 or by a vertex in S2). Therefore, the algorithm outputs a feasible
spanning star forest solution.

In the following discussions, let α(G) and β(G) be the value returned by
Oracle-Alg(G) and Rounding-Alg(G), respectively. It can be seen that

TreeCutting-Alg(G)

≥ max {α(G∗), β(G∗)} − 2 +
∑

vi∈S1

OPT (Ti \ vi) +
∑

vj∈S2

OPTct(Tj). (2)

where “−2” is because in the worst case, both u and v are leaves in the output
of Oracle-Alg(G∗) or Rounding-Alg(G∗), but they do not contribute to the
solution of G′ \ S2.

Observe that for any graph G′′ and any vertex w ∈ G′′, given a spanning star
forest solution where w is a leaf, we can easily get a solution where w is a center
by switching the declaration of w from leaf to center. Thus,

OPT (G′′ | w is a center) ≥ OPT (G′′ | w is a leaf)− 1.

For any vj ∈ S2, note that

OPT (G′ | vj is a center) +OPTct(Tj)

≥ OPT (G′ | vj is a leaf)− 1 +OPTct(Tj)

≥ OPT (G′ | vj is a leaf)− 1 +OPTlf (Tj),

where the second inequality follows from the definition of S2. Therefore,

OPT (G) = max { OPT (G′ | vj is a center) +OPTct(Tj),

OPT (G′ | vj is a leaf) +OPTlf (Tj)− 1 }
= OPT (G′ | vj is a center) +OPTct(Tj)
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In other words, in the optimal solution of G, we can always assume vertices in
S2 are declared centers.

For any vi ∈ S1, we know essentially OPTct(Ti) = OPTlf (Ti) − 1. Note
that the root vi contributes zero to OPTct(Ti) and one to OPTlf (Ti). That is,
regardless of the contribution of vi, the contribution of vertices in Ti \ {vi} in
OPTct(Ti) and OPTlf (Ti) is the same. In other words, for any declaration of vi
(either center or leaf), we can always get the same optimal value for Ti \ {vi}.

Therefore,

OPT (G) = OPT (G | every vj ∈ S2 is a center)

= OPT (G′ | every vj ∈ S2 is a center)

+
∑

vi∈S1

OPT (Ti \ vi) +
∑

vj∈S2

OPTct(Tj). (3)

Thus, when k is small (i.e., TreeCutting-Alg goes through Step 2,3), where
recall that k is the number of vertices in G′ \ S2, TreeCutting-Alg(G) =
OPT (G). Hence, we can assume that k is large (i.e., TreeCutting-Alg goes
through Step 4,5,6).

Assume that the optimal LP value satisfies LPOPT (G∗) = a · (k + 2), where
recall that G∗ = (G′ \ S2) ∪ {u, v}. Hence,

TreeCutting-Alg(G)
OPT (G)

≥
max{α(G∗), β(G∗)} − 2 +

∑

vi∈S1

OPT (Ti \ vi) +
∑

vj∈S2

OPTct(Tj)

OPT (G′ | vj is a center, vj ∈ S2) +
∑

vi∈S1

OPT (Ti \ vi) +
∑

vj∈S2

OPTct(Tj)

(4)

≥ max{α(G∗), β(G∗)} − 2
OPT (G′ | vj is a center, vj ∈ S2)

(5)

≥ max{α(G∗), β(G∗)} − 2
LPOPT (G∗)

(6)

≥ max
{ 3

5 (k + 2)
a · (k + 2)

,
β(G∗)

LPOPT (G∗)

}

− 2
a · (k + 2)

(7)

= max
{

0.6
a
, (1− a)

1
a−1

}

− 2
a · (k + 2)

(8)

> 0.71 (9)

where (4) follows from (2) and (3), (5) follows from the fact that the summations
are non negative, (6) follows from the fact that the LP optimal is larger than the
integral optimal value, (7) follows from Theorem 2, (8) follows from Lemma 1,
and (9) follows by an estimation using a computer aided numerical analysis
(Figure 2).
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Fig. 2. The approximation ratios for Oracle-Alg and Rounding-Alg. The horizontal
line is 0.71.

In conclusion, we have the following result.

Theorem 4. TreeCutting-Alg gives a 0.71-approximation ratio solution for
the Unweighted Spanning Star Forest problem.

5 An Approximation Algorithm for the Node-Weighted

Spanning Star Forest Problem

In this section, we present a 0.64-approximation algorithm for the node-weighted
spanning star forest problem. Consider the following simple algorithm.

Trivial-Alg

1. Compute a spanning tree T of the graph G, and pick an arbitrary
vertex r as its root. Let h denote the height T rooted at r. For
each integer k, let Nk denote the set of vertices at a distance
of k (in the tree) from the root r.

2. Output the spanning star forest with the higher weight of the
following:
– centers: N0 ∪ N2 ∪ . . ., leaves: N1 ∪ N3 ∪ . . .
– centers: N1 ∪ N3 ∪ . . ., leaves: N0 ∪ N2 ∪ . . .

Essentially, the two spanning star forests are obtained by
picking alternate levels in the spanning tree T.

It is easy to see that the following holds for Trivial-Alg.

Proposition 1. Trivial-Alg always outputs a solution with value at least
W/2.
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Theorem 5. There exists a polynomial time algorithm that solves the Node-

Weighted Spanning Star Forest problem with an approximation factor of

min
a∈[1/2,1)

max
(

1
2a
, (1− a)

1
a−1

)

> 0.64

Proof. Consider the algorithm that runs Trivial-Alg and Rounding-Alg and
picks the better of the two solutions– this algorithm obviously has polynomial
running time. Let aW denote the value of the LP optimum. From Proposition 1,
the Trivial-Alg produces a spanning star forest with weight at least W/2, and
hence an approximation ratio of at least W/2

aW = 1
2a . Clearly this also implies that

a > 1
2 . The claim on the approximation ratio follows from Lemma 1. The lower

bound on the ratio follows by an estimation using a computer aided numerical
analysis (Figure 3). �
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Fig. 3. The approximation ratios for Trivial-Alg and Rounding-Alg. The horizontal
line is 0.64.

6 Hardness of Approximation

The hardness results are obtained by a reduction from the following strong hard-
ness for MAX3SAT .

Theorem 6 ([6]). For every ε > 0, given a 3-CNF formula φ it is NP -hard to
distinguish between the following two cases:

– There exists an assignment satisfying 1− ε fraction of the clauses in φ
– No assignment satisfies more than 7

8 + ε fraction of the clauses in φ.

Further, the hardness result holds even if each variable xi is constrained to appear
positively and negatively an equal number of times, i.e the literals xi, x̄i appear
in equal number of clauses.
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Theorem 7. For any η > 0, it is NP -hard to approximate the Edge-

Weighted Spanning Star Forest problem within 19
20 + η.

Proof. Let φ be a 3-CNF formula on n variables {x1, x2, . . . , xn}. Further let
C1, C2, . . . , Cm be the set of clauses in φ. From Theorem 6, we can assume that
each literal appears positively and negatively an equal number of times. For each
i, let di denote the number of clauses containing xi (respectively x̄i). Without
loss of generality, we assume that di ≥ 2 for all i. This can be achieved by just
repeating the formula φ three times. A simple counting argument shows that
∑n

i=1 di = 3m
2 .

Create an edge-weighted graph Gφ as follows:

– Introduce one vertex ui for each literal xi and vi for literal x̄i, and one
vertex wj for each clause Cj . Formally V = {u1, . . . , un} ∪ {v1, . . . , vn} ∪
{w1, . . . , wm}.

– Introduce an edge between ui and wj , if clause Cj contains literal xi. Simi-
larly, add an edge (vi, wj) if clause Cj contains literal x̄i. Furthermore, for all
i, introduce an edge between ui and vi. Formally,E = {(ui, wj) | Cj contains
xi} ∪ {(vi, wj) | Cj contains x̄i} ∪ {(u1, v1), . . . , (un, vn)}.

– For all i, the weight on the edge (ui, vi) is equal to di. The rest of the edges
have weight 1.

Completeness: Suppose there is an assignment to the variables {x1, . . . , xn}
that satisfies 1−ε fraction of the clauses. Define a spanning star forest as follows:

– Centers: {ui | xi = true} ∪ {vi | xi = false} ∪ {Cj | Cj is not satisfied}.
– Every satisfied clause Cj contains at least one literal which is assigned true.

Thus there is a center adjacent to each of the vertices wj corresponding to a
satisfied clause. Since for each i, one of ui or vi is a center, the other vertex
can be a leaf. Thus the set of leaves is given by: {ui | xi = false}∪{vi | xi =
true} ∪ {wj | Cj is satisfied}.

Therefore, the total edge weight of the spanning star forest is given by

n∑

i=1

di+|{wj | Cj is satisfied}| =
n∑

i=1

di+(1−ε)m =
3m
2

+(1−ε)m =
(

5
2
− ε
)

m.

Soundness: Consider the optimal spanning star forest solution OPT of Gφ.
Without loss of generality, we can assume that for each i, exactly one of {ui, vi}
is a center, and the other is a leaf attached to it. This is because:

– If both ui and vi are centers, then modify the spanning star forest by deleting
all the leaves attached to vi, and making vi a leaf of ui. The total weight of
the spanning star forest solution does not decrease, since we delete at most
di edges of weight 1 and introduce an edge of weight di.
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– If one of ui and vi is a center (say ui) and the other (i.e. vi) is a leaf but not
attached to ui, then we can disconnect vi from its center and attach it to
ui. This operation increases the weight of the spanning star forest by di− 1,
which contradicts to the optimality of the solution.

– If both ui and vi are leaves, then making ui a center and attaching vi to it
will increase the weight of the solution by di − 2, again a contradiction.

From the spanning star forest solution OPT , obtain an assignment to φ as
follows: xi = true if ui is a center in OPT and xi = false otherwise. If vertex wj
is a leaf in OPT , then there is a center (say ui) adjacent to it, which implies that
clause Cj is satisfied by the assignment of xi. A similar argument applies when
the vertex wj is adjacent to a center vi. Therefore, the total weight of OPT is
given by

n∑

i=1

di + |{wj | Cj is satisfied}| = 3m
2

+ |{wj | Cj is satisfied}|

In particular, if at most (7
8 + ε)-fraction of the clauses in φ can be satisfied,

then the weight of OPT is at most 3m
2 + (7

8 + ε)m = (19
8 + ε)m.

From the completeness and soundness arguments, it is NP -hard to distinguish
whether Gφ has a spanning star forest of weight (5

2 − ε)m or (19
8 + ε)m. Thus

it is NP -hard to approximate the Edge-Weighted Spanning Star Forest

problem within a factor of (19
8 + ε)/(5

2 − ε). The claim follows by picking a small
enough ε. �

The proof of the next theorem is similar to the previous one.

Theorem 8. For any η > 0, it is NP -hard to approximate the Node-

Weighted Spanning Star Forest problem within 31
32 + η.

Proof. Let φ be a 3-CNF formula on n variables {x1, x2, . . . , xn} and m clauses
C1, C2, . . . , Cm. From Theorem 6, we can assume that each literal appears pos-
itively and negatively an equal number of times. For each i, let di denote the
number of clauses containing xi (respectively x̄i).

Create a node-weighted graph Gφ as follows:

– Introduce three vertices ai, ui, vi for each variable xi, and one vertex wj for
each clause Cj . Formally V = {a1, . . . , an} ∪ {u1, . . . , un} ∪ {v1, . . . , vn} ∪
{w1, . . . , wm}.

– Introduce an edge between ui and wj , if clause Cj contains literal xi. Simi-
larly, add an edge (vi, wj) if clause Cj contains the literal x̄i. Furthermore,
for all i, introduce edges (ai, ui), (ui, vi), (vi, ai). Formally, E = {(ui, wj) | Cj
contains xi} ∪ {(vi, wj) | Cj contains x̄i} ∪ {(a1, u1), (u1, v1), (v1, a1), . . . ,

(an, un), (un, vn), (vn, an)}
– For all i, the weight of nodes ai, ui, vi is equal to di. The weight of the rest

of nodes is 1.
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Completeness: Suppose there is an assignment to the variables {x1, . . . , xn}
that satisfies 1− ε fraction of the clauses. Define a spanning star forest solution
as follows:

– Centers: {ui | xi = true} ∪ {vi | xi = false} ∪ {Cj | Cj is not satisfied}.
– Every satisfied clause Cj contains at least one literal which is assigned true.

Thus there is a center adjacent to each of the vertex wj corresponding to
a satisfied clause. Since for each i, one of ui or vi is a center, the other
remaining two in {ai, ui, vi} can be leaves. Thus the set of leaves is given
by : {ui | xi = false} ∪ {vi | xi = true} ∪ {wj | Cj is satisfied} ∪ {ai}.

The total node weight of the spanning star forest solution is given by

n∑

i=1

2di+|{wj | Cj is satisfied}| =
n∑

i=1

2di+(1−ε)m = 3m+(1−ε)m = (4− ε)m.

The rest of the proof is similar to that of Theorem 7 and is omitted due to
space considerations. �
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Abstract. We consider the problem of covering and packing subsets of
δ-hyperbolic metric spaces and graphs by balls. These spaces, defined
via a combinatorial Gromov condition, have recently become of interest
in several domains of computer science. Specifically, given a subset S
of a δ-hyperbolic graph G and a positive number R, let γ(S, R) be the
minimum number of balls of radius R covering S. It is known that com-
puting γ(S, R) or approximating this number within a constant factor
is hard even for 2-hyperbolic graphs. In this paper, using a primal-dual
approach, we show how to construct in polynomial time a covering of S
with at most γ(S, R) balls of (slightly larger) radius R + δ. This result
is established in the general framework of δ-hyperbolic geodesic metric
spaces and is extended to some other set families derived from balls. The
covering algorithm is used to design better approximation algorithms for
the augmentation problem with diameter constraints and for the k-center
problem in δ-hyperbolic graphs.

Keywords: covering, packing, ball, metric space, approximation algo-
rithm.

1 Introduction

The set cover problem is a classical question in computer science [39] and com-
binatorics [9]. In this problem, given a collection S of subsets of a domain U
with n elements, the task is to find a subcollection of S of minimum size γ(S)
whose union is U. It was one of Karp’s 21 NP-complete problems. More recently,
it has been shown that, under the assumption P �= NP, set cover cannot be
approximated in polynomial time to within a factor of c · lnn, where c is a small
constant; see [3] and the references cited therein. On the other hand, set cover
can be approximated in polynomial time to within a factor of lnn+1 using sev-
eral algorithms [39], in particular, using the greedy algorithm. The set packing
problem asks to find a maximum number π(S) of pairwise disjoint subsets of S.
Another problem closely related to set cover is the hitting set problem. A subset
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T is called a hitting set of S if T ∩ S �= ∅ for any S ∈ S. The minimum hitting
set problem asks to find a hitting set of S of smallest cardinality τ(S).

Numerous algorithmic and optimization problems can be formulated as set
cover or set packing problems for structured set families. For example, many
papers consider cover and packing problems with set families like intervals and
unions of intervals of a line, subtrees of a tree, or cliques, cuts, paths, and balls
of a graph. For example, in case of covering with balls, one can expect that the
specific metric properties of graphs in question yield better algorithmic results
in comparison with the general set cover. Although the set cover problem can
be viewed as a particular instance of covering with unit balls of rather special
graphs, for several graphs classes polynomial time algorithms have been designed.
These algorithms resides on the treelike structure of those graphs and on the
equality between ball covering and packing numbers of such graphs.

In this note, we consider the problem of covering and packing by balls and
union of balls of hyperbolic metric spaces and graphs. The ball B(x,R) of center
x and radius R ≥ 0 consists of all points of a metric space (X, d) at distance at
most R from x. In our paper, we will consider covering and packing problems
of the following type: given a finite subset S of points of X, a radius R, and a
slack parameter δ, find a good covering of S with balls of radius at most R+ δ.
We show that if the metric space (X, d) is δ-hyperbolic, then in polynomial
time we can construct a covering of S with balls of radius R + δ and a set
of the same size of pairwise disjoint balls of radius R centered at points of S.
This type of results is obtained for arbitrary subfamilies of balls and for set-
families consisting of unions of κ balls of (X, d). We apply these results to design
better approximation algorithms for the k-center problem and the augmentation
problem with diameter constraints in δ-hyperbolic graphs.

1.1 Geodesic and δ-Hyperbolic Metric Spaces

Let (X, d) be a metric space. A geodesic segment joining two points x and y from
X is a map ρ from the segment [a, b] of length |a− b| = d(x, y) to X such that
ρ(a) = x, ρ(b) = y, and d(ρ(s), ρ(t)) = |s− t| for all s, t ∈ [a, b]. A metric space
(X, d) is geodesic if every pair of points in X can be joined by a geodesic. We
will denote by [x, y] any geodesic segment connecting the points x and y. Every
graph G = (V,E) equipped with its standard distance dG can be transformed
into a (network-like) geodesic space (X, d) by replacing every edge e = (u, v) by
a segment [u, v] of length 1. These segments may intersect only at their commons
ends. Then (V, dG) is isometrically embedded in a natural way in (X, d).

Introduced by Gromov [29], δ-hyperbolicity measures, to some extent, the
deviation of a metric from a tree metric. Recall that a metric space (X, d) embeds
into a tree network (with positive real edge lengths), that is, d is a tree metric,
if and only if for any four points u, v, w, x the two larger ones of the distance
sums d(u, v)+d(w, x), d(u,w)+d(v, x), d(u, x)+d(v, w) are equal. Now, a metric
space (X, d) is called δ-hyperbolic if the two larger distance sums differ by at most
δ. A connected graph G = (V,E) equipped with standard graph metric dG is
δ-hyperbolic if (V, dG) is a δ-hyperbolic metric space.
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In case of geodesic metric spaces, there exist several equivalent definitions of δ-
hyperbolic metric spaces involving different but comparable values of δ [5,28,29].
In this paper, we will use the definition employing δ-thin geodesic triangles. A
geodesic triangle Δ(x, y, z) with vertices x, y, z ∈ X is a union [x, y] ∪ [x, z] ∪
[y, z] of three geodesic segments connecting these vertices. Let mx be the point
of the geodesic segment [y, z] located at distance αy := (d(y, x) + d(y, z) −
d(x, z))/2 from y. Then mx is located at distance αz := (d(z, y) + d(z, x) −
d(y, x))/2 from z because αy + αz = d(y, z). Analogously, define the points
my ∈ [x, z] and mz ∈ [x, y] both located at distance αx := (d(x, y) + d(x, z) −
d(y, z))/2 from x; see Fig. 1 for a construction. There exists a unique isometry
ϕ which maps the geodesic triangle Δ(x, y, z) to a star Υ (x′, y′, z′) consisting
of three solid segments [x′,m′], [y′,m′], and [z′,m′] of lengths αx, αy, and αz ,
respectively. This isometry maps the vertices x, y, z of Δ(x, y, z) to the respective
leaves x′, y′, z′ of Υ (x′, y′, z′) and the points mx,my, and mz to the center m of
this tripod. Any other point of Υ (x′, y′, z′) is the image of exactly two points
of Δ(x, y, z). A geodesic triangle Δ(x, y, z) is called δ-thin [5] if for all points
u, v ∈ Δ(x, y, z), ϕ(u) = ϕ(v) implies d(u, v) ≤ δ. A geodesic metric space (X, d)
is called δ-hyperbolic if all geodesic triangles of X are δ-thin. Note that our δ-
hyperbolic metric spaces will be 2δ-hyperbolic if we will use the first definition
of δ-hyperbolicity; see the proof of Proposition 2.1 of [5].

Throughout this paper, we will suppose that all metric spaces are either
geodesic or graphic with δ-thin geodesic triangles. Additionally, in case of
geodesic spaces (X, d), we will assume the following computational assumption:
there exists an oracle which, given two points x, y ∈ X, it returns a geodesic
segment [x, y]. In case of graph-distance dG or of geodesic spaces derived from
graphs, the role of this oracle is played by any shortest path algorithm.

x

y

zx

y

z

mz

my

m

ϕ

mx

≤ δ

≤ δ ≤ δ

Fig. 1. A geodesic triangle Δ(x, y, z), the points mx, my, mz, and the tripod Υ (x′, y′, z′)

1.2 r-Domination and r-Packing

Now, we will formulate the r-domination and r-packing problems, which cor-
respond to covering and packing by balls. Let S be a subset of not necessarily
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distinct points of a metric space (X, d) and let r : S → R+ be a map associating
to each point s ∈ S a positive number r(s). We say that a subset C of X r-
dominates S if for each point s ∈ S there exists a point c ∈ C such that d(s, c) ≤
r(s). In other words, C is a hitting set for the family of balls BS,r = {B(s, r(s)) :
s ∈ S}.A subset P of S is called an r-packing of S, if for each pair x, x′ of points of
P we have r(x) + r(x′) < d(x, x′) (in other words, the family B(x, r(x)), x ∈ P,
consists of pairwise disjoint balls). The r-domination problem is to find an r-
dominating set with minimum size γ(S, r) and the r-packing problem is to find
an r-packing set with maximum size π(S, r). Then γ(S, r) = τ(BS,r) and π(S, r)
are called the r-domination and the r-packing numbers of (X, d) (these numbers
are well-defined when S is finite). If S is a subset of vertices of a graphG = (V,E)
and the r-dominating set C is also contained in V, then we denote the respective
r-domination and r-packing numbers by γG(S, r) and πG(S, r). If r(s) ≡ R for
all s ∈ S, then we obtain the problem of covering S with a minimum number
of balls of radius R; in the particular case r(s) ≡ 1 and S ⊆ V, we obtain the
well-known domination problem of a graph.

The r-domination problem is closely related with the k-center clustering prob-
lem [10,30,31,39]. In the k-center problem, given a set S of n points in a metric
space (X, d), the goal is to find the smallest R∗ and the position of k centers,
such that any point of S is at distance of at most R∗ from one of those centers
(in other words, R∗ is the least radius such that S can be covered with at most
k balls of radius R∗).

A κ-ball κB of a metric space (X, d) is the union of κ balls B(x1, r1), . . . ,
B(xκ, rκ), i.e., κB =

⋃κ
j=1

κB(xj , rj). It extends the notions of d-intervals of
[1,7]; these are unions of d closed intervals of R. Indeed, each interval [a, b] can
be viewed as a closed ball of R of radius (b−a)/2 centered at the point (a+b)/2.
As in the case of r-domination, any finite family κBS,r of κ-balls can be defined
via the set S of centers of all balls and a multi-valued map r : S → R+ which
associates to each point s ∈ S the list of radii of the balls from

⋃
κBS,r centered

at s. Thus two κ-balls may have two balls centered at the same point. The (κ, r)-
domination problem consists in finding a hitting set C for a family κBS,r of κ-balls
of minimum cardinality γ(S, r). Analogously, the (κ, r)-packing problem is to find
a maximum number π(S, r) of pairwise disjoint κ-balls of κBS,r.

1.3 Augmentation Under Diameter Constraints

In Section 4, we apply our results on covering δ-hyperbolic graphs with balls to
the following augmentation problem under diameter constraints (problem ADC):
Given a graph G = (V,E) with n vertices and a positive integer D, add a
minimum number OPT(D) of new edges E′ such that the augmented graph
G′ = (V,E ∪ E′) has diameter at most D. ADC can be viewed as a network
improvement problem where G is the initial communication network and a min-
imum number of additional communication links must be added so that the
upgraded network G′ ensures a low communication delay.
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1.4 Our Results

Using the notation established in previous subsections, the main algorithmic
results of our paper can be formulated in the following way: for geodesic δ-
hyperbolic spaces and δ-hyperbolic graphs, γ(S, r + δ) ≤ π(S, r) and γ(S, r +
2δ) ≤ 2κ2π(S, r) hold. Moreover, it is possible to construct in polynomial time
an (r + δ)-dominating set C and an r-packing P such that |C| = |P |, and a
(κ, r+2δ)-dominating set C and a (κ, r)-packing P such that |C| ≤ 2κ2|P |. Using
these results, we show that one can augment in polynomial time a δ-hyperbolic
graph G = (V,E) to a graph of diameter 2R + 2δ using at most 2OPT(2R)
new edges. These results also show that for δ-hyperbolic graphs, the well-known
2-approximation algorithm [31] for the k-center problem returns a solution of
radius at most OPT + δ. Notice also that the problem of approximating γ(S, r)
within a constant is hard already for 2-hyperbolic graphs and r(s) ≡ 1 for all
s ∈ S, because the split graphs, which encode the general set cover problem (the
elements x of the domain U form a clique and the sets S of S form a stable set
so that the vertices x and S are adjacent if and only if x ∈ S), are chordal, and
therefore, 2-hyperbolic.

1.5 Related Work

We briefly review the known results related with the subject of our paper. The
inequality γ(S, r) ≥ π(S, r) holds in any metric space (X, d), because two points
of an r-packing cannot be r-dominated by the same point. On the other hand,
the equality γG(S, r) = πG(S, r) holds for trees [13,14], strongly chordal graphs
[15,25], dually chordal graphs [11], and it is at the heart of linear-time algorithms
for r-covering and r-packing problems for these graphs. The paper [21] proposes
an exact fixed-parameter algorithm for the (NP -hard) problem of covering pla-
nar graphs with a minimum number of balls of radius R. Finally, [17] shows that
every planar graph of diameter 2R can be covered with a fixed number of balls
of radius R. Covering and packing problems for special families of subtrees of a
tree have been considered in [8]. Alon [1,2] established that if κI is a family of
κ-intervals of the line (or a family consisting of unions of κ subtrees of a tree),
then τ(κI) ≤ 2κ2π(κI). In case of κ-intervals, Bar-Yehuda et al. [7] presented a
factor 2κ algorithm for approximating π(κI). Their algorithm is based on round-
ing a fractional solution of the linear relaxation of the problem and construction
of a respective packing using the local ratio technique.

The k-center problem is a well-studied k-clustering and facility location prob-
lem [10,30,39]. The general problem is NP-hard to approximate with a factor
smaller than 2 (see Theorem 5.7 of [39]). The analogous problem in Euclidean
spaces is NP-hard to approximate with a factor smaller than 1.822 [26]. Hochbaum
and Shmoys [31] present a (best possible) factor 2 approximation algorithm for the
general k-center problem.

The augmentation problem of graphs with diameter constraints has been in-
troduced in [20]. It is already non-trivial when the input graph is a path [4,24].
Approximation algorithms for this augmentation problem has been designed in
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[18,19,22,32]. In particular, [18,19] propose factor 2 approximation algorithms
for the augmentation problem of trees and dually chordal graphs with even and
odd diameters 2R and 2R + 1 based on particular coverings of trees with balls
of radius R− 1 and R.
δ-Hyperbolic metric spaces play an important role in geometric group theory

and in geometry of negatively curved spaces [5,28,29]. δ-Hyperbolicity captures
the basic common features of “negatively curved” spaces like the hyperbolic
space Hk, Riemannian manifolds of strictly negative sectional curvature, and of
discrete spaces like trees and the Caley graphs of word-hyperbolic groups. It is
remarkable that a strikingly simple concept leads to such a rich general theory
[5,28,29]. More recently, the concept of δ-hyperbolicity emerged in discrete math-
ematics, algorithms, and networking. For example, it has been shown empirically
in [38] that the internet topology embeds with better accuracy into a hyperbolic
space than into a Euclidean space of comparable dimension. A few algorith-
mic problems in hyperbolic spaces and hyperbolic graphs have been considered
in recent papers [23,27,33,35]. 0-Hyperbolic metric spaces are exactly the tree
metrics. On the other hand, the Poincaré half space in Rk with the hyperbolic
metric is δ-hyperbolic with δ = log 3. A full characterization of 1-hyperbolic
graphs has been given in [6]; see also [34] for a partial characterization. Chordal
graphs (graphs in which all induced cycles have length 3) are 2-hyperbolic [34].
For chordal graphs as well as dually chordal and strongly chordal graphs one can
construct trees approximating the graph-distances within a constant 2 or 3 [12],
from which follows that those graphs have low δ-hyperbolicity (this result has
been extended in [16] to all graphs in which the largest induced cycle is bounded
by some constant δ; this result implies that those graphs are δ-hyperbolic). In
general, the distance of a δ-hyperbolic space on n points can be approximated
within a factor of 2δ logn by a tree metric [29,28] and this approximation is
sharp.

2 r-Domination and r-Packing

Let (X, d) be a geodesic δ-hyperbolic space. Given an instance (S, r) of the r-
domination and r-packing problems, denote by r + δ the function defined by
setting (r + δ)(x) := r(x) + δ for all x ∈ S. For each point x ∈ S, define the set
Sx := {y ∈ S : r(x) + r(y) ≥ d(x, y)} of all points which cannot belong to the
same r-packing set as x. Next auxiliary result shows that in any compact subset
S of X one can always find a point x such that x and all points of the set Sx
can be (r + δ)-dominated by a common point c ∈ X.

Lemma 1. For any compact subset S of X, there exist two points x ∈ S and
c ∈ X such that d(c, y) ≤ r(y) + δ for any point y ∈ Sx, i.e., Sx is (r + δ)-
dominated by c.

Proof. Let x, z be a pair of points of S maximizing the value M := d(x, z)−r(x)
(such a pair exists because S is compact). If M ≤ δ, then the point z (r + δ)-
dominates all points of S and we can set c := z. Suppose now that M > δ. Pick a
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geodesic segment [x, z] between x and z, and let c be the point of [x, z] located at
distance r(x) from x. Consider any point y ∈ S such that r(x) + r(y) ≥ d(x, y).
We assert that d(y, c) ≤ r(y) + δ. For this pick any two geodesic segments [x, y]
and [y, z] between the pairs x, y and y, z. Let Δ(x, y, z) := [x, y]∪ [x, z]∪ [y, z] be
the geodesic triangle formed by the three geodesic segments and let mx,my, and
mz be the three points on these geodesics as defined above. We distinguish two
cases. First suppose that c belongs to the portion of [x, z] comprised between
the points x and my. In this case, since d(x,my) = d(x, y)− αy, we obtain

d(c,my) = d(x, y)− αy − r(x) ≤ r(x) + r(y)− αy − r(x) = r(y) − αy.

Since Δ(x, y, z) is δ-thin, the triangle condition yields

d(c, y) ≤ d(c,my) + d(my,mx) + d(mx, y) ≤ d(c,my) + δ + αy ≤ r(y) + δ.

On the other hand, if c belongs to the portion of [x, z] comprised between z and
my, then the choice of the points x and z yields d(y, z)− r(y) ≤ d(x, z)− r(x).
Since d(x, z) = αx + αz and d(y, z) = αy + αz, we conclude that αy − r(y) ≤
αx − r(x). Thus d(c,my) = r(x) − αx ≤ r(y) − αy. As a result, we deduce that
d(c, y) ≤ d(c,my) + δ + αy ≤ r(y) + δ. �

The following result can be viewed as the variant for δ-hyperbolic spaces of the
classical Jung theorem asserting that each subset S of the Euclidean space Em

with finite diameter D is contained in a ball of radius at most
√

m
2(m+1)D.

Corollary 1. If the diameter of a compact geodesic δ-hyperbolic metric space
(X, d) is D := 2R, then X can be covered by single ball of radius R+ δ, i.e., the
radius of X is at most R+ δ.

Proof. Let S := X and r(x) ≡ R. Since d(x, y) ≤ 2R = r(x) + r(y) for any pair
x, y ∈ X, we conclude that Sx = X for any point x ∈ X. Since X is compact,
by Lemma 1, there exist a point x ∈ S = X and a point c ∈ X such that
X = Sx ⊆ B(c, r(x) + δ) = B(c, R+ δ). �

The following result, generalizing Corollary 1, can be viewed as the analogy of
the classical Helly property for balls.

Corollary 2. If B(xi, ri), i ∈ I, is a collection of pairwise intersecting balls of
a geodesic δ-hyperbolic metric space (X, d) with a compact set S := {xi : i ∈ I}
of centers, then the balls B(xi, ri + δ), i ∈ I, have a nonempty intersection.

Proof. Set r(xi) := ri. Then, as in previous result, since d(xi, xj) ≤ ri + rj =
r(xi)+ r(xj), the equality Sx = S holds for any point xi of S. By Lemma 1, S is
(r + δ)-dominated by a single point c. Obviously this point belongs to all balls
B(xi, ri + δ), establishing the result. �

Now, we present the main result of this paper. It generalizes the equality γ(S, r) =
π(S, r) for trees to all δ-hyperbolic spaces in the following way:
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Theorem 1. Let S be a finite subset of a geodesic δ-hyperbolic metric space
(X, d). Then γ(S, r + δ) ≤ π(S, r). Moreover, a set C (r + δ)-dominating the
set S and an r-packing P of S such that |C| = |P | can be constructed using a
polynomial in |S| number of calls of the oracle for computing a geodesic segment
in (X, d).

Proof. The proof of this result is algorithmic: we construct the r-packing P
and the (r + δ)-dominating set C step by step taking care that the following
properties hold: (i) each time when a new point is inserted in C, then a new
point is also inserted in P, and (ii) at the end, the set P is an r-packing and C
is an (r + δ)-dominating set for S.

The algorithm starts with S′ := S, C := ∅, and P := ∅. While the set S′

is nonempty, the algorithm applies Lemma 1 to the current set S′ in order to
obtain a point x ∈ S′ and a point c ∈ X which (r+δ)-dominates the set S′

x. The
algorithm adds the point x to P and the point c to C, and then it updates the
set S′ by removing from S′ all points which are (r + δ)-dominated by c, and so
on. The algorithm terminates in at most |S| rounds. Notice also that |P | = |C|,
because when the point x is inserted in P, then at the same step x is removed
from S′ because x is (r + δ)-dominated by the point c which is included at that
step in C.

We assert that at the end, P is an r-packing of S and C is an (r + δ)-
dominating set for S. Indeed, C (r + δ)-dominates S because S′ is empty when
the algorithm halts and that each point s ∈ S is (r+ δ)-dominated by the point
which is inserted in C at the iteration when s is removed from S′. To show that
P is an r-packing it suffices to show that after each iteration the updated set P
is an r-packing. So, suppose that at the current iteration the point y has been
inserted in the set P, which before this insertion was an r-packing. We must
show that P ∪{y} is an r-packing as well. Suppose by way of contradiction that
d(x, y) ≤ r(x) + r(y) for some point x ∈ P. Consider the iteration at which the
point x was inserted in P and suppose that at this iteration the point c was
inserted in C. Since y ∈ S′

x and all points of S′
x are (r + δ)-dominated by c, the

algorithm will remove at this iteration y from S′, thus y cannot be inserted in P
at a later stage, contrary to our assumption. This ensures that P is an r-packing
during all execution of the algorithm. �
Consider now the case of r-domination and r-packing for graphs G = (V,E) such
that the underlying geodesic metric space (X, d) is δ-hyperbolic. More precisely,
let S be a subset of vertices of G, let r be a map from S to N+, and we are
searching for a subset of vertices C ⊆ V which (r + δ)-dominates S. Now, if
we will run in (X, d) the algorithm described in Theorem 1 with S and r as an
input, then the r-dominating set C returned by this algorithm must be a subset
of V. For this, it suffices to notice that each vertex c ∈ C is defined according
to the choice of Lemma 1. The point c in this lemma is located at distance
r(x) from x on a geodesic segment [x, z]. Since r(x) and d(x, z) are integers, we
conclude that c is a vertex of G. In case of graphs, we can specify the oracle
computing geodesic segments: it suffices to use any shortest-path algorithm in
G. Finally, notice that if r(x) := R for all x ∈ S, then an (r+ δ)-dominating set



Packing and Covering δ-Hyperbolic Spaces by Balls 67

C corresponds to the set of centers of balls of radius R + δ covering the set S.
Summarizing, we obtain the following observation.

Corollary 3. Let S be a subset of vertices of a finite δ-hyperbolic graph G =
(V,E). Then γG(S, r+ δ) ≤ πG(S, r). Moreover a set C ⊆ V (r+ δ)-dominating
the set S and an r-packing P of S such that |C| = |P | can be constructed in
polynomial time.

3 (κ, r)-Domination and (κ, r)-Packing

Let κBS,r be a finite family of κ-balls of a δ-hyperbolic geodesic metric space.
For ε > 0, denote by κBS,r+ε the family of balls obtained by “inflating” each ball
B(s, r(s)) of

⋃
κBS,r until its radius becomes r(s)+ε, i.e., obtained by replacing

r by the function r + ε. We call the κ-balls of κBS,r+ε ε-inflated κ-balls. This
section is devoted to the proof of the following result:

Theorem 2. Let κBS,r = {κB1, . . . ,
κBm} be a family of κ-balls of a δ-hyperbolic

geodesic metric space. Then γ(S, r + 2δ) ≤ 2κ2π(S, r). Moreover a hitting set C
for κBS,r+2δ and a packing P of κBS,r such that |C| ≤ 2κ2|P | can be constructed
with a polynomial in |S| number of calls of the oracle for computing geodesic
segments in (X, d).

For each κ-ball κBi, denote by Si the set of centers of the balls constituting κBi.
For each s ∈ Si, let ri(s) be the radius of the ball of κBi centered at s. Clearly,
S =

⋃m
i=1 Si. For a point v ∈ X, let N [v] := {i : d(v, s) ≤ ri(s) for some s ∈ Si}

be the set of indices of all κ-balls κBi covering v. For any i = 1, . . . ,m, let
N [i] be the set of indices of all κ-balls which cannot be included in a common
(κ, r)-packing with κBi, i.e., N [i] =

⋃
{N [v] : v ∈ κBi}. Clearly, if j ∈ N [i], then

i ∈ N [j]. Notice also that i ∈ N [i].
Now we can formulate a pair of dual linear programs whose optimal solutions

πf (S, r) and γf (S, r) are an optimal fractional packing and an optimal fractional
covering for κBS,r, respectively. For this, we introduce a variable xi for each κ-
ball κBi and a dual variable yv for each point v ∈ X.

⎧
⎨

⎩

max
∑m
i=1 xi

s.t.
∑
i∈N [v] xi ≤ 1 ∀ v ∈ X

xi ≥ 0 ∀ i = 1, . . . ,m
Π(S, r)

⎧
⎨

⎩

min
∫
v∈X yv

s.t.
∫
v∈κBi

yv ≥ 1 ∀ i = 1, . . . ,m
yv ≥ 0 ∀ v ∈ X.

Γ (S, r)

Notice that the first linear program contains as many constraints as points in
the space X, while the second linear program assumes that we can integrate over
the balls of X. In fact, one can easily rewrite Π(S, r) using only a finite number
of constraints: since there exists only a finite number of patterns of intersections
of balls in

⋃
κBS,r, we can pick a point v in each type of intersection and write
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the constraints
∑

i∈N [v] xi ≤ 1 only for such v. Denote the resulting finite set by
V ∗. We can also rewrite Γ (S, r) by replacing the integration by a sum over all
points v ∈ V ∗ belonging to κBi. The resulting linear programs have respectively
m variables, |V ∗| constraints and, vice-versa, |V ∗| variables and m constraints.

Now, we will construct in polynomial time a set V of size κ ·m and formulate
the linear programs on V instead of X or V ∗. Then we relate the admissible and
optimal solutions of resulting linear programs with those of Π(S, r) and Γ (S, r).

Let B denote the set of all balls participating in κ-balls of the family κBS,r.
Denote the radius function of these balls by r and by S =

⋃m
i Si the multi-set

of centers of the balls from B. The set V is constructed iteratively, starting with
V := ∅, S′ = S, and B′ := B. At each iteration, given the current set of balls
B′ and the set S′ of their centers, we apply Lemma 1 to find a point s ∈ S′, a
ball B ∈ B′ centered at s, and a point cs ∈ X such that the set S′

s is (r + δ)-
dominated by cs. Then the point cs is inserted in V and the ball B is removed
from B′. The algorithm halts when B′ becomes empty. Clearly, the returned set
V has cardinality κ ·m. Denote by π′

f (S, r) and γ′f (S, r) the optimal solutions
of the following linear programs:

⎧
⎨

⎩

max
∑m

i=1 xi
s.t.

∑
i∈N [v] xi ≤ 1 ∀ v ∈ V

xi ≥ 0 ∀ i = 1, . . . ,m
Π ′(S, r)

⎧
⎨

⎩

min
∑

v∈C yv
s.t.

∑
v∈κBi

yv ≥ 1 ∀ i = 1, . . . ,m
yv ≥ 0 ∀ v ∈ V.

Γ ′(S, r)

Lemma 2. Any admissible solution {xi : i = 1, . . . ,m} of Π ′(S, r + δ) is also
an admissible solution of Π(S, r). Moreover, γ′f (S, r + δ) ≤ γf (S, r).

Proof. Notice that it suffices to check the inequality
∑

i∈N [v] xi ≤ 1 only for
points v ∈ X for which the set N [v] is nonempty. Then v belongs to at least one
ball from the set B. Among such balls, let B be the first ball considered by the
algorithm constructing the set V. Let s be the center of B and cs be the point
included in V when the ball B is removed from B′. Notice that the set S(v) of
centers of all balls of B containing v belongs to S′

s. The definition of cs yields
that S(v), as a part of S′

s, is (r+δ)-dominated by the point cs of V. Writing down
the constraint of Π ′(S, r + δ) defined by the point cs, we conclude that the sum
of xi’s over all δ-inflated κ-balls containing cs is at most 1. Since the δ-inflations
of all κ-balls containing v all contain cs, we conclude that

∑
i∈N [v] xi ≤ 1 holds

in Π(S, r). �

Lemma 3. If x = {xi : i = 1, . . . ,m} is an admissible solution of Π ′(S, r + δ),
then there exists a κ-ball κBi such that

∑
j∈N [i] xj ≤ 2κ.

Proof. The proof of this result is inspired by the averaging argument used in the
proof of Lemma 4.1 of [7]. Define a graph N with 1, . . . ,m as the set of vertices
and in which ij is an edge if and only if j ∈ N [i] (and consequently i ∈ N [j]).
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For each edge ij of N, set z(i, j) = xi · xj . Since i ∈ N [i], define z(i, i) = x2
i . In

the sum
∑m
i=1

∑
j∈N [i] z(i, j) every z(i, j) is counted twice. On the other hand,

an upper bound on this sum can be obtained in the following way. For a point
s ∈ S, let N δ[cs] be the set of indices of all δ-inflated κ-balls which contain the
point cs. Now, for each κ-ball κBi consider its set of centers Si, and for each
s ∈ Si, add up z(i, j) for all j ∈ N δ[cs], and then multiply the total sum by 2.
This way we computed the sum 2

∑m
i=1

∑
s∈Si

∑
j∈Nδ [cs] z(i, j). We assert that

this suffices. Indeed, pick any z(i, j) for an edge ij of the graph N. Thus the
κ-balls κBi and κBj contain two intersecting balls B and B′, say B is centered
at s ∈ Si. Suppose without loss of generality that the algorithm for constructing
the set V considers B before B′. Then necessarily j ∈ N δ[cs], because cs hits
the δ-inflation of the ball B′. Hence the term z(i, j) will appear at least once in
the triple sum, establishing the required inequality

m∑

i=1

∑

j∈N [i]

z(i, j) ≤ 2
m∑

i=1

∑

s∈Si

∑

j∈Nδ [cs]

z(i, j).

Taking into account that z(i, j) = xi ·xj = z(j, i), this inequality can be rewritten
in the following way:

m∑

i=1

xi
∑

j∈N [i]

xj ≤ 2
m∑

i=1

xi
∑

s∈Si

∑

j∈Nδ [cs]

xj .

Now, since cs hits all δ-inflated κ-balls fromN δ[cs] and x is an admissible solution
of Π ′(S, r + δ), we conclude that

∑
j∈Nδ [cs]

xj ≤ 1. Thus
∑
s∈Si

∑
j∈Nδ [cs] xj ≤

|Si|. Since |Si| ≤ κ, we deduce that
∑m
i=1 xi

∑
j∈N [i] xj ≤ 2κ

∑m
i=1 xi. Hence,

there exists κBi such that xi
∑

j∈N [i] xj ≤ 2κxi, yielding
∑
j∈N [i] xj ≤ 2κ. �

Lemma 4. It is possible to construct in polynomial time an integer admissible
solution x∗ of the linear program Π(S, r) of size at least π′

f (S, r + δ)/(2κ).

Proof. Let x = {x1, . . . , xm} be an optimal (fractional) solution of the linear
program Π ′(S, r + δ) (it can be found in polynomial time). We will iteratively
use Lemma 3 to x to derive an integer solution x∗ = {x∗1, . . . , x∗m} for the linear
program Π(S, r). The algorithm starts with the set κB′ := κBS,r of m κ-balls.
By Lemma 3 there exists a κ-ball κBi ∈ κB′ such that

∑
j∈N [i] xj ≤ 2κ. We

set x∗i := 1 and x∗j := 0 for all j ∈ N [i] \ {i}, then we remove all κ-balls κBj
with j ∈ N [i] from κB′. The algorithm continues with the current set κB′ of
κ-balls until it becomes empty. Notice that at all iterations of the algorithm the
restriction of x on the κ-balls of κB′ remains an admissible solution of the linear
program Π ′(S′, r + δ) defined by κB′. This justifies the use of Lemma 3 at all
iterations of the algorithm.

To show that x∗ is an admissible solution of Π(S, r), suppose by way of
contradiction that there exist two intersecting κ-balls κBi and κBj with x∗i =
1 = x∗j . Suppose that the algorithm selects κBi before κBj . Consider the iteration
when x∗i becomes 1. Since j ∈ N [i], at this iteration x∗j becomes 0 and κBj is



70 V. Chepoi and B. Estellon

removed from κB′. Thus x∗j cannot become 1 at a later stage. This shows that
the κ-balls κBi with x∗i = 1 indeed constitute a packing for κBS,r.

It remains to compare the costs of the solutions x and x∗. For this, notice
that according to the algorithm, for each κ-ball κBi with x∗i = 1 we can define
a subset N ′[i] of N [i] such that i ∈ N ′[i], x∗j = 0 for all j ∈ N ′[i] \ {i}, and∑

j∈N ′[i]∪{i} xj ≤ 2κ. Hence, the κ-balls of κBS,r can be partitioned into groups,
such that each group contains a single κ-ball selected in the integer solution and
the total cost of the fractional solutions of the balls from each group is at most
2κ. This shows that

∑m
i=1 x

∗
i ≥ (

∑m
i=1 xi)/(2κ). �

Lemma 5. It is possible to construct in polynomial time an integer solution y∗

of the linear program Γ (S, r + δ) of size at most κγ′f (S, r).

Proof. Let y = {yv : v ∈ V } be an optimal (fractional) solution of the linear
program Γ ′(S, r). Since

∑
v∈κBi

yv ≥ 1 for all i = 1, . . . ,m, each κ-ball κBi
contains a ball Bi such that κ

∑
v∈Bi

yv ≥ 1. Let si be the center of the ball
Bi and let r(si) be its radius. Set S = {s1, . . . , sm}. Notice that y′ = {y′v : v ∈
V } defined by setting y′v = κ · yv if v ∈

⋃m
i=1Bi and y′v = 0 otherwise, is a

fractional covering for the family of balls B1, . . . , Bm. Thus the cost of y′ is at
least γf (S, r) = πf (S, r). Notice also that the cost of y′ is at most κ times the
cost of y. By Theorem 1, we can construct in polynomial time a set C of size
at most π(S, r) which (r + δ)-dominates the set S. Let y∗ = {yv : v ∈ V } be
defined by setting y∗v = 1 if v ∈ C and y∗v = 0 otherwise. Since π(S, r) ≤ πf (S, r),
putting all things together, we obtain:
∑

v∈V
y∗v = |C| ≤ π(S, r) ≤ πf (S, r) = γf (S, r) ≤

∑

v∈V
y′v ≤ κ

∑

v∈V
yv = κγ′f (S, r).�

Now, we are ready to complete the proof of Theorem 2. According to Lemma
4 we can construct in polynomial time an integer solution x∗ for Π(S, r) of
size at least π′

f (S, r + δ)/(2κ). Let P = {κBi : x∗i = 1}. On the other hand,
applying Lemma 5 for the radius function r + δ instead of r, we can construct
in polynomial time an integer solution y∗ of the linear program Γ (S, r + 2δ)
of size at most κγ′f (S, r + δ). Let C = {v ∈ V : y∗v = 1}. Since, by duality,
γ′f (S, r + δ) = π′

f (S, r + δ), we deduce that |C| ≤ 2κ2|P |, as required.

4 Augmentation Under Diameter Constraints

Denote by OPT(D) the minimum number of edges necessary to decrease the
diameter of the input δ-hyperbolic graph G = (V,E) until D. First suppose that
the resulting diameter D is even, sayD = 2R. We recall the relationship between
the augmentation problem ADC and the r-domination problem established in
[19] for trees. Let E∗ be an optimal augmentation, i.e. |E∗| = OPT(D) and the
graph G∗ = (V,E ∪E∗) has diameter D. Denote by C the set of end-vertices of
the edges of E∗ and let V ′ the set of all vertices which are located at distance
less than or equal to R − 1 from a vertex of C (in other words, V ′ is the union
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of all balls or radius R− 1 centered at vertices of C). Since E∗ is a solution for
the problem ADC, it can be easily shown (see [19] for missing details) that the
diameter in G of the set Q := V \ V ′ is at most 2R. Since G is δ-hyperbolic,
from Corollary 1 and the discussion preceding Corollary 3 we infer that Q can be
covered by a single ball B(c∗, R+ δ) of radius R+ δ. Let Q′ be the set of vertices
of G located outside B(c, R + δ). Since Q′ ⊆ V ′ =

⋃
{B(x,R − 1) : x ∈ C}

and each edge of E∗ has both ends in C, we conclude that γG(Q′, R − 1) ≤
γG(V ′, R− 1) ≤ |C| ≤ 2|E∗| = 2OPT(D).

Now, we turn this analysis of an optimal solution (which we do not know
how to construct) into a polynomial time algorithm which instead will find a
set E′ of new 2OPT(D) edges so that the resulting graph G′ = (V,E ∪ E′) will
have diameter at most D + 2δ (instead of D, as required). As for trees [19],
the algorithm will try every vertex c′ of G as a center of a ball of radius R + δ
and it covers the set V \ B(c′, R + δ) with at most πG(V \ B(c′, R + δ), R − 1)
balls of radius R− 1+ δ. This is done using the procedure described in Theorem
1. Among |V | such coverings, the algorithm selects the one with a minimum
number of balls. Let c′ be the center of the ball of radius R + δ providing this
covering C′. Then the algorithm returns as the set E′ of new edges all pairs of
the form c′c, where c is a center of a ball of radius R−1+δ from C′. Notice that
the graph obtained from G after adding the new edges has diameter at most
2R + 2δ. Finally notice that since the algorithm tested the vertex c∗ described
above as the center of the ball of radius R+ δ, by Theorem 1 we conclude that
|C′| ≤ πG(Q′, R − 1), showing that |C′| ≤ 2OPT(2R). We obtain the following
result:

Proposition 1. Given a δ-hyperbolic graph G = (V,E) and R ≥ 1, one can
construct in polynomial time an admissible solution for the problem ADC with
D = 2R+ 2δ which contains at most 2OPT(2R) edges.

5 k-Center Problem

Let G = (V,E) be a δ-hyperbolic graph and S be a set of n input vertices of the
k-center problem. Then, as we noticed already, the k-center problem consists in
finding the smallest radius R∗ such that the set S can be covered with at most
k balls of radius R∗. The value of R∗ belongs to the list Δ of size O(|V | · |S|)
consisting of all possible distinct values of distances from the vertices of G to
the set S. As in some other minmax problems [30,31,39], the approximation
algorithm tests the entries of Δ, using a parameter R, which is the “guess” of
the optimal radius. For current R ∈ Δ, instead of running the algorithm of
Hochbaum and Shmoys [31], we use the algorithm described in Theorem 1 and
Corollary 3 with r(x) = R for all x ∈ S. This algorithm either finds a covering of
S with at most k balls of radius R+δ or it returns an r-packing P of size greater
than k. In the second case, we conclude that γG(S, r) ≥ πG(S, r) > k, therefore
the tested value R is too small, yielding R < R∗. Now, if R is the least value for
which the algorithm does not return the negative answer, then R ≤ R∗, and we
obtain a solution for the k-center problem of radius R + δ ≤ R∗ + δ.
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Proposition 2. Given a δ-hyperbolic graph G = (V,E), one can construct in
polynomial time an admissible solution for the k-center problem having radius
at most OPT + δ.
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Abstract. We investigate the problem of computing a minimum set of solutions
that approximates within a specified accuracy ε the Pareto curve of a multiobjec-
tive optimization problem. We show that for a broad class of bi-objective prob-
lems (containing many important widely studied problems such as shortest paths,
spanning tree, and many others), we can compute in polynomial time an ε-Pareto
set that contains at most twice as many solutions as the minimum such set. Fur-
thermore we show that the factor of 2 is tight for these problems, i.e., it is NP-hard
to do better. We present further results for three or more objectives, as well as for
the dual problem of computing a specified number k of solutions which provide
a good approximation to the Pareto curve.

1 Introduction

In many decision making situations it is typically the case that more than one criteria
come into play. For example, when purchasing a product (car, tv, etc.) we care about its
cost, quality, etc. When choosing a route we may care about the time it takes, the dis-
tance travelled, etc. When designing a network we may care about its cost, its capacity
(the load it can carry), its coverage. This type of multicriteria or multiobjective prob-
lems arise across many diverse disciplines, in engineering, in economics and business,
healthcare, and others. The area of multiobjective optimization has been (and continues
to be) extensively investigated in the management science and optimization communi-
ties with many papers, conferences and books (see e.g. [Cli, Ehr, EG, FGE, Miet]).

In multiobjective problems there is typically no uniformly best solution in all ob-
jectives, but rather a trade-off between the different objectives. This is captured by the
trade-off or Pareto curve, the set of all solutions whose vector of objective values is not
dominated by any other solution. The trade-off curve represents the range of reasonable
“optimal” choices in the design space; they are precisely the optimal solutions for all
possible global “utility” functions that depend monotonically on the different objec-
tives. A decision maker, presented with the trade-off curve, can select a solution that
corresponds best to his/her preferences; of course different users generally may have
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different preferences and select different solutions. The problem is that the trade-off
curve has typically exponential size (for discrete problems) or is infinite (for continu-
ous problems), and hence we cannot construct the full curve. Thus, we have to contend
with an approximation of the curve: We want to compute efficiently and present to the
decision makers a small set of solutions (as small as possible) that represents as well
as possible the whole range of choices, i.e. that provides a good approximation to the
Pareto curve. Indeed this is the underlying goal in much of the research in the multiob-
jective area, with many heuristics proposed, usually however without any performance
guarantees or complexity analysis, as we do in theoretical computer science.

In recent years we initiated a systematic investigation [PY1, VY] to develop the the-
ory of multiobjective approximation along similar rigorous lines as the approximation
of single objective problems. The approximation to the Pareto curve is captured by the
concept of an ε-Pareto set, a set Pε of solutions that approximately dominates every
other solution; that is, for every solution s, the set Pε contains a solution s′ that is
within a factor 1 + ε of s, or better, in all the objectives. (As usual in approximation,
it is assumed that all objective functions take positive values.) Such an approximation
was studied before for certain problems, e.g. multiobjective shortest paths, for which
Hansen [Han] and Warburton [Wa] showed how to construct an ε-Pareto set in polyno-
mial time (for fixed number of objectives). Note that typically in most real-life multi-
objective problems the number of objectives is small. In fact, the great majority of the
multiobjective literature concerns the case of two objectives.

Consider a multiobjective problem with d objectives, for example shortest path with
cost and time objectives. For a given instance, and error tolerance ε, we would like to
compute a smallest set of solutions that form an ε-Pareto set. Can we do it in polynomial
time? If not, how well can we approximate the smallest ε-Pareto set? Note that an
ε-Pareto set is not unique: in general there are many such sets, some of which can be
very small and some very large. First, to have any hope we must ensure that there exists
at least a polynomial size ε-Pareto set. Indeed, in [PY1] it was shown that this is the
case for every multiobjective problem with a fixed number of polynomially computable
objectives. Second we must be able to construct at least one such set in polynomial
time. This is not always possible. A necessary and sufficient condition for polynomial
computability for all ε > 0 is the existence of a polynomial algorithm for the following
Gap problem: Given a vector of values b, either compute a solution that dominates b, or
determine that no solution dominates b by at least a factor 1 + ε (in all the objectives).
Many multiobjective problems were shown to have such a routine for the Gap problem
(and many others have been shown subsequently).

Construction of a polynomial-size approximate Pareto set is useful, but not good
enough in itself: For example, if we plan a trip, we want to examine just a few possi-
ble routes, not a polynomial number in the size of the map. More generally, in typical
multicriteria situations, the selected representative solutions are investigated more thor-
oughly by the decision maker (designer, physician, corporation, etc.) to assess the differ-
ent choices and pick the most preferable one, based possibly on additional factors that
are perhaps not formalized or not even quantifiable. We thus want to select as small a set
as possible that achieves a desired approximation. In [VY] the problem of constructing
a minimum ε-Pareto set was raised formally and investigated in a general framework. It
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was shown that for all bi-objective problems with a polynomial-time Gap routine, one
can construct an ε-Pareto set that contains at most 3 times the number of points of the
smallest such set; furthermore, the factor 3 is best possible in the sense that for some
problems it is NP-hard to do better. Further results were shown for 3 and more objec-
tives, and for other related questions. Note that although the factor 3 of [VY] is best pos-
sible in general for two objectives, one may be able to do better for specific problems.

We show in this paper, that for an important class of bi-objective problems (contain-
ing many widely studied natural ones such as shortest paths, spanning tree, knapsack,
scheduling problems and others) we can obtain a 2-approximation, and furthermore the
factor of 2 is tight for them, i.e., it is NP-hard to do better. Our algorithm is a general
algorithm that relies on a routine for a stronger version of the Gap problem, namely
a routine that solves approximately the following Restricted problem: Given a (hard)
bound b1 for one objective, compute a solution that optimizes approximately the second
objective subject to the bound. Many problems (e.g. shortest paths, etc.) have a poly-
nomial time approximation scheme for the Restricted problem. For all such problems,
a 2-approximation to the minimum ε-Pareto set can be computed in polynomial time.
Furthermore, the number of calls to the Restricted routine (and an associated equivalent
dual routine) is linear in the size OPTε of the optimal ε-Pareto set.

The bi-objective shortest path problem is probably the most well-studied multiobjec-
tive problem. It is the paradigmatic problem for dynamic programming (thus can express
a variety of problems), and arises itself directly in many contexts. One area is network
routing with various QoS criteria (see e.g. [CX2, ESZ, GR+, VV]). For example, an in-
teresting proposal in a recent paper by Van Mieghen and Vandenberghe [VV] is to have
the network operator advertise a portfolio of offered QoS solutions for their network (a
trade-off curve), and then users can select the solutions that best fit their applications.
Obviously, the portfolio cannot include every single possible route, and it would make
sense to select carefully an “optimal” set of solutions that cover well the whole range.
Other applications include the transportation of hazardous materials (to minimize risk of
accident, and population exposure) [EV], and many others; we refer to the references,
e.g. [EG] contains pointers to the extensive literature on shortest paths, spanning trees,
knapsack, and the other problems. Our algorithm applies not only to the above standard
combinatorial problems, but more generally to any bi-objective problem for which we
have available a routine for the Restricted problem; the objective functions and the routine
itself could be complex pieces of software without a simple mathematical expression.

After giving the basic definitions and background in Sect. 2, we present in Sect. 3 our
general lower and upper bound results for bi-objective problems, as well as applications
to specific problems. In Sect. 4 we present some results for d = 3 and more objectives.
Here we assume only a Gap routine; i.e. these results apply to all problems with a
polynomial time constructible ε-Pareto set. It was shown in [VY] that for d = 3 it is in
general impossible to get a constant factor approximation to the optimal ε-Pareto set,
but one has to relax ε. Combining results from [VY] and [KP] we show that for any
ε′ > ε we can construct an ε′-Pareto set of size cOPTε, i.e. within a (large) constant
factor c of the size OPTε of the optimal ε-Pareto set. For general d, the problem can be
reduced to a Set Cover problem whose VC dimension and codimension are at most d,
and we can construct an ε′-Pareto set of size O(d log(dOPTε))OPTε.
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We discuss also the Dual problem: For a specified number k of points, find k points
that provide the best approximation to the Pareto curve, i.e. that form an ε-Pareto set with
the minimum possible ε. In [VY] it was shown that for d = 2 objectives the problem
is NP-hard, but we can approximate arbitrarily well (i.e. there is a PTAS) the minimum
approximation ratio ρ∗ = 1+ ε∗. As we’ll see, for d = 3 this is not possible, in fact one
cannot get any multiplicative approximation (unless P=NP). We use a relationship of the
Dual problem to the asymmetric k-center problem and techniques from the latter prob-
lem to show that the Dual problem can be approximated (for d = 3) within a constant
power, i.e. we can compute k points that cover every point on the Pareto curve within
a factor ρ′ = (ρ∗)c or better in all objectives, for some constant c. For small ρ∗, i.e.
when there is a set of k points that provides a good approximation to the Pareto curve,
constant factor and constant power are related, but in general of course they are not.

2 Definitions and Background

A multiobjective optimization problemΠ has a set IΠ of valid instances, every instance
I ∈ IΠ has a set of solutions S(I). There are d objective functions, f1, . . . , fd, each of
which maps every instance I and solution s ∈ S(I) to a value fj(I, s). The problem
specifies for each objective whether it is to be maximized or minimized. We assume as
usual in approximation that the objective functions have positive rational values, and
that they are polynomial-time computable. We use m to denote the maximum number
of bits in numerator and denominator of the objective function values.

We say that a d-vector u dominates another d-vector v if it is at least as good in all
the objectives, i.e. uj ≥ vj if fj is to be maximized (uj ≤ vj if fj is to be minimized).
Similarly, we define domination between any solutions according to the d-vectors of
their objective values. Given an instance I , the Pareto set P (I) is the set of undominated
d-vectors of values of the solutions in S(I). Note that for any instance, the Pareto set
is unique. (As usual we are also interested in solutions that realize these values, but
we will often blur the distinction and refer to the Pareto set also as a set of solutions
that achieve these values. If there is more than one undominated solution with the same
objective values, P (I) contains one of them).

We say that a d-vector u c-covers another d-vector v if u is at least as good as v up
to a factor of c in all the objectives, i.e. uj ≥ vj/c if fj is to be maximized (uj ≤ cvj
if fj is to be minimized). Given an instance I and ε > 0, an ε-Pareto set Pε(I) is
a set of d-vectors of values of solutions that (1 + ε)-cover all vectors in P (I). For a
given instance, there may exist many ε-Pareto sets, and they may have very different
sizes. It is shown in [PY1] that for every multiobjective optimization problem in the
aforementioned framework, for every instance I and ε > 0, there exists an ε-Pareto set
of size O((4m/ε)d−1), i.e. polynomial for fixed d.

An approximate Pareto set always exists, but it may not be constructible in poly-
nomial time. We say that a multiobjective problem Π has a polynomial time approx-
imation scheme (respectively a fully polynomial time approximation scheme) if there
is an algorithm, which, given instance I and a rational number ε > 0, constructs an
ε-Pareto set Pε(I) in time polynomial in the size |I| of the instance I (respectively, in
time polynomial in |I|, the representation size |ε| of ε, and in 1/ε). Let MPTAS (resp.
MFPTAS) denote the corresponding class of problems. There is a simple necessary and
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sufficient condition [PY1], which relates the efficient computability of an ε-Pareto set
for a multi-objective problemΠ to the following GAP Problem: given an instance I of
Π , a (positive rational) d-vector b, and a rational δ > 0, either return a solution whose
vector dominates b or report that there does not exist any solution whose vector is better
than b by at least a (1+δ) factor in all of the coordinates. As shown in [PY1], a problem
is in MPTAS (resp. MFPTAS) if and only if there is a subroutine GAP that solves the
GAP problem for Π in time polynomial in |I| and |b| (resp. in |I|, |b|, |δ| and 1/δ).

We say that an algorithm that uses a routine as a black box to access the solutions
of the multiobjective problem is generic, as it is not geared to a particular problem,
but applies to all of the problems for which the particular routine is available. All that
such an algorithm needs to know about the input instance is bounds on the minimum
and maximum possible values of the objective functions. (For example, if the objective
functions are positive rational numbers whose numerators and denominators have at
mostm bits, then an obvious lower bound on the objective values is 2−m and an obvious
upper bound is 2m; however, for specific problems better bounds may be available.)
Based on the bounds, the algorithm calls the given routine for certain values of its
parameters, and uses the returned results to compute an approximate Pareto set.

For a given instance, there may exist many ε-Pareto sets, and they may have very
different sizes. We want to compute one with the smallest possible size, which we’ll
denote OPTε. [VY] gives generic algorithms that compute small ε-Pareto sets and are
applicable to all multiobjective problems in M(F)PTAS, i.e. all problems possessing a
(fully) polynomial GAP routine. They consider the following “dual” problems: Given
an instance and an ε > 0, construct an ε-Pareto set of as small size as possible. And
dually, given a bound k, compute an ε-Pareto set with at most k points that has as
small an ε value as possible. In the case of two objectives, they give an algorithm that
computes an ε-Pareto set of size at most 3 · OPTε; they show that no algorithm can
be better than 3-competitive in this setting. For the dual problem, they show that the
optimal ε-value can be approximated arbitrarily closely. For three objectives, they show
that no algorithm can be c-competitive for any constant c, unless it is allowed to use a
larger ε value. They also give an algorithm that constructs an ε′-Pareto set of cardinality
at most 4 ·OPTε, for any ε′ > (1 + ε)2 − 1.

In a general multiobjective problem we may have both minimization and maximiza-
tion objectives. In the remainder, we will assume for convenience that all objectives are
minimization objectives; this is without loss of generality, since we can simply take the
reciprocals of maximization objectives.

Due to space constraints, most proofs are deferred to the full version of this paper.

3 Two Objectives

We use the following notation in this section. Consider the plane whose coordinates
correspond to the two objectives. Every solution is mapped to a point on this plane. We
use x and y as the two coordinates of the plane. If p is a point, we use x(p), y(p) to
denote its coordinates; that is, p =

(
x(p), y(p)

)
.

We consider the class of bi-objective problems Π for which we can approximately
minimize one objective (say the y-coordinate) subject to a “hard” constraint on the other
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(the x-coordinate). Our basic primitive is a (fully) polynomial time routine for the fol-
lowing Restricted problem (for the y-objective): Given an instance I ∈ IΠ , a (positive
rational) bound C and a parameter δ > 0, either return a solution point s̃ satisfying
x (s̃) ≤ C and y (s̃) ≤ (1 + δ) ·min {y over all solutions s ∈ S(I) having x(s) ≤ C}
or report that there does not exist any solution s such that x (s) ≤ C. For simplicity,
we will drop the instance from the notation and use Restrictδ (y, x ≤ C) to denote the
solution returned by the corresponding routine. If the routine does not return a solution,
we will say that it returns NO. We say that a routine Restrictδ (y, x ≤ C) runs in poly-
nomial time (resp. fully polynomial time) if its running time is polynomial in |I| and
|C| (resp. |I|, |C|, |δ| and 1/δ). The Restricted problem for the x-objective is defined
analogously. We will also use the Restricted routines with strict inequality bounds; it is
easy to see that they are polynomially equivalent.

Note that in general the two objectives could be nonlinear and completely unrelated.
Moreover, it is possible that a bi-objective problem possesses a (fully) polynomial Re-
stricted routine for the one objective, but not for the other.

The considered class of bi-objective problems is quite broad and contains many
well-studied natural ones. Applications include the shortest path problem [Han, Wa] and
generalizations [EV, GR+, CX2, VV], cost-time trade-offs in query evaluation [PY2],
spanning tree [GR, HL] and related problems [CX1]. The aforementioned problems
possess a polynomial Restricted routine for both objectives. For several other problems
[ABK1, ABK2, CJK, DJSS], the Restricted routine is available for one objective only,
and it is NP-hard to even separately optimize the other objective. An example is the
following scheduling problem: We are given a set of n jobs and a fixed number m of
machines. Executing job j on machine i requires time pij and incurs cost cij . We are
interested in the trade-off between makespan and cost. Minimizing the makespan is
NP-hard even for m = 2, but there is an FPTAS for the Restricted problem for the
makespan objective [ABK1].

In Sect. 3.1, we show that, even if the given bi-objective problem possesses a (fully)
polynomial Restricted routine for both objectives, no generic algorithm can guarantee
an approximation ratio better than 2. (This lower bound applies a fortiori if the Re-
stricted routine is available for one objective only.) Furthermore, we show that for two
such natural problems, namely, the bi-objective shortest path and spanning tree prob-
lems, it is NP-hard to do better than 2. In Sect. 3.2 we give a matching upper bound: we
present an algorithm that is 2-competitive and applies to all of the problems that possess
a polynomial Restricted routine for one of the two objectives.

3.1 Lower Bound

To prove a lower bound for a generic procedure, we present two Pareto sets which are
indistinguishable from each other using the Restricted routine as a black box, yet whose
smallest ε-Pareto sets are of different sizes. We omit the proof.

Proposition 1. Consider the class of bi-objective problems that possess a fully polyno-
mial Restricted routine for both objectives. Then, for any ε > 0, there is no polynomial
time generic algorithm that approximates the size of the smallest ε-Pareto set P ∗

ε to a
factor better than 2.
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In fact, we can prove something stronger (assuming P �= NP) for the bi-objective short-
est path (BSP) and spanning tree (BST) problems. In the BSP problem, we are given a
graph, positive rational “costs” and “delays” for each edge and two specified nodes s
and t. The set of feasible solutions is the set of s− t paths. The BST problem is defined
analogously. These problems are well-known to possess polynomial Restricted routines
for both objectives [LR, GR].

Theorem 1
a. For the bi-objective Shortest Path problem, for any k from k = 1 to a polynomial, it

is NP-hard to distinguish the case that the minimum size OPTε of the optimal ε-Pareto
set is k from the case that it is 2k − 1.
b. The same holds for the bi-objective Spanning Tree problem for any fixed k.

The proof is omitted, due to lack of space. For k = 1 the theorem says that it is NP-
hard to tell if one point suffices or we need at least 2 points for an ε approximation.
We proved that the theorem holds also for more general k to rule out additive and
asymptotic approximations as well. Similar hardness results can be shown for several
other related problems.

3.2 Two Objectives Algorithm

Before we give the algorithm, we remark that if we have exact (not approximate) Re-
stricted routines for both objectives then we can compute the optimal ε-Pareto set by a
simple greedy algorithm. The algorithm is similar to the one given in [KP, VY] for the
(special) case where all the solution points are given explicitly in the input. The Greedy
algorithm proceeds by iteratively selecting points q1, . . . , qk in decreasing x (increasing
y) as follows: We start by computing a point q′1 having minimum y coordinate (among
all feasible solutions); q1 is then selected to be the leftmost solution point satisfying
y(q1) ≤ (1+ ε)y(q′1). During the jth iteration (j ≥ 2) we initially compute the point q′j
with minimum y-coordinate among all solution points s having x(s) < x(qj−1)/(1+ε)
and select as qj the leftmost point which satisfies y(qj) ≤ (1 + ε)y(q′j). The algorithm
terminates when the last point selected (1 + ε)-covers the leftmost solution point. It
follows by an easy induction that the set {q1, q2, . . . , qk} is an ε-Pareto set of minimum
cardinality. This exact algorithm is applicable to biobjective linear programming (and
all problems reducible to it, for example biobjective flows), the biobjective global min-
cut problem [AZ] and several scheduling problems [CJK]. For these problems we can
compute an ε-Pareto set of minimum cardinality.

If we have approximate Restricted routines, one may try to modify the Greedy al-
gorithm in a straightforward way to take into account the fact that the routines are not
exact. However, it can be shown that this modified Greedy algorithm is suboptimal, in
particular it does not improve on the factor 3 that can be obtained from the general GAP
routine (details omitted). More care is required to achieve a factor 2, matching the lower
bound. We will describe now how to accomplish this.

Assume that we have an approximate Restricted routine for the y-objective. Our
generic algorithm will also use a polynomial routine for the following Dual Restricted
problem (for the x-objective): Given an instance, a bound D and δ > 0, either return
a solution s̃ satisfying y (s̃) ≤ (1 + δ)D and x (s̃) ≤ min{x(s) over all solutions s
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having y(s) ≤ D} or report that there does not exist any solution s such that y (s) ≤
D. We use the notation DualRestrictδ (x, y ≤ D) to denote the solution returned by
the corresponding routine. The following proposition establishes the fact that any bi-
objective problem that possesses a (fully) polynomial Restricted routine for the one
objective, also possesses a (fully) polynomial Dual Restricted routine for the other.

Proposition 2. For any bi-objective optimization problem, the problems Restrictδ (y, ·)
and DualRestrictδ (x, ·) are polynomially equivalent.

Algorithm Description: We first give a high-level overview of the 2-competitive al-
gorithm. The algorithm iteratively selects a set of solution points {q1, . . . , qr} (in de-
creasing x) by judiciously combining the two routines. The idea is, in addition to the
Restricted routine (for the y-coordinate), to use the Dual Restricted routine (for the x-
coordinate) in a way that circumvents the problems previously identified for the greedy
algorithm. More specifically, after computing the point q′i in essentially the same way
as the greedy algorithm, we proceed as follows: We select as qi a point that: (i) has y-
coordinate at most (1 + ε)y(q′i)/(1 + δ) and (ii) has x-coordinate at most the minimum
x over all solutions s with y(s) ≤ (1 + ε)y(q′i)/(1 + δ)2 for a suitable δ. This can be
done by a call to the Dual Restricted routine for the x-objective. Intuitively this selec-
tion means that we give some “slack” in the y-coordinate to “gain” some slack in the
x-coordinate. Also notice that, by selecting the point qi in this manner, there may exist
solution points with y-values in the interval ((1+ε)y(q′i)/(1+δ)2, (1+ε)y(q′i)/(1+δ)]
whose x-coordinate is arbitrarily smaller than x(qi). In fact, the optimal point (1 + ε)-
covering qi can be such a point. However, it turns out that this is sufficient for our
purposes and, if δ is chosen appropriately, this scheme can guarantee that the point q2i
lies to the left (or has the same x-value) of the i-th rightmost point of the optimal solu-
tion. We now proceed with the formal description of the algorithm. In what follows, the
error tolerance is set to δ

.= 3
√

1 + ε − 1 (≈ ε/3 for small ε). If 3
√

1 + ε is not rational,
we let δ be a rational that approximates 3

√
1 + ε−1 from below, i.e. (1+ δ)3 ≤ (1+ ε),

and which has representation size (number of bits) |δ| = O (|ε|).

Algorithm 2-Competitive
If Restrictδ0←1(y, x ≤ 2m) = NO then halt.
q′1 = Restrictδ(y, x ≤ 2m);
qleft = DualRestrictδ0←1(x, y ≤ 2m); xmin = x(qleft);
ȳ1 = y(q′1)(1 + δ);
q1 = DualRestrictδ(x, y ≤ ȳ1);
x̄1 = x(q1)/(1 + ε);
Q = {q1}; i = 1;
While (x̄i > xmin) do
{ q′i+1 = Restrictδ(y, x < x̄i);
ȳi+1 = [(1 + ε)/(1 + δ)] ·max{ȳi, y(q′i+1)/(1 + δ)};
qi+1 = DualRestrictδ(x, y ≤ ȳi+1);
x̄i+1 = x(qi+1)/(1 + ε);
Q = Q ∪ {qi+1};
i = i+ 1; }

Return Q.
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Theorem 2. The above algorithm computes a 2-approximation to the smallest ε-Pareto
set in time O(OPTε) subroutine calls, where 1/δ = O(1/ε).

Sketch of Proof: We can assume that the solution set is non-empty. In this case, (i) the
solution point qleft has minimum x-value among all feasible solutions and (ii) q′1 has
y-value at most (1 + δ)ymin. (We denote by xmin, ymin the minimum values of the
objectives in each dimension.) It is also easy to see that each subroutine call returns a
point; so, all the points are well-defined. Let Q = {q1, q2, . . . , qr} be the set of solution
points produced by the algorithm. We will prove that the set Q is an ε-Pareto set of size
at most 2OPTε. We note the following simple properties.

Fact. 1. For each i ∈ [r − 1] it holds (i) x(q′i+1) < x(qi)/(1 + ε) and (ii) for each
solution point t with x(t) < x(qi)/(1 + ε), we have y(t) ≥ y(q′i+1)/(1 + δ).
2. For each i ∈ [r] it holds (i) y(qi) ≤ (1 + δ)ȳi and (ii) for each solution point t with
y(t) ≤ ȳi we have x(t) ≥ x(qi).

We first show that Q is an ε-Pareto set. It is not hard to see that the x coordinates
of the points q1, q2, . . . , qr of Q form a strictly decreasing sequence, while this is not
necessarily the case with the y coordinates. We claim that the point q1 (1 + ε)-covers
all of the solution points that have x-coordinate at least x(q1)/(1 + ε). To wit, let t be a
solution point with x(t) ≥ x(q1)/(1+ ε). It suffices to argue that y(t) ≥ y(q1)/(1+ ε).
By property 2-(ii) we have y(q1) ≤ (1 + δ)ȳ1 = (1 + δ)2y(q′1) and the definition of q′1
implies that y(t) ≥ y(q′1)/(1 + δ), for any solution point t. By combining these facts
we get that for any solution point t it holds y(t) ≥ y(q1)/(1 + δ)3 ≥ y(q1)/(1 + ε).
Moreover, for each i ∈ [r] \ {1} the point qi (1 + ε)-covers all of the solution points
that have their x-coordinate in the interval

[
x(qi)/(1 + ε), x(qi−1)/(1 + ε)

)
. Let t be a

solution point satisfying x(qi)/(1+ε) ≤ x(t) < x(qi−1)/(1+ε). Suppose (for the sake
of contradiction) that there exists such a point t with y(t) < y(qi)/(1 + ε). By property
2-(i) and the definition of ȳi this implies y(t) < max{ȳi−1, y(q′i)/(1 + δ)}. Now since
x(t) < x(qi−1)/(1 + ε), property 1-(ii) gives y(t) ≥ y(q′i)/(1 + δ). Furthermore, since
x(t) < x(qi−1), by property 2-(ii) it follows that y(t) > ȳi−1. Finally note that there
are no solution points with x-coordinate smaller than x(qr)/(1 + ε).

We now bound the size of the set of points Q in terms of the size of the optimal
ε-Pareto set. Let P ∗

ε = {p∗1, p∗2, . . . , p∗k} be the optimal ε-Pareto set, where its points
p∗i , i ∈ [k], are ordered in increasing order of their y- and decreasing order of their
x-coordinate. We will show that |Q| = r ≤ 2k. This follows from the following claim,
whose proof is omitted.

Claim. If the algorithm selects a solution point q2i−1 (i.e. if 2i − 1 ≤ r), then there
must exist a point p∗i in P ∗

ε (i.e. it holds i ≤ k) and if the algorithm selects a point q2i,
then x(p∗i ) ≥ x(q2i).

We now analyze the running time of the algorithm. Let k be the number of points in the
smallest ε-Pareto set, k = OPTε. The algorithm involves r ≤ 2k iterations of the while
loop; each iteration involves two calls to the subroutines. Therefore, the total running
time is bounded by 4k subroutine calls. ��
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In the case of the bi-objective shortest path problem, the Restricted problem
can be solved in time O(en/ε) for acyclic (directed) graphs [ESZ], and in time
O(en(log logn + 1/ε)) for general graphs [LR] with n nodes and e edges. The Dual
Restricted problem can be solved with the same complexity. Thus, our algorithm runs
in timeO(en(log logn+1/ε)OPTε) for general graphs andO(enOPTε/ε) for acyclic
graphs. The time complexity is comparable or better than previous algorithms, which
furthermore do not provide any guarantees on the size.

4 d Objectives

The results in this section use the GAP routine and thus apply to all problems in
M(F)PTAS.

4.1 Approximation of the Optimal ε-Pareto Set

Recall that for d ≥ 3 objectives we are forced to compute an ε′-Pareto set, where ε′ > ε,
if we are to have a guarantee on its size [VY]. For any ε′ > ε, a logarithmic approxima-
tion for the problem is given in [VY], by a simple reduction to the Set Cover problem.
We can sharpen this result, by exploiting additional properties of the corresponding set
system.

Theorem 3
1. For any ε′ > ε there exists a polynomial time generic algorithm that computes an
ε′-Pareto set Q such that |Q| ≤ O

(
d log(dOPTε)

)
·OPTε.

2. For d = 3, the algorithm outputs an ε′-Pareto set Q satisfying |Q| ≤ cOPTε, where
c is a constant.

Consider the following problemQ(P, ε): Given a set of n points P ⊆ Rd
+ as input and

ε > 0, compute the smallest ε-Pareto set of P . It should be stressed that, by definition,
the set of points P is given explicitly in the input. (Note the major difference with
our setting: for a typical multiobjective problem there are exponentially many solution
points and they are not given explicitly.) This problem can be solved in linear time for
d = 2 by a simple greedy algorithm. For d = 3 it is NP-hard and can be approximated
within some (large) constant factor c [KP]. If d is arbitrary (i.e. part of the input, e.g.
d = n), the problem is hard to approximate better than within a Ω(log n) factor [VY].

The following fact relates the approximability of Q with the problem of computing
a small ε′-Pareto set for a multiobjective problem Π , given the GAP primitive. Let
ε > 0 be a given rational number. For any ε′ > ε, we can find a δ > 0 such that
1/δ = O(1/(ε′ − ε)) satisfying 1 + ε′ ≥ (1 + ε)(1 + δ)2.

Proposition 3 (implicit in [VY]). Suppose that there exists an r-factor approximation
algorithm for Q. Then, for any ε′ > ε, we can compute an ε′-Pareto set Q, such that
|Q| ≤ rOPTε using O((m/δ)d) GAPδ calls.

Sketch of Proof: First compute a δ-Pareto set R, by using the original algorithm
of [PY1]. Then apply the r-approximation algorithm for Q to (1 + ε)(1 + δ)-cover
R. It is easy to see that the computed set of points is an ε′-Pareto set of the desired
cardinality. ��
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Part 2 of Theorem 3 follows immediately from the fact thatQ is constant factor approx-
imable for d = 3 [KP] and the above proposition. We consider the case of general d in
the remainder. The problem Q(P, ε) can be phrased as a set cover problem as follows:
For each input point q ∈ P and ε > 0, define Sq,ε = {x ∈ Rd | q ≤ (1 + ε) · x}
(the subset of Rd (1 + ε)-covered by q). For each point r ∈ P , r is (1 + ε)-
covered by q iff r ∈ Sq,ε. Now consider the set system F(P, ε) = (P,S(P, ε)),
where S(P, ε) = {Pq,ε ≡ P ∩ Sq,ε | q ∈ P}. Clearly, there is a bijection be-
tween set covers of F(P, ε) and ε-Pareto sets of P . For q ∈ P and ε > 0, define
SDq,ε = {x ∈ Rd | x ≤ (1 + ε) · q}. A point r (1 + ε)-covers q iff r ∈ SDq,ε.
The “dual” set system of F(P, ε) is defined as FD(P, ε) = (P,SD(P, ε)), where
SD(P, ε) = {PDq,ε ≡ P ∩ SDq,ε | q ∈ P}. In words, the elements are the points of
P and for each point q ∈ P we have a set consisting of the points r ∈ P that (1 + ε)-
cover q. An ε-Pareto set of P is equivalent to a hitting set of FD.

For a set system (U,R), we say that X ⊆ U is shattered by R if for any Y ⊆ X ,
there exists a set R ∈ R with X ∩ R = Y . The VC-dimension of the set system is the
maximum size of any set shattered byR. We can show the following:

Proposition 4. The VC-dimension of the set systems F(P, ε) and FD(P, ε) is upper
bounded by d.

As shown in [BG], for any (finite) set system with VC-dimension d, there exists a
polynomial time O(d log(dOPT ))-factor approximation algorithm for the minimum
hitting set problem, where OPT is the cost of the optimal solution. If we apply this
result to the dual set system FD(P, ε), we conclude:

Proposition 5. ProblemQ can be approximated within a factor of O(d log(dOPTε)).

Part 1 of Theorem 3 follows by combining Propositions 3 and 5.

4.2 The Dual Problem

For a given number k, we want to find k points that provide the best approximation to
the Pareto curve, i.e. such that every Pareto point is ρ∗-covered by one of the k selected
points for the minimum possible ratio ρ∗ = 1+ ε∗. It was shown in [VY] that for d = 2
the problem is NP-hard but has a PTAS. We show now that for d = 3 any multiplicative
factor for the dual problem is impossible, even for explicitly given points; we can only
hope for a constant power, and only above a certain constant. We omit the proof.

Theorem 4. Consider the Dual problem for d = 3 objectives and explicitly given
points.

1. It is NP-hard to approximate the minimum ratio ρ∗ within any polynomial multiplica-
tive factor.
2. It is NP-hard to compute k points that approximate the Pareto curve with ratio better
than (ρ∗)3/2.

Of course if ρ∗ is upperbounded by a constant, i.e. if k points suffice to provide a good
approximation to the Pareto curve, then a constant power of ρ∗ is also bounded by a
constant. In [VY] the Dual problem was related to the Asymmetric k-center problem,
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and this was used to show that (i) for any d, a set of k points can be computed that
approximates the Pareto curve with ratio (ρ∗)O(log∗ k), and (ii) for unbounded d and
explicitly given points, it is hard to do much better. Since the metric ρ for the dual
problem is a ratio (multiplicative coverage) versus distance (additive coverage) in the
k-center problem, in some sense the analogue of constant factor approximation for the
Dual problem is constant power.

Can we achieve a constant power (ρ∗)c for all problems in MPTAS with a fixed
number d of objectives? We show that the answer is Yes for d = 3 and provide a
conjecture that implies it for general d.

Consider the following generalization Q′(A,P, ε) of problem Q: Given a set of n
points P ⊆ Rd

+, a subset A ⊆ P and ε > 0, compute the smallest subset P ∗
ε (A) ⊆ P

that (1 + ε)-covers A. It is easy to see that for d = 3 the arguments of [KP] for Q can
be applied to Q′ as well showing that it admits a constant factor approximation. We
believe that in fact for all fixed d there may well be a constant factor approximation.
Proving (or disproving) this for d > 3 seems quite challenging.

The following weaker statement seems more manageable:

Conjecture 1. For any fixed d, there exists a polynomial time bicriterion approximation
algorithm for Q′(A,P, ε), that outputs an (1 + ε)f(d)-cover C ⊆ P of A, satisfying
|C| ≤ g(d) · |P ∗

ε (A)|, for some functions f, g : N→ N.

For d = 3, conjecture 1 holds with f(3) ≤ 2 and g(3) ≤ 4. This can be shown by a
technical adaptation of the 3-objectives algorithm in [VY], that is omitted here.

For general multiobjective problems with a polynomial GAP routine, we formulate
the following conjecture:

Conjecture 2. For any fixed d, there exists a polynomial time generic algorithm, that
outputs an (1 + ε)f(d)-cover C, whose cardinality is |C| ≤ g(d) · OPTε, for some
functions f, g : N→ N.

The case of d = 3 is proved in [VY] with f(3) = any constant c′ > 2 and g(3) =
4. Note that, by (a variant of) Proposition 3, Conjecture 1 implies Conjecture 2. The
converse is also partially true: Conjecture 2 implies Conjecture 1, if in the statement of
the latter, problemQ′ is substituted with problemQ.—

In the following theorem, we show that a constant factor bicriterion approximation
for Q′ implies a constant power approximation for the problem of computing k solu-
tions that cover the feasible set with minimum ratio, given the GAP routine.

Theorem 5. Consider a (implicitly represented) d-objective problem in MPTAS and
suppose that the minimum achievable ratio with k points is ρ∗.

1. For d = 3 objectives we can compute k points which approximate the Pareto set with
ratio O((ρ∗)c) for some constant c.
2. If Conjecture 1 holds, then the same result holds for any fixed number d of objectives.

Sketch of Proof: Part 1 follows from 2 since Conjecture 1 holds for d = 3. To show 2,
consider first the following (“dual”) problemD(P, k): We are given explicitly a set P of
n points in Rd

+ and a positive integer k and we want to compute a subset of P of cardi-
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nality (at most) k that ρ-coversP with minimum ratio ρ. Let ρ∗ = 1+ ε∗ denote the op-
timal value of the ratio. As shown in [VY], this problem can be reduced to the asymmet-
ric k-center problem. A c-factor approximation algorithm for the asymmetric k-center
problem implies a (ρ∗)c-factor approximation algorithm for the problem at hand.

We claim that, if problem Q′(A,P, ε) admits a ((1 + ε)f(d), g(d))-bicriterion ap-
proximation, then problemD(P, k) admits a (ρ∗)h(d) approximation for some function
h. This is implied by the above reduction and the following more general fact: If we
have an instance of the asymmetric k-center problem (problem D(P, k) in our setting)
such that a certain collection of associated set cover subproblems (which are instances
of problemQ′(A,P, ε) here) admits a constant factor bicriterion approximation (an al-
gorithm that blows up both criteria by a constant factor), then this instance admits a
constant factor unicriterion approximation. This implication is not stated (or proved)
in [PV], but follows easily from their work. One way to prove it is to apply Lemma
5 of [PV] in a recursive manner. This is the approach we follow. We defer the techni-
cal details to the full version. Aaron Archer recently informed us [Ar2] that he has an
alternative method that yields better constants.

For a general multiobjective problem where the solution points are not given explic-
itly, we impose a geometric

√
1 + δ grid for a suitable δ, call GAP at the grid points,

and then apply the above algorithm to the set of points returned. Then the set of k
points computed by the algorithm provide a (1 + ε′)h(d)-cover of the Pareto curve,
where 1 + ε′ = (1 + ε)(1 + δ)2. ��

We should remark that the algorithms of this section are less satisfactory that the bi-
objective algorithm of the previous section (and the 2d and 3d algorithms of [VY]) in
several respects. One weakness is that the constants c obtained (for d = 3) are quite
large: in the case of Theorem 3, c is the same constant as in [KP] (which is around
200), and in the case of Theorem 5 the constant that comes out of the recursive method
applied to the [VY] algorithm is around 100 (using Archer’s new technique instead
would reduce it to around 20). A second weakness of the algorithms is that they start by
applying the general method of [PY1] calling the GAP routine on a grid, and thus incur
always the worst-case time complexity even if there is a very small ε-Pareto set. Thus,
we view our algorithms in this section mainly as theoretical proofs of principle, i.e. that
certain (constant) approximations can be computed in polynomial time, but it would be
very desirable and important to improve both the constants and the time.

5 Conclusion

We investigated the problem of computing a minimum set of solutions for a multiobjec-
tive optimization problem that represents approximately the whole Pareto curve within
a desired accuracy ε. We developed tight approximation algorithms for the bi-objective
shortest path problem, spanning tree, and a host of other bi-objective problems. Our
algorithms compute efficiently an approximate Pareto set that contains at most twice as
many solutions as the minimum one; furthermore improving on the factor 2 for these
specific problems is NP-Hard. The algorithm works in general for all bi-objective prob-
lems for which we have a routine for the Restricted problem of approximating one
objective subject to a (hard) bound on the other. The algorithm calls this Restricted
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routine and a dual one as black boxes and makes quite effective use of them: for every
instance, the number of calls is linear (at most 4 times) in the number of points in the
optimal solution for that instance.

We presented also results for three and more objectives, both for the problem of
computing an optimal ε-Pareto set and for the dual problem of selecting a specified
number k of points that provide the best approximation of the full Pareto curve. As we
indicated at the end of the last section, there is still a lot of room for improvement both
in the time complexity and the constants of the approximations achieved. We would
like especially to resolve Conjecture 2, hopefully positively. It would be great to have a
general efficient method for any (small) fixed number d of objectives that computes for
every instance a succinct approximate Pareto set with small constant loss in accuracy
and in the number of points, and do it in time proportional to the number of computed
points, i.e., the optimal approximate Pareto set for the instance in hand.
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Abstract. This paper discusses two advancements in the theory of de-
signing truthful randomized mechanisms.

Our first contribution is a new framework for developing truthful ran-
domized mechanisms. The framework enables the construction of mech-
anisms with polynomially small failure probability. This is in contrast to
previous mechanisms that fail with constant probability. Another appeal-
ing feature of the new framework is that bidding truthfully is a strongly
dominant strategy. The power of the framework is demonstrated by an
O(

√
m)-mechanism for combinatorial auctions that succeeds with prob-

ability 1 − O( log m√
m

).

The other major result of this paper is an O(log m log log m) random-
ized truthful mechanism for combinatorial auction with subadditive
bidders. The best previously-known truthful mechanism for this setting
guaranteed an approximation ratio of O(

√
m). En route, the new mech-

anism also provides the best approximation ratio for combinatorial auc-
tions with submodular bidders currently achieved by truthful mechanisms.

1 Introduction

1.1 Background

The field of Algorithmic Mechanism Design [14] has received much attention in
recent years. The main goal of research in this field is to design efficient algo-
rithms for computationally-hard problems, in a way that handles the strategic
behavior of the participants. In particular, we are interested in mechanisms that
are truthful, i.e., where the dominant strategy of each bidder is to report his
true preferences1. For a recent excellent introduction to the basics of mechanism
design the reader is referred to [13].

Arguably the most important problem in algorithmic mechanism design is
the design of truthful efficient mechanisms for combinatorial auctions. In a
combinatorial auction we have n bidders and a set M of items, |M | = m.
Each bidder i has a valuation function vi. The common assumptions are that
each valuation function is normalized (vi(∅) = 0) and monotone (for every
1 One could also consider algorithms that lead to another arbitrary equilibrium, but

the revelation principle tells us that the restriction to truthful mechanisms is essen-
tially without loss of generality.
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S ⊆ T ⊆ M, vi(T ) ≥ vi(S)). The goal is to find a partition S1, ..., Sn of the
items, such that the total social welfare, Σivi(Si), is maximized. Notice that a
naive representation of each valuation function requires exponential number of
bits in n and m, the parameters we require our algorithms to be polynomial in.
This paper therefore assumes that the valuations are represented as black boxes
which can answer a specific natural type of queries, demand queries2.

Combinatorial auctions demonstrate the clash between the computational and
economic aspects that stands in the heart of algorithmic mechanism design:
on one hand, obtaining a truthful mechanism is easy, ignoring computational
limitations: find the optimal solution and use VCG payments, probably the main
technique of mechanism design. Unfortunately, combinatorial auctions are hard
to exactly solve and even to approximate: in the general case, an approximation
ratio of m

1
2−ε cannot be obtained in polynomial time, for any constant ε > 0

[12]. It is known that in general using VCG together with an approximation
algorithm (in contrast to the optimal algorithm) does not result in a truthful
mechanism [15], hence other techniques are required.

Recently, a series of papers [10,3,4] used randomization to construct truthful
mechanisms with good approximation ratios. Referring to randomization seems
necessary, as we have some evidence that deterministic mechanisms do not have
much power [9,1]. Two types of randomized mechanisms were considered: mech-
anisms that are truthful in expectation, and mechanisms that are truthful in
the universal sense. Mechanisms that are truthful in expectation are truthful
only with respect to bidders that maximize their expected utility (risk-neutral
bidders), and do not know the outcome of the random coin flips. Mechanisms
that are truthful in the universal sense are stronger, as they are truthful for
every type of bidders, and even if the outcome of the random coins is known in
advance. For a more thorough discussion of the differences the reader is referred
to [3]; This paper considers only mechanisms that are truthful in the universal
sense.

1.2 Our Results

An Improved Framework for Designing Truthful Mechanisms. In [3] a
general framework for designing truthful mechanisms was presented. The frame-
work uses random-sampling methods (introduced in [6]), and was quite successful
in enabling the design of mechanisms that provide good approximation ratios
and are truthful in the universal sense (rather than mechanisms that are truth-
ful in expectation [10,4]). However, the framework of [3] suffers from two major
drawbacks:

– The probability of success: In general, given a randomized mechanism,
running the mechanism again (in order to increase the success probability)
makes the mechanism no longer truthful. Thus, the main goal of the frame-
work of [3] was to achieve good approximation ratios with high probability.

2 In a demand query the bidder is presented with a price of pj for each item, and the
answer is the bundle that maximizes the profit, v(S) − Σj∈Spj .
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Unfortunately, this was achieved by trading success probability with approx-
imation ratio. For example, in its application to combinatorial auction with
general bidders, the framework provided an approximation ratio of O(

√
m
ε3 )

with probability 1− ε, for any ε > 0. In particular, this means that in order
to obtain a probability of success that is better than a constant, we have
to compromise on a non-optimal approximation guarantee (by more than a
constant factor).

– The motivation of bidders to participate: The framework of [3] uses
a randomly selected group of bidders that cannot win any items at all. Yet,
bidders in it are still required to provide information about their valuations.
In other words, bidding truthfully is only a weakly dominant strategy for
these bidders, as their utility will always be 0 regardless of the information
they provide.

One contribution of the current paper is an improved framework that over-
comes both limitations. The improved framework enables the design of mech-
anisms that provide good approximation ratios with high probability, without
compromising on the approximation ratio. In addition, for every outcome of the
random coins bidding truthfully can sometime strictly improve the utility of each
bidder. The main application of the improved framework is the following theo-
rem, that guarantees the optimal approximation ratio possible for combinatorial
auctions with general bidders with high success probability:

Theorem: There exists a truthful randomized O(
√
m)-approximation mecha-

nism for combinatorial auctions with general bidders. The approximation ratio is
achieved with probability of at least 1−O( logm√

m
). Bidding truthfully is a strongly

dominant strategy of each bidder.

The analysis of the framework of [3] was quite straightforward. The improved
framework presented in this paper is more involved, and its analysis requires
some effort.

A Mechanism for Combinatorial Auctions with Subadditive Bidders.
Another line of research that has gained popularity recently is determining the
approximation ratios possible when the bidders’ valuations are restricted (e.g.,
[11,2,4,5,8]). Most of the research concentrated in the case when the bidders’
valuations are known to be either subadditive (for every S, T ⊆M , v(S)+v(T ) ≥
v(S∪T )) or submodular (for every S, T ⊆M , v(S)+v(T ) ≥ v(S∪T )+v(S∩T )).
Between these two classes lies the syntactic class of XOS valuations (see [3] for
a definition), that strictly contains the class of submodular valuations, but is
strictly contained in the class of subadditive valuations.

In [3] another application of the framework is presented, an O( log2m
ε3 )

mechanism for combinatorial auctions with XOS bidders that succeeds with
probability of 1 − ε. The improved framework presented in this paper can be
applied to construct an O(log2m) mechanism for the same setting that succeeds
with probability 1 − O( 1

logm ). Yet, for the case of combinatorial auctions with
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subadditive bidders, the best mechanism until now guaranteed an approxima-
tion ratio of only O(

√
m) [2]. Feige [4] presents an O( logm

log logm )-mechanism that
is truthful in expectation for this case3. Ignoring incentives issues, a ratio of 2
can be achieved [4].

This paper presents the first truthful mechanism that provides a poly-
logarithmic approximation ratio for combinatorial auctions with subadditive bid-
ders. En route, this mechanism also improves upon the best mechanism known
for combinatorial auctions with submodular bidders [3]. Another important im-
provement over [3] is this paper’s mechanism uses the simple and natural demand
queries, and not, as in [3], the syntactically defined XOS queries.

Theorem: There exists a truthful O(logm log logm)-mechanism for combi-
natorial auctions with subadditive bidders, that succeeds with probability of
1−O( 1

logm ).

We point out that unlike the improved framework that this paper describes,
where our main contribution is game-theoretic, the main improvement of the
mechanism for subadditive bidders is of algorithmic nature: we define a new
combinatorial property of valuation functions, namely, α-supporting prices, and
show that if a class of valuations exhibit this property, then we can essentially de-
rive an O(α)-approximation algorithm. Finally, we prove that every subadditive
valuation has an O(logm)-supporting prices, and show how to use the frame-
work to derive a truthful mechanism that achieves almost this approximation
ratio.

1.3 Open Questions

The main question we leave open is to determine the exact approximation ratio
that truthful mechanisms can guarantee for combinatorial auctions with subad-
ditive bidders. Obtaining mechanisms with constant approximation ratios is of
particular interest. It will be also very interesting to understand the power of
randomization; For example, for combinatorial auctions with general valuations
this paper presents an optimal O(

√
m)-randomized mechanism. Yet, the best

deterministic mechanism achieves a ratio of O( m√
logm

) [7]. For combinatorial
auctions with subadditive bidders, the gap is also large: the best deterministic
mechanism achieves a ratio of O(

√
m) [2], while the best randomized mechanism

is this paper’s O(logm log logm) mechanism. A recent result [1] suggests that
this gap cannot be bridged, at least with the current techniques.

A second open question is to develop mechanisms that fail not only with poly-
nomially small probability, but with exponentially small probability, as common
in traditional algorithm design. This seems beyond the power of the frame-
work, and any other random-sampling based techniques, due to the need to
“gather statistics”, which fails with polynomially small probability. Developing
such mechanisms seems very challenging.
3 In fact the mechanism of [4] uses an even weaker notion than truthfulness in expec-

tation, as truthfulness maximizes the expected utility only approximately.
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2 An Improved Framework for Truthful Mechanisms

The new framework presented in this section uses two types of auctions as sub-
routines: a second-price auction with non-anonymous reserve prices, and a fixed
price auction.

A second-price auction with non-anonymous reserve prices is a variation of the
well-known second-price auction. Here each bidder is presented with a (different)
reserve price. If the winner (the bidder with the highest bid) bids above his
reserve price, he wins the item and pays the maximum price of the second-
highest bid and his reserve price. If the winner bids below his reserve price, then
he pays nothing and the item is not allocated. The auction is truthful if each
bidder’s reserve price is independent of his bid.

In a fixed-price auction with price p the bidders are ordered arbitrarily, and
we assign the first bidder his most demanded set when the price of each item
is p. Then, we assign the second bidder his most demanded set from the set of
remaining items (the items that were not allocated to the first bidder), again,
when the price of each remaining item is p and so on. If p does not depend on
the valuations of the bidders, then a fixed-price auction is truthful.

Let us now present the framework itself. To create a specific mechanism, we
have to specify four parameters. These parameters are marked in bold.

The Framework

1. Add each bidder to exactly one of the following groups of bidders: with
probability 1

2 to STAT, and with probability 1
2 to FIXED.

2. For each set of bidders S, we denote by OPTS an estimation of the
optimal solution with the participation of bidders in S only.

3. Conduct a second-price auction with non-anonymous reserve prices for sell-
ing the bundle of all items with the participation of bidders in STAT only.
Set the reserve price of the ith bidder that is in STAT to be OPTSTAT \{i}

α ,
for some α.
If there was a winner in the second-price auction, continue to Case 1, other-
wise continue to Case 2.
Case 1: There was a winner.

4. Conduct a second-price auction with non-anonymous reserve prices for sell-
ing the bundle of all items with the participation of all bidders. Set the
reserve price of each bidder i ∈ STAT to OPTST AT \{i}

α . Set the reserve price
of each bidder i ∈ FIXED to 0. Let w be the winning bidder. Assign w
the bundle of all items, and let w pay max(maxw �=i∈N vi(M), rw), where rw
denotes the reserve price of bidder w. Finish the mechanism.
Case 2: There was no winner.

5. Use the bidders in STAT to calculate a price per item of p to be used
in a fixed-price auction among the bidders in FIXED. Conduct a fixed-price
auction with this price. Let Si denote the bundle bidder i is assigned in this
auction.



94 S. Dobzinski

6. Select, uniformly at random, a price r from the set [OPTSTAT

α , OPTSTAT

α , . . . ,
OPTSTAT

β ], for some β. Conduct a second-price auction with a reserve price
of r for selling the bundle of all items among the bidders of FIXED. Let j
denote the winner in auction (if one exists). If there are at least two bids
above r, allocate the bundle to the bidder with the highest bid, let him pay
the second-most highest bid, and finish the mechanism. Otherwise, continue
to the next step.

7. If there is no bid above r, then assign each bidder i the bundle Si and let
him pay |Si| · p. If there is exactly one bid above r, let this bidder j choose
his maximum-profit allocation of the following two, and assign accordingly:
– Assign bidder j all items, and let him pay r.
– Assign bidder j the bundle Sj and let him pay |Sj | · p. Assign the rest

of the bidders no items at all.

We will first see that mechanisms constructed using the framework are truth-
ful. As an application, we will see an improved mechanism for combinatorial
auctions with general bidders.

Theorem 1. Mechanisms constructed using the framework are truthful. More-
over, for each bidder i bidding truthfully is a strongly dominant strategy.

Proof. We first prove that the (strongly) dominant strategy of each bidder in
STAT is to bid truthfully. Then, we show that this is true for bidders in FIXED
too.

Look at some bidder in STAT. This bidder can only win the bundle of all items,
by participating a second-price auction with non-anonymous reserve prices. Ob-
serve that the reserve price does not depend on the declaration of the bidder.
Clearly, such an auction is truthful, hence the truthfulness of the mechanism
with respect to bidders in STAT. Also observe that for every input there is a
declaration that makes the bidder win and gain a positive utility, thus truthfully
reporting his valuation is a strongly dominant strategy.

We now handle bidders in FIXED. If there is a winner in the second-price
auction, then bidders in FIXED essentially participate in a second-price auction,
which is truthful. Otherwise, there was no winner in the second-price auction.
Observe that if the value of all items for some bidder is below r, then, indepen-
dently of his declaration, he either wins some items via the fixed-price auction,
that is truthful, or does not win any items at all. If his value of all items is above
r and there is another bidder with a value above r, then this bidder participates
in a second-price auction which is truthful. Finally, if this bidder is the only one
that bids above r then he chooses between getting the bundle of all items with
a price of r, or getting the bundle he won in the fixed-price auction in the cor-
responding price. In particular, he cannot be hurt by declaring above r. Notice
that in any case no other bidder gets any items at all, thus all other bidders have
no incentive to bid untruthfully in the fixed-price auction4. ��
4 Interestingly enough, in this case even if the other bidders do lie regarding their

preferences in the fixed-price auction, this will not hurt the approximation ratio!
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We do note that in the two applications of the framework presented in the
paper we use iterative methods to compute an estimation of the optimal so-
lution (namely, solving the corresponding linear program). Thus it might be
the case that a bidder will have no incentive to truthfully answer some queries
(but will have no incentive to answer untruthfully too). This problem do not
arise if the valuations can be succinctly described, or in any other situation
where the estimation of the optimal solution can be done in a non-iterative
way.

2.1 The Solution Concept: Dominant Strategies vs. Ex-Post Nash

It is well known in the economic literature that in iterative mechanisms the
revelation principle do not hold anymore and the solution concept becomes ex-
post Nash5. Consider an iterative variant of a second-price auction where the
first bidder bids, and the second bidder bids after him. If the strategy of the
first bidder is: “if the first bidder bids 5 then I bid 3, otherwise I bid 4”, then
bidding truthfully is no longer a dominant strategy of the first bidder. As this
example demonstrate, in order to prove that in an iterative mechanism is bidding
truthfully is a dominant strategy, we have to make sure, roughly speaking, that
bidders do not get “extra information” from the previous rounds (i.e., the bid of
the first player in the example). See, e.g., [10] for a discussion. Fortunately, this
is not the case with mechanisms constructed using the framework, but showing
it is subtle. Let us now explicitly explain why bidding truthfully is a dominant
strategy in mechanisms constructed using the framework. We will have to be
careful about the implementation details, though.

In the first stage, we ask each bidder i to declare vi(M). We hide bidder i’s
bid from the rest of the bidders. After determining the winner, we use the rest
of the bidders in STAT to calculate the winner’s reserve price. The crucial point
is that the only new information that bidders in STAT gained is the identity of
the bidder. Thus, the only way the winner’s bid can influence this calculation is
by bidding lower and losing, but then the winner’s profit can only decrease to
zero.

If the winner bids above his reserve price, we use the bids of the bidders
in FIXED to determine the identity of the bidder that will be allocated the
bundle of all items. Otherwise, we calculate, using bidders in STAT, the price
per item p for the fixed price auction (again, the bids of the bidders in FIXED
are hidden from bidders in STAT), and perform the fixed price auction. We now
allocate the items to bidders in FIXED according to the framework. Notice that
when the bidders participate in the fixed-price auction, they do not know the
bids on the bundle of all items, and thus they are not influenced by these bids.
The mechanism now have all the information it needs to decide the resulting
allocation.

5 In an ex-post Nash equilibrium bidding truthfully is a (weakly) dominant strategy
of each bidder if all other bidders bid truthfully.



96 S. Dobzinski

2.2 Combinatorial Auctions with General Bidders

We now present the main application of the improved framework, an O(
√
m)

approximation mechanism that succeeds with probability 1−O( logm√
m

). To make
the mechanism concrete, we need to specify four parameters:

– The value of α: we let α = 100
√
m.

– The value of β: we let β = 100 logm.
– The value of p: we let the price per item in the fixed-price auction to be
p = OPTSTAT

100m .
– The way we estimate the optimal solution restricted to a set of

bidders: we use the value of the optimal fractional allocation (details in
the full version).

Let us start the proof of the approximation ratio, and in the same time provide
some intuition regarding the framework. Some notation first: we denote by OPT ∗

S

the optimal fractional solution with the participation of bidders in S only. Bidder
i is called a dominant bidder if vi(M) ≥ OPT∗

√
m

, and super dominant if vi(M) ≥
OPT∗

10 logm . The analysis involves considering three different cases; the first two
are similar in all mechanisms developed using the framework, while the third
one is much more algorithmically challenging. The main difficulty (but not the
only one) in this case is to show that a fixed-price auction provides a good
approximation ratio. See the mechanism for subadditive bidders for a much
more complicated example than the one presented in this section.

Case 1: There is a Super-Dominant Bidder. We first prove that if there
is at least one super-dominant bidder then the mechanism always ends with a
good approximation ratio. There are two possibilities: there might be a super-
dominant bidder in STAT, or all super-dominant bidders are in FIXED. In the
first case we observe that the reserve price offered to each of the bidders is at most
OPT∗

100
√
m

, since OPT ∗
S ≤ OPT ∗ for any set S. Thus, there must be a winner in the

second-price auction. Allocating the bundle of all item to the bidder that values
it the most, which must be a super-dominant bidder, is a good approximation
to the optimal welfare, as required.

Assume that all super-dominant bidders are in FIXED. If there was a winner
in the second-price auction of Step 4, then all bidders essentially participate
in a second-price auction. As in the previous case, we are guaranteed to get a
good approximation ratio. If there was no winner, then the analysis is divided
into cases once again, depending on the number of super-dominant bidders.
If there are at least two super-dominant bidders, we will have a second-price
auction for selling the bundle of all items, and we are guaranteed to get a good
approximation. The case where there is exactly one super-dominant bidder is
a bit more tricky. This super-dominant bidder i has to choose between getting
the bundle of all items with a price of r, or getting the bundle Si he won in the
fixed-price and pay |Si| · p. If i takes M we get a good approximation ratio. If i
takes the bundle Si, observe that the profit of this bidder from taking M is at
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least vi(M)−r ≥ OPT∗

10 logm−
OPT∗

100 logm ≥
OPT∗

2 logm , thus the profit from taking Si must
be bigger, and in particular vi(Si) ≥ OPT∗

2 logm , which gives a good approximation
ratio even if i takes Si.

Case 2: Many Dominant Bidders. If there are more than logm dominant
bidders, then with probability of at least 1− 1

2log m = 1− 1
m at least one dominant

bidder will be in STAT, since each bidder is selected to STAT with a probability
of 1

2 . If this happens, then using similar arguments to the previous claim, we are
guaranteed that the bundle of all items will be sold to some dominant bidder.
Thus, we get a good approximation ratio with high probability.

Case 3: A Few Dominant Bidders. The last case we need to handle is the
case where there are at most logm dominant bidders, and no super-dominant
bidders. For most mechanisms developed using the framework this is the non-
standard part that requires a deeper combinatorial understanding of the prob-
lem. For the mechanism presented in this section, we borrow ideas from [3]. The
second mechanism we present (for subadditive valuations) requires much more
effort to handle this third case.

First notice that dominant bidders contribute together a value of at most
OPT∗

10 logm · logm = OPT∗

10 to the optimal welfare. Let ND be the set of bidders that
are not dominant. Clearly, OPT ∗

ND ≥ 9OPT∗

10 . The proof of the next lemma can
be found in the full version of this paper:

Lemma 1. With probability of at least O( 1√
m

), we have that both events hold

together: OPT ∗
ND∩STAT ≥ OPT∗

8 , and OPT ∗
ND∩FIXED ≥ OPT∗

8 .

With probability of at most O( 1√
m

) the conclusion of the lemma does not hold,
and we assume that the approximation ratio is 0. Otherwise, if there was a
winner in the second-price auction of Step 4, we get a good approximation ratio,
since the reserve price is at least OPT∗

400
√
m

. If there was no winner, and there are at
least two bidders that value the bundle of all items above r, we also get a good
approximation since one of them will get the bundle, and r ≥ Ω(OPT

∗
√
m

). The
next lemma handles the case where no bidder bids above r (see the full version
for a proof):

Lemma 2. Let A = FIXED ∩ND. Then, a fixed-price auction with the par-
ticipation of bidders in FIXED with a price per item p = OPT∗

A

c·m , for some c > 2,
returns an allocation that has a value of O(OPT

∗
A

c
√
m

).

We have to handle an additional single case where there is only one bidder i that
bids above r. Our concern is that the profit from taking M , vi(M)−r, is smaller
than OPT

100
√
m

, and the profit from taking the bundle Si that i won in the fixed-
price auction is larger, but vi(Si) is low. We will see that this case occurs with
very small probability. First, observe that this problem does not arise for the
next (if possible) value of r, r′ = r + OPT

100
√
m

, since vi(M) < r′. Also notice that
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for smaller values of r, like r′′ = r − OPT
100

√
m

, we have that vi(M)− r′ > OPT
100

√
m

.
Thus, if bidder i chooses to take Si in this case, it holds that vi(Si) ≥ OPT

100
√
m

.
(For smaller values we may have more than one bidder that bids above r′, but
this is a “good” case, similarly to before.) We conclude that there exists at
most one value of r that gives a bad approximation ratio. However, there are
O(

√
m

logm ) possible values, and we choose one uniformly at random. Hence, we are
not guaranteed to get a good approximation ratio with probability of at most
O( logm√

m
). In conclusion, we have the following theorem:

Theorem 2. There exists an O(
√
m)-approximation mechanism for combina-

torial auction with general bidders that succeeds with probability 1−O( logm√
m

)

3 A Truthful Mechanism for Subadditive Valuations

This section introduces a new truthful mechanism for combinatorial auctions
with subadditive bidders. The mechanism uses the framework of the previous
section. However, the main novelty of the mechanism is combinatorial: roughly
speaking, we prove that for every subadditive valuation and bundle S, one can
set a price for each item such that every subset of S is profitable in these prices,
yet the sum of prices is high (comparing to the value of S). We use this property
to show that if all valuations are subadditive, then a fixed-price auction, with a
well-chosen price per item, returns an allocation that is a good approximation
to the optimal welfare. This will enable the construction of the mechanism.

3.1 On A Combinatorial Property of Subadditive Valuations

Definition 1. A vector of non-negative prices −→p = (p1, ..., pm) α-supports a
set of items S in a valuation v if the following two conditions hold together:

– S is strongly profitable: for every T ⊆ S we have that v(T ) ≥ Σj∈T pj.
– The prices are high: Σj∈Spj ≥ v(S)

α .

In [2] it is proved that the class of XOS valuations is exactly the class of valuations
for which every subset of items has 1-supporting prices. The main combinatorial
property we prove is that if v is subadditive, then for every set of items S there
are O(logm)-supporting prices.

Lemma 3. Let v be a subadditive valuation. Then, for every S ⊆M there exists
a vector −→p that logm

2e -supports it. Furthermore, the price of each item is either
0 or p, for some p > 0. These prices can be found by using polynomially many
demand queries.

Proof. The lemma will be proved by constructing a series of sets S = S0 ⊇ S1 ⊇
· · · ⊇ Sk = T . Each set Si is defined to be the most demanded set when the
price of each item j ∈ Si−1 is v(Si−1)

|Si−1| logm , and the price of the rest of the items
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is ∞ (that is, Si is the answer to the demand query with these prices). The
construction stops at the first step k where |Sk| ≥ |Sk−1|

2 . Clearly, k ≤ logm.
Let us first prove that v(T ) ≥ v(S)

e . Denote by pij the price of item j in
the i’th demand query. In each step i we have that Σj∈Si−1p

i
j ≤

v(Si−1)
logm . Thus

the profit from the set Si−1 in prices {pij}j is at least v(Si−1)(1 − 1
logm ). The

most demanded set Si must be at least as profitable, hence at least as valuable:
v(Si) ≥ v(Si−1)(1 − 1

logm ). After k ≤ logm steps we have that v(T ) = v(Sk) ≥
v(S)(1 − 1

logm )logm ≥ v(S)
e .

We now prove that T is strongly profitable in prices {pij}j .

Proposition 1. Let v be a subadditive valuation. Let S be the most demanded
set (the most profitable set) when the price of each item j is pj. Then S is
strongly profitable in these prices.

Proof. We use the following fact: for each two subsets, S and T , S ⊆ T , and a
subadditive valuation v, we have that v(S) ≥ v(T )−v(T \S). In other words, the
value of S is at least as large as the marginal value of S given T . Given this fact,
assume, for a contradiction, that the most demanded set T in prices (p1, ..., pm)
in v is not strongly profitable. Thus, there exists a set S ⊆ T such that v(S) <
Σj∈Spj . But then it follows by the fact that v(T \S)−Σj∈T\Spj > v(T )−Σj∈T pj ,
a contradiction to our assumption that S is the most demanded set.

All that is left is to prove the correctness of the fact. Since v is subadditive
we have that v(S) + v(T \ S) ≥ v(T ). By subtracting v(T \ S) from both sides
of the equation, we get v(S) ≥ v(T )− v(T \ S), as needed. ��

To finish the lemma, we explicitly describe the logm
2e -supporting prices of S:

we set the price of each item j ∈ T to pkj , and the price of each item j /∈ T
to 0. ��

It will be interesting to determine if subadditive valuations exhibit c-supporting
prices for every bundle, for some constant c. The following example rules out
the possibility that c < 2: let the set of items M consist of m homogeneous
items. The subadditive valuation v is defined as follows: v(M) = 2, and v(S)=1,
for all S �= M . We will show that M does not have 2-supporting prices. By
the definition of a strongly profitable set for each set S, |S| = m − 1, we have
that Σj∈Spj ≤ 1. Thus there must exist some item j′ with pj ≤ 1

m−1 . But then
Σj∈Mpj = Σj∈M\{j′}pj + pj′ ≤ 1 + 1

m−1 , while v(M) = 2.
Towards developing the mechanism itself, we require a generalization of the

α-supporting prices property:

Definition 2. Let v1, ..., vn be subadditive valuations, and let A = (S1, ..., Sn) be
an allocation. Let −→p be a vector of non-negative prices. We say the −→p α-supports
an allocation A if both the following conditions hold:

– For each i, and for each T ⊆ Ti we have that vi(T ) ≥ Σj∈T pj.
– Σivi(Si) ≥ Σjpj

α
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We will say that −→p supports A if the second condition does not necessarily hold.

We will sometime abuse the notation and say that an allocation A is
α-supported by a price p if there exists a vector −→p ∈ {0, p}m that α-supports an
allocation A.

Lemma 4. Let A = (S1, ..., Sn) be an allocation. If all valuations are subaddi-
tive, then there exists a vector of non-negative prices −→p ∈ {0, p}m that logm

2e -
supports A. These prices can be found using polynomially many demand queries.

The proof is easy given Lemma 3, and can be found in the full version of this
paper. The next lemma turns this combinatorial property into an algorithmic
result:

Lemma 5. Let A = (S1, ..., Sn) be an allocation, and let −→p ∈ {0, p}m support
it, where p > 0. If all valuations are subadditive, then a fixed-price auction with
a price of p

2 returns an allocation that has a value of Ω(ΣiΣj∈Sipj).

Proof. Let (ALG1, ..., ALGn) be the allocation produced by the fixed-price auc-
tion. Let LBi denote the sum of prices of items held in A by bidders i+ 1, ..., n
immediately after bidder i is queried and allocated a set of items in the fixed-
price auction. I.e., LBi = Σn

t=i+1Σj∈St\(∪i
t=1ALGt)pj. Let LB0 = Ω(ΣiΣj∈Sipj).

To prove the lemma it suffices to show that for every i ≥ 1, vi(ALGi) =
Ω(LBi−1 − LBi). We can therefore assume that for all i and each item j ∈ Si,
pj = p (otherwise we remove each item j with pj = 0 from the Si’s).

Observe that LBi−1−LBi is the sum of two terms: the sum of prices of items in
Si that are available but were not allocated to bidder i (i.e., Σj∈Si\(∪i

t=1ALGt)pj),
and the sum of prices of items allocated in the fixed-price auction to bidder i
but belong to bidders i+ 1, .., n in (S1, ..., Sn) (i.e., Σj∈ALGi∩(∪n

t=i+1St)pj).
To bound the first term, let T = Si \∪it=1ALGt. Notice that T ⊆ Si and Si is

strongly profitable in a price of p per item (recall that (S1, ..., Sn) is supported
by −→p ). Hence, if the price of each item is p, then the profit from T is at least
v(T )

2 . We get that the profit from the most demanded set in a price of p per item,
ALGi, is at least v(T )

2 . However, ALGi is the most demanded set, so it must be
at least as profitable, and in particular vi(ALGi) ≥ v(T )

2 .
As for the second term, for any set U ∈ ALGi, by Proposition 1 we have that

v(U) ≥ Σj∈Upj/2. In particular, the last inequality is true for ALGi∩(∪nt=i+1St).
The lemma follows. ��

As evident from the last two lemmas, for every allocation there exists a price p
such that a fixed-price auction with a price of p per item returns an allocation
that is an O(logm) approximation to the welfare of the allocation.

3.2 The O(log m log log m)-Truthful Mechanism for Subadditive
Valuations

Let us now specify the four parameters of the framework needed for the mech-
anism: let α = 500 logm log logm, and β = 100 log logm. To estimate the value
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of the optimal solution restricted to a set of bidders we use the 2-approximation
algorithm of Feige [4]. To find the price to be used in the fixed-price auction, we
obtain an allocation A that is a 2 approximation to OPTSTAT [4]. We then find
a vector {0, p}m that O(logm)-supports A (Lemma 4), and let p be the price
used in the fixed-price auction.

A bidder i is called super dominant if vi(M) ≥ OPT
100 log logm , and dominant

if vi(M) ≥ OPT
500 logm log logm . As in the mechanism for general bidders, if there

is a super-dominant bidder, then the mechanism will surely end with a good
approximation ratio. If there are more than log logm dominant bidders, then
with probability 1

logm one of them will be selected to the STAT group, and we
are guaranteed to get a good approximation in this case too.

As usual, the hard case is when there are at most log logm dominant bidders,
and no super-dominant bidders. The main effort is to show that we can get a good
price p for the fixed-price auction using bidders in STAT. Observe that in this
case dominant bidders contribute a value of at most log logm· OPT

100 log logm = OPT
100 .

Hence we have that OPTND ≥ 99OPT
100 , where ND is the set of bidders that are

not dominant. The next lemma proves that if there is an price that O(logm)-
supports an allocation with a good value, then this price also supports an alloca-
tion with a good value restricted to bidders in FIXED (proof in the full version):

Lemma 6. Let A = (A1, ..., An) be an allocation where Σivi(Ai) ≥ OPT
t .

Let p be a price that 10 logm-supports it6. Let S be a set of bidders where
each bidder is selected independently at random to A with probability 1

2 . If
vi(M) ≤ OPT

500·t·logm log logm then, with probability 1− 1
log1.5m , there is an allocation

B restricted to bidders in S only, where p supports B, and Σi|Bi| · p ≥ OPT
2·t logm .

By itself the lemma is not enough to finish this case: the allocation A from the
lemma involves all bidders, while we only have information regarding allocations
to bidders in STAT. Moreover, we do not know a-priori the price p from the
lemma, and the conclusion of the lemma must hold for each one of the many
possibilities. To this end, observe that only prices that are larger than OPT

500m logm

can O(logm) support an allocation with a good value, since otherwise the sum
of prices of the supported allocation (S1, ..., Sn) is not high enough: Σi|Si| ·
p ≤ m · p ≤ OPT

500 logm . We therefore restrict our attention to the set of prices
P = { OPT

1000 logm ,
OPT

500 logm ,
OPT

250 logm , · · · }. Observe that |P | = O(logm).
We claim that with probability of at least 1 − O( 1

logm ) the following con-
ditions hold together (again, otherwise we assume the algorithm provides an
approximation ratio of 0):

1. OPTSTAT ≥ OPT/8.
2. OPTFIXED ≥ OPT/8.
3. For each price p ∈ P , if there is an allocation that hold a constant fraction

of the welfare, and is O(logm)-supported by p, then there is an allocation
to bidders in FIXED that holds a constant fraction of the welfare and is
O(logm)-supported by p.

6 Notice that the existence of such a price is guaranteed by Lemma 4.
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In the full version of the paper we show that the first two conditions do not
hold with probability of O( 1

logm ). The third condition alone does not hold with
probability of at most O( 1

log2m
), as there are O(logm) “sub-conditions”, one

for each price, each sub-condition does not hold with probability of at most
O( 1

log2m
) (by Lemma 6). The claim follows by using the union bound.

With high probability and by the first condition, if there was a winner in the
second-price auction, then we get a good approximation ratio. Next we assume
that there was no winner in the second-price auction.

Recall that bidders in FIXED face a randomly selected price r. As in the
previous mechanism, if two bidders bid above r then we get a good approximation
ratio. The problematic case is when there is one bidder that bids above r and
chooses to take the bundle he won in the fixed-price auction. Again, there is
exactly one value of r that causes this. We choose a value of r uniformly at
random from a set of O(logm) possible values, hence the mechanism fails to
provide a good approximation ratio in this case with probability O( 1

logm ).
We now claim that the price p thatO(logm)-supports the allocation to bidders

in STAT also supports some allocation with a good value restricted to bidders
in FIXED: an allocation with a good value restricted to bidders in STAT is also
an allocation with the same value to all bidders. This allocation is O(logm)-
supported by some price p ∈ P . By the third condition, there must be an al-
location with a good value to bidders in FIXED that is O(logm) supported by
this price. Finally, by Lemma 5 we get that the fixed-price auction returns an
allocation that is an O(logm)-approximation to the optimal welfare. We have
the following theorem:

Theorem 3. There exists a truthful randomized O(logm log logm) approxima-
tion mechanism for combinatorial auctions with subadditive bidders that obtains
this ratio with probability of at least 1−O( 1

logm ).
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Abstract. In metric asymmetric traveling salesperson problems the in-
put is a complete directed graph in which edge weights satisfy the triangle
inequality, and one is required to find a minimum weight walk that visits
all vertices. In the asymmetric traveling salesperson problem (ATSP) the
walk is required to be cyclic. In asymmetric traveling salesperson path
problem (ATSPP), the walk is required to start at vertex s and to end
at vertex t.

We improve the approximation ratio for ATSP from 4
3 log3 n �

0.84 log2 n to 2
3 log2 n. This improvement is based on a modification of

the algorithm of Kaplan et al [JACM 05] that achieved the previous best
approximation ratio. We also show a reduction from ATSPP to ATSP
that loses a factor of at most 2 + ε in the approximation ratio, where
ε > 0 can be chosen to be arbitrarily small, and the running time of the
reduction is polynomial for every fixed ε. Combined with our improved
approximation ratio for ATSP, this establishes an approximation ratio
of ( 4

3 + ε) log2 n for ATSPP, improving over the previous best ratio of
4 loge n � 2.76 log2 n of Chekuri and Pal [Approx 2006].

1 Introduction

One of the most well studied NP-hard problems in combinatorial optimization
is the minimum Traveling Salesperson (TSP) problem [8]. The input to this
problem is a graph with edge weights, and the goal is to find a cyclic tour of
minimum weight that visits every vertex exactly once. In the symmetric version
of the problem, the graph is undirected, whereas in the asymmetric version the
graph is directed. In the metric version of the problem the input graph is a com-
plete graph (with anti-parallel edges in the directed case), and the edge weights
(denoted by w) satisfy the triangle inequality w(u, v)+w(v, w) ≥ w(u,w). (Most
often, not all edge distances are given explicitly, but rather they can be com-
puted efficiently. For example, they may be shortest path distances between
the given points in some input graph, or the distances between points in some
normed space.) In the non-metric version a cyclic tour might not exist at all,
� This work was done when the author was visiting Microsoft Research. Supported by

NSF Grant CCF-0430751.
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and deciding whether such a tour exists is NP-hard (being equivalent to Hamil-
tonicity). In the metric version of the problem a cyclic tour always exists, and
we shall be interested in polynomial time approximation algorithms that find
short cyclic tours. The performance measure of an algorithm is its approxima-
tion ratio, namely, the maximum (taken over all graphs) of the ratio between
the weight of the cyclic tour output by the algorithm (or the expected weight,
for randomized algorithms) and the weight of the shortest cyclic tour in the
given graph. Throughout, we use n to denote the number of vertices in the input
graph, and the approximation ratio is often expressed as a function of n.

In this paper we shall be dealing only with metric instances of TSP. In this
case, every tour that visits every vertex at least once can be converted into
one that visits every vertex exactly once (by skipping over redundant copies of
vertices), without increasing the weight of the tour. A cyclic tour that visits
every vertex at least once will simply be called a tour, and the TSP problem is
equivalent to that of finding the shortest tour.

For symmetric TSP, the well known algorithm of Christofides [6] achieves
an approximation ratio of 3/2. Despite much effort, no better approximation
algorithm is known, except for some special cases [1,2]. Considerable efforts have
been made to improve over the 3/2 approximation ratio using approaches based
on linear programming relaxations of TSP. Specifically, a linear programming
bound of Held and Karp [9] is conjectured to provide a 4/3 approximation ratio.
In terms of negative results, it is known that there is some (small) ε such that
symmetric TSP is NP-hard to approximate within a ratio of 1 + ε (see [13] for
explicit bounds on ε).

The asymmetric TSP (ATSP) problem includes the symmetric version as a
special case (when anti-parallel edges have the same weight), and hence, is no
easier to approximate. The known hardness of approximation results are of the
form 1+ ε, with a slightly larger ε than for the symmetric case (see [13]). There
are known examples for which the Held-Karp lower bound for ATSP is a factor
of 2 away from the true optimum [4] (whereas for symmetric TSP this lower
bound is at most a factor of 3/2 from the optimum [15,14]).

Frieze, Galbiati and Maffioli [7] designed an approximation algorithm for
ATSP with approximation ratio O(log n). Blaser [3] notes that the approxi-
mation ratio proved in [7] is precisely log2 n (with leading constant 1), and then
designs an algorithm for which he shows an approximation ratio of 0.999 log2 n.
Subsequently, Kaplan et al [10] designed an algorithm with approximation ra-
tio 4/3 log3 n � 0.842 log2 n (using a technique that they apply to other re-
lated problems as well). In this paper, we provide a modest improvement in the
leading constant of the approximation ratio. We show that the analysis of the
algorithm of Kaplan et al [10] is not tight and it achieves a better ratio of
0.79 log2 n. We then give an improved algorithm which returns a solution with ap-
proximation ratio of 2

3 log2 n. This result is summarized in the following
theorem.

Theorem 1. Given a complete directed graph G = (V,E) with a weight function
w satisfying triangle inequality, there exists a polynomial time algorithm which
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returns a Hamiltonian cycle of weight at most 2
3 log2 n ·OPT where OPT is the

weight of the minimum weight Hamiltonian cycle.

Another interesting variant of the ATSP problem is the asymmetric traveling
salesman path problem in which we are not required to find a Hamiltonian
cycle of minimum weight but a Hamiltonian path between two specified ver-
tices s and t. Lam and Newman [12] gave an O(

√
n)-approximation algorithm

to the problem. Chekuri and Pal [5] used the 2Hn-approximation algorithm
of Kleinberg and Williamson [11] for the ATSP problem in combination with
an augmentation lemma to obtain a 4Hn-approximation algorithm for the AT-
SPP problem. We show that ATSPP problem can be approximated nearly as
well as the ATSP problem by showing a general reduction which converts an
α-approximation algorithm for the ATSP problem into a (2+ε)α-approximation
algorithm for the ATSPP problem. This involves generalizing and strengthening
the augmentation lemma of [5] and using it to obtain a dynamic programming
based algorithm for the ATSPP problem which we show in the following result.

Theorem 2. Given a complete directed graph G = (V,E) with a weight function
w satisfying triangle inequality, vertices s and t and an α-approximation algo-
rithm to the ATSP problem, there exists an algorithm which returns a Hamilto-
nian path from s to t of weight at most (2 + ε)α ·OPT where OPT is the weight
of the minimum weight Hamiltonian path from s to t. The running time of the
algorithm is polynomial in the size of the graph for any fixed ε > 0.

Observe that it is trivial to obtain an α-approximation for the ATSP from an
α-approximation to ATSPP problem. The above theorem shows that both these
problems can be approximated to nearly the same factor. Along with the Theo-
rem 1 and Theorem 2, we have the following corollary.

Corollary 1. Given a complete directed graph G = (V,E) with a weight func-
tion w satisfying triangle inequality, vertices s and t and a fixed ε > 0, there
is a polynomial time algorithm which returns a Hamiltonian path from s to t of
weight at most (4

3 + ε) log2 n · OPT where OPT is the weight of the minimum
weight Hamiltonian path from s to t.

In Section 2 we prove Theorem 2 and in Section 3 we prove Theorem 1.

2 From ATSP to ATSPP

In this section we show that an α-approximation algorithmAlgTSP for the ATSP
problem with metric weights can be used to obtain a (2 + ε)α-approximation al-
gorithm for the ATSPP problem with metric weights.

First a few definitions. Given a graph G = (V,E) we call a (s, t)-walk in G
spanning if it visits every vertex of G at least once. Vertices and edges can appear
more than once on a walk. A tour is an (s, s)-walk which is spanning. Observe that
a tour is independent of vertex s. Given a directed path P and vertices u and v
on P such that v occurs after u on P , we denote P (u, v) to be the sub-path of P
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starting at u and ending at v. Given two paths P and Q, we say that Q respects
the ordering of P , if Q contains all vertices of P , and for every two vertices u and
v in P , u appears before v in Q iff u appears before v in P .

In an instance I = (G,w, s, t) of the ATSPP problem we are given a directed
graph G with a weight function w on edges which satisfies the triangle inequality
and the task is to find a minimum weight Hamiltonian path from s to t. In an
instance I = (G,w) of ATSP the task is to find a minimum weight Hamiltonian
cycle.

Observe that as the weights satisfy triangle inequality, any spanning (s, t)-
walk can be “shortcutted” to obtain a Hamiltonian path from s to t of no
greater weight, and every tour can be “shortcutted” into Hamiltonian Cycle
of no greater weight. Hence, it is enough to find a spanning (s, t)-walk for the
ATSPP problem and a tour for the ATSP problem.

2.1 Overview

Here we present an overview of our reduction from ATSPP to ATSP. For every
fixed ε > 0, this reduction works in polynomial time, and transforms a factor α
approximation algorithm for ATSP into a factor (2 + ε)α approximation for
ATSPP.

Let s denote the starting vertex and t denote the ending vertex for ATSPP,
and let OPT denote the weight of the minimum weight spanning path from s
to t. Assume for simplicity that the value of OPT is known. Without loss of
generality, we assume that for every pair of vertices (u, v) the graph contains an
edge (u, v) whose weight is the shortest distance from u to v.

Let d(t, s) denote the distance from t to s in the input graph (this distance
might be infinite). The difficult case is when OPT < d(t, s), and this is the
case that we will address in this overview. In the first phase of the reduction,
we modify the input graph as follows. We remove all edges entering s and all
edges exiting t, and put in an edge (t, s) of weight min[d(t, s), OPT ]. We update
the shortest path distance between all pairs of vertices not involving s and t to
reflect the existence of this new edge.

Observe that the new graph has a ATSP tour of weight at most 2OPT . In
the second stage we use the approximation ratio for ATSP to find a simple tour
(with no repeated vertices) of weight at most 2αOPT . Observe that in this tour
s follows immediately after t, because the only edge leading out of t leads into s.
Remove the edge (t, s) from the tour, which now becomes a spanning (s, t) path
of weight at most (2α− 1)OPT .

Unfortunately, we are not done at this point. The problem is that the weight
of an edge (u, v) of the path might be shorter than its corresponding weight in
the original graph, due to the fact that the shortest path distance between (u, v)
decreased when we added the edge (t, s). We replace every such problematic edge
(u, v) with the path u− t− s− v. Now the edge (t, s) reappears in our spanning
path. Since the edge (t, s) might have weight more than OPT in the original
graph, the spanning path that we have does not correspond to a spanning path
of the same weight in the original graph.



108 U. Feige and M. Singh

In the next phase of our reduction, we remove all copies of (t, s) from the
spanning path. This results in breaking the path into a collection of paths from
s to t, such that every vertex (other than s and t) appears on exactly one of
these paths. If the number of paths is r, then the sum of weights of all the paths
is at most (2α− r)OPT , because altogether we removed r copies of (t, s).

The last stage of our reduction uses the following structural lemma which
generalizes and strengthens the augmentation lemma of [5].

Lemma 1. For every collection of k paths P1, . . . , Pk between s and t such that
no vertex appears in more than one path (some vertices might not appear on any
of the paths), there is a single path between s and t that visits all vertices in
∪ki=1Pi, respects the order of each of the original paths, and weighs no more than
the weight of the original paths plus k times the weight of minimum ATSPP.

The proof of this lemma appears in section 2.3.
Having established the lemma, we can limit ourselves to finding an ATSPP

that respects the order of the vertices on the paths, and then get a (2α − r +
r)OPT = 2αOPT approximation ratio. Such a path can be found by dynamic
programming in time roughly nr. If r is constant, this results in a polynomial
time 2α approximation for ATSPP.

To make the algorithm polynomial also when r is not constant, we lose (1+ ε)
in the approximation ratio (the running time will be exponential in 1/ε). Rather
than merging all paths simultaneously, merge only k paths at a time, where
k = 1/ε. Doing so using dynamic programming takes time roughly nk, costs k
times OPT, and decreases the number of paths by k − 1.

Now, we expand on the overview given above. Before giving the algorithm
and proof of Theorem 2 we first prove the structural result in Lemma 1.

2.2 Proof of Lemma 1

Proof of Lemma 1: Let P denote the optimal ATSPP from s to t. We maintain
a path Q starting from s and prefix paths Qi of paths Pi with the property that
Q visits the vertices of ∪iQi and respects the order of each Qi. In each iteration
we will extend Q and at least one of Qi maintaining the above property. For
each path Pi, we maintain a vertex fronti which is the next vertex to be put in
order, that is, the successor of Qi in Pi. We maintain an invariant that all front
vertices, except possibly frontj , occurs on P (v, t) where v is the last vertex on
Q and frontj is the front of path Pj which contains v. We initialize Q = (s) and
Qj = (s) and frontj to be the second vertex in Pj for each j. The invariant is
trivially satisfied at initialization.

Now, we describe an iteration. Let v be the last vertex of Q and Pj be the
path containing v. Let u = fronti be the first vertex on path P (v, t) (sub-path
of P starting at v and ending at t) among all front vertices. First we assume
that i �= j and describe the updates. Let w be the last vertex on Pj which oc-
curs on P (s, u), i.e., each vertex occurring after w on Pj occurs after u on P . Now,
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extend Q← Q-Pj(v, w)-P (w, u). We update Qj = Qj-Pj(v, w), Qi = Qi-(u). We
also update frontj to be vertex succeeding w in Pj and fronti to be the vertex
succeeding old fronti in Pi. In this case we say that we jumped out of path Pj to
Pi using the sub-path P (w, u) of the optimal path P . Observe that last vertex of
Q is u. The front vertices of all paths, except for Pi and Pj , do not change and
each of them occur after u by the choice of u as the first front vertex on path
P (v, t). Hence, the invariant is satisfied for all paths except possibly for path Pj
(we do not need to check for path Pi as it contains u). The new frontj cannot
occur on P (s, v) else it would have chosen instead of w and hence it occurs after
v on P proving the invariant in this case as well.

Now if i = j, we do not use any sub-path of P and do not jump out of Pi.
Let w be the last vertex on Pi occurring on P (s, u). We extend Q by using a
sub-path of Pi as follows: Q← Q-Pi(v, w). We update Qi = Qi-Pi(v, w). We also
update fronti to be vertex succeeding w in Pi. We now show that the invariant
holds in this case as well. The last vertex of Q is w which is on Pi. Also, w occurs
on P (s, u) but frontj for any j �= i occurs after u on P by the choice of u. Hence,
the invariant holds in this case as well.

s t
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Fig. 1. In (a), we have paths P1 = (s, a1, . . . , t), P2 = (s, b1, . . . , t), P3 = (s, c1, . . . , t),
Hamiltonian path P . Q is the current path which respects the ordering of each Qi

where Q1 = (s, a1, . . . , a4), Q2 = (s, b1, . . . , b4), Q3 = (s, c1, . . . , c4). Also front1 = a5,
front2 = b5, front3 = c5. Observe that b5 is the first front vertex in P (a4, t). Also, a7 is
the last vertex on P1 which is on P (a4, b5). Hence, we extend Q by adding the sub-path
P1(a4, a7) and P (a7, b5). Q1 is extended till a7 and Q2 till b5. This is shown in (b).

In every step either one or two paths advance their front vertex (either path
i or both path i and path j, using the notation of the above explanation). We
iterate till Q ends at t. Clearly, the property that Q visits the vertices of ∪iQi in
the order of each Qi is maintained in each update. See Figure 1 for an example.
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We now claim that the total weight of the path Q found is no more than
the sum of weights of individual paths, plus k times the weight of the optimal
ATSPP solution P . To show this we first argue that the sub-paths of Pi in Q
are edge-disjoint for each i. We then show that for any path Pi all jumps out of
Pi use disjoint sub-paths of the ATSPP P . Hence, any edge of P can be used at
most k times.

The first claim follows from the fact that any subpath of Pi used in Q starts at
one vertex before the current fronti and ends at one vertex before the new fronti.

Now we prove the second claim. Observe that if we jump out of u and v on
Pi and u occurs before v in Pi then the jump at u occurs before the jump at v.
Also, v cannot lie on the sub-path of P which is traversed after jumping from
Pi at u as otherwise we would jump out at v and not at u. Now, we claim that
u lies before v in P and hence u cannot lie on the sub-path of P traversed after
jumping from v (which contains nodes occurring after v in P ). Indeed, let w
be the front vertex of Pj where the jump sub-path starting from u ends. By
definition u is the furthest vertex of Pi which precedes w on P . Hence, v lies
after w on P and therefore after u. As no two jumps out of Pi have a common
vertex, they are clearly edge-disjoint. �

We give the following example showing that the Lemma 1 is tight when k = 2.
The paths to be put in order are P1 = (s, a1, a2, . . . , a2n, t) and P2 =

(s, b1, b2, . . . , b2n, t) while the optimal ATSPP P = (s, a1, b2, b1, a3, a2, b4, b3, a5,
a4, . . . , t) as shown in Figure 2.

s t

a1
a2 a3 a4 a5

b1
b2 b3 b4 b5

s ta1 b2 b1 a3 a2 b4 b3 a5

s ta1 b2 b1 b2 b1 a3 a2 a3 a2 b4 b3

P1

P2

P

Q

Fig. 2. Tight Example

The weight of the edges (a2i+1, a2i) and (b2i, b2i−1) is one for all 1 ≤ i ≤ n. The
weight of the edges (a2i, a2i+1) and (b2i−1, b2i) is two for all 1 ≤ i ≤ n. The weight
of rest of the edges in P1 ∪P2 ∪P is zero. Observe that w(P1) = 2n, w(P2) = 2n
and w(P ) = 2n. The minimum weight spanning walk Q which respects the or-
dering of both P1 and P2 must be Q = (s, a1, b2, b1, b2, b1, a3, a2, a3, a2, b4, . . . , t)
and w(Q) = 2n+ 2n+ 2 · 2n = 8n which is exactly w(P1) + w(P2) + 2 · w(P ).
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We do not know whether Lemma 1 is tight when k > 2, though there are
examples in which any path that spans ∪iPi and respects the ordering of each
path Pi must weigh at least

∑k
i=1 w(Pi)+(k−1)·w(P ), where P is the minimum

ATSPP. Details omitted due to space limitations.

2.3 Algorithm for ATSPP

In this section, we prove Theorem 2. We show that the algorithm AlgPath in
Figure 3 gives the guarantee as claimed in Theorem 2.

Input: An instance I = (G, w, s, t) of ATSPP, an α-approximation algorithm
AlgTour to ATSP, and a parameter ε > 0.

1. By trying O( log n
ε

) options, obtain a value of g such that (1− ε
8 )·OPT ≤ g ≤ OPT .

2. Remove all edges incident into s and also edges incident out of t. Include the
edge (t, s) with the weight as g. Let this modified graph be Ĝ and the modified
weight function ŵ. Let KG = (V, E(KG)) be the complete directed graph on V .
Compute m̂w : E(KG) → R+, the metric completion of the ŵ, i.e., m̂w(u, v) is
the shortest distance from u to v under the weight function ŵ.

3. Find the α-approximate solution C given by AlgTour on the complete graph KG
under the weight function m̂w. Let T be the tour obtained in Ĝ after replacing
each edge (u, v) by its corresponding shortest path in Ĝ.

4. Let r be the number of times edge (t, s) is chosen in T . Remove all copies of
(t, s) to decompose T into a collection of r (s, t)-paths P = {P1, . . . , Pr} which
together span V . Shortcut these paths to ensure that each vertex except s and t
is in exactly one of them.

5. Return Q = Weave(G,P , ε).

Output: A (2 + ε)α-approximate solution to I.

Fig. 3. Algorithm AlgPath

Figure 4 describes the algorithm Weave which given a collection of (s, t)
paths P returns a single (s, t) path Q which respects the order of each path
Pi ∈ P and is of small weight. This is used as a subroutine in the algorithm
AlgPath.

Lemma 2. Given a collection of r (s, t)-paths P = {P1, . . . , Pr} and a pa-
rameter ε > 0, algorithm Weave(P , s, t, ε) returns a single (s, t)-path spanning
all vertices in P and respecting the order of vertices of weight no more than∑r

i=1 w(Pi) + (1 + ε/8)r ·OPT , where OPT is the weight of the optimal (s, t)-
spanning path. The running time of the algorithm is O(n

1
ε +O(1)).

Proof. In any iteration, if we replace paths P1, . . . , Pk by Q, then Lemma 1
guarantees that such a path exist of weight no more than w(Q) ≤

∑k
i=1 w(Pi)+
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Input: A collection P = {P1, . . . , Pr} of r (s, t)-paths, and a parameter ε > 0.

1. If r = 1 return P1. Otherwise let k = min{ 9
ε
, r}.

2. Use dynamic programming to a find a minimum weight path P ′ that spans the
vertices of (P1, . . . , Pk) and respects the order of each of the paths P1, . . . Pk. This
can be done by inductively computing the weight of the minimum weight (s, v)-
path that spans all vertices of Q1, . . . Qk and ends at v, where for each 1 ≤ i ≤ k,
Qi is some prefix path of Pi, and v is the last vertex on one (or more) of the Qi.
For every choice of Q1, . . . Qk and v, a minimum weight corresponding path can
be found by examining at most k previously computed weights that correspond
to paths in which one of the Qi is shorter by one vertex.

3. Let P ′ = P ∪ P ′ \ {P1, . . . , Pk}.
4. Return Weave(G,P ′, ε).

Output: (s, t)-path Q spanning vertices in P , which respects the order of each path
Pi ∈ P and of weight at most

∑r
i=1 w(Pi) + (1 + ε/8)r · OPT , where OPT is the

weight of the optimal (s, t)-spanning path.

Fig. 4. Algorithm Weave

k · OPT which the dynamic program will find. Hence, in each iteration, the
number of paths reduce by k − 1 and the weight of the new collection of paths
increases by k·OPT . Hence, the total increase in weight is at most (l+r−1)OPT
where l is the number of iterations. But l ≤ � r

9/ε−1� ≤
εr
8 + 1 for ε < 1. Hence,

the weight of Q is at most
∑r

i=1 w(Pi) + (1 + ε/8)r ·OPT .
The running time of the algorithm is a polynomial in n times the number of

possible choices of prefix lengths in step 2 of algorithm Weave(P , s, t, ε). This
number is O(n

1
ε ). ��

Now, we prove Theorem 2.

Proof. First, we show that one out of a polynomial number of guesses satisfies
the conditions of Step 1. Indeed, the algorithm can first find a lower bound L
and upper bound U such that U ≤ nL(a trivial n-approximation would suffice).
We start by setting g = U and running the algorithm. We then decrease g by
factor of (1 − ε

8 ) and run it again. We iterate in such a manner till the value of
g reaches L. Observe that each guess of g will yield a feasible solution and we
can return the best solution obtained. Also, the total number of guesses needed
is log1− ε

8

L
U = O( log n

ε ). Hence, we assume that we have the guess which satisfies
the conditions of Step 1 of the algorithm.

Now, observe that KG = (V,E(KG)) with the weight function m̂w satisfies
the triangle inequality. Also, the optimal Hamiltonian cycle inKG weighs exactly
OPT + g where OPT is the weight of optimal (s, t)-spanning path in G under
w. Hence, we must have that weight of Hamiltonian cycle C found by AlgTour
is m̂w(C) ≤ α(OPT + g) ≤ 2αOPT as g ≤ OPT . If the edge (t, s) is chosen
in T r times then removing all copies of (t, s) decomposes T into a collection
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of r (s, t)-paths P1, . . . , Pr which together span V and such that
∑r

i=1 w(Pi) ≤
2α ·OPT − rg. Now in Step 5, algorithm Weave returns a single (s, t)-spanning
path Q of weight at most

∑r
i=1 w(Pi) + (1 + ε/8)r ·OPT from Lemma 2. Also,

rg ≤ α(OPT + g) and g ≥ (1 − ε/8) ·OPT imply that r ≤ (2 + ε/8)α ≤ 4α for
ε < 1. Hence, the weight of Q,

w(Q) ≤
r∑

i=1

w(Pi) + (1 + ε/8)r ·OPT ≤ 2α ·OPT − rg + (1 + ε/8)r ·OPT

≤ 2α ·OPT +
ε

4
r ·OPT ≤ (2 + ε)α ·OPT

where the last two inequalities follow from the fact that g ≥ (1− ε/8) ·OPT and
r ≤ 4α. ��

3 An Improved Approximation Algorithm for ATSP

Kaplan et al [10] show an 4 log2 n
3 log2 3 � .842 log2 n-approximation for the ATSP

problem. It is the current best known algorithm as well. In this section, we
first show that their analysis is not tight and can be improved to log2 n

log2 (
√

2+1)
�

.787 log2 n-approximation. Then, we show an improved algorithm which gives a
better approximation guarantee of 2

3 log2 n.
A subgraph of the input graph is called Eulerian if the indegree of each vertex

is equal to its outdegree. A connected Eulerian subgraph has an Eulerian tour
that visits every edge exactly once, and moreover, such a tour can be found
efficiently. When edge weights of the original graph satisfy the triangle inequality,
standard shortcutting arguments show that there exists a tour of weight no more
than the weight of any Eulerian subgraph. Hence in what follows, we will ensure
that we return a connected Eulerian subgraph which has low weight. Also note
that for any Eulerian graph the connected components are exactly the strongly
connected components.

3.1 Improving the KLSS Analysis

The KLSS algorithm [10] starts from using the following linear program LP-
ATSP that enforces sub-tour elimination constraints for subsets of size two.

min
∑

e∈E
cexe

∑

e∈δ+(v)

xe =
∑

e∈δ−(v)

xe = 1 ∀v ∈ V

x(u,v) + x(v,u) ≤ 1 ∀u, v ∈ V
0 ≤ xe ≤ 1 ∀e ∈ E
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Here δ+(v) is the set of edges going out of v and δ−(v) is the set of edges going
into v. The above LP-ATSP is a relaxation of the ATSP problem, because for
every Hamiltonian cycle, assigning xe = 1 iff edge e belongs to the Hamiltonian
cycle is a feasible solution of the LP.

The following is the key lemma used in the KLSS [10] algorithm. The lemma
is based on decomposing the optimal solution to LP-ATSP to get the following
guarantee.

Lemma 3. [10] Given an edge-weighted directed graph G, there exists a poly-
nomial time algorithm which using the optimal solution to LP-ATSP finds two
cycle covers C1 and C2 such that

1. C1 and C2 do not share any 2-cycle.
2. w(C1) + w(C2) ≤ 2 ·OPT where OPT is the weight of the optimal solution

to LP-ATSP.

Their algorithm proceeds as follows

1. Find two cycle covers given by Lemma 3. Choose F to be one of C1, C2 and
C3 = C1 ∪C2 which minimizes the potential function w(F )

log2(ni/c(F )) , where ni
is the number of nodes in the current iteration and c(F ) is the number of
components in F .

2. For each connected component pick one representative vertex. Delete the
rest of the vertices and iterate till at most one component is left.

Let the number of steps taken by the algorithm be p and let F1, . . . , Fp be
the edges selected in each iteration. Return the solution ∪pi=1Fp. The following
claim is implicit in Kaplan et al.

Claim 1. [10] If w(Fi)
log2(ni/c(Fi))

≤ αOPT , then the above algorithm is α log2 n-
approximation.

Proof. Using the fact that np = 1, n1 = n and ni+1 = c(Fi), we obtain that the
weight of the edges included is

p∑

i=1

w(Fi) ≤
p∑

i=1

log2

ni
c(Fi)

· α ·OPT ≤ α ·OPT
p∑

i=1

log2

ni
ni+1

= α · OPT · log2 n

In their paper, Kaplan et al [10] show that α = 4
3 log2 3 suffices. We show that

1
log2

√
2+1

suffices. We need another claim proven in Kaplan et al.

Claim 2. [10] In any iteration, if C1 and C2 are the cycle covers found then
c(C1) + c(C2) + c(C3) ≤ ni where ni is the number of nodes in graph at this
iteration.

Claim 3. In any iteration i, if Fi is chosen then w(Fi)
log2(ni/c(Fi))

≤ αOPT for
α = 1

log2 (
√

2+1)
.
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Proof. Observe that α is at most the value of the following optimization problem.
Here, wi corresponds to w(Ci)/OPT and ci corresponds to c(Ci)/ni. These
scalings do not affect the value of α.

max z (1)

z ≤ wj

log2
1
cj

∀ 1 ≤ j ≤ 3 (2)

w1 + w2 ≤ 2 (3)
w3 = w1 + w2 (4)

c1 + c2 + c3 ≤ 1 (5)
c3 ≤ cj ∀ j = 1, 2 (6)

cj ≤
1
2
∀ j = 1, 2 (7)

wj , cj ≥ 0 ∀ j = 1, 2, 3 (8)

In the above program constraints (2) correspond to z denoting the best po-
tential of the three solution C1, C2 or C3. Constraints (3)-(4) claim that sum of
weights of C1 and C2 is exactly the weight of C3 which is most 2OPT . Vari-
ables ci correspond to c(Ci)/ni and hence constraint (5) follows from Claim 2.
Constraint (6) is valid as C3 = C1 ∪ C2 and hence will have fewer components.
Moreover, as each cycle has length at least two, c(Ci) ≤ ni/2.

Let (z∗, w∗, c∗) denote the optimum solution. The objective value is a non-
decreasing function of w3 and hence, without loss of generality, we assume w∗

3 =
2. We also claim that w∗

1 = w∗
2 = 1 and c∗1 = c∗2. Indeed if that is not the

case, then we construct another solution w′
1 = w′

2 = 1, w′
3 = w∗

3 and c′1 = c′2 =
c1+c2

2 , c′3 = c∗3. Let z′ = minj=1,2,3
w′

j

log2
1

c′
j

. Observe that (z′, w′, c′) is a feasible

solution as it satisfies all constraints (2)− (8). Now, we claim that

w′
2

log2
1
c′
2

=
w′

1

log2
1
c′
1

≥ min{ w∗
1

log2
1
c∗
1

,
w∗

2

log2
1
c∗
2

}

Suppose the above relation does not hold. Then using the fact that w′
1 = w′

2 =
1 and c′1 = c′2 = c∗

1+c∗
2

2 for each i = 1, 2 we must have 1
log2

2
c∗
1+c∗

2

<
w∗

i

log2
1

c∗
i

.

Cross multiplying and summing over i = 1, 2, we have

log2

1
c∗1

+ log2

1
c∗2
< (w∗

1 + w∗
2) · log2

2
c∗1 + c∗2

Using the fact w∗
1 + w∗

2 = 2 and the fact that logarithm is an increasing
function, we have

log2

1
c∗1 · c∗2

< 2log2

2
c∗1 + c∗2

=⇒ 1
c∗1 · c∗2

<

(
2

c∗1 + c∗2

)2

which violates the AM-GM inequality that
( c∗

1+c∗
2

2

)2 ≥ c∗1 · c∗2 which holds since
c∗1, c

∗
2 ≥ 0.
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Hence, we have z′ = minj=1,2,3
w′

j

log2
1

c′
j

≥ min{min{ w∗
1

log2
1

c∗
1

,
w∗

2
log2

1
c∗
2

}, w′
3

log2
1

c′
3

} =

z∗. Thus, we assume without loss of generality that w∗
1 = w∗

2 = 1 and c∗1 = c∗2.
Under these condition observe that all three inequalities z∗ ≤ w∗

j

log2
1

c∗
j

must

hold at equality. Now, solving we obtain that c∗1 = c∗2 =
√

2 − 1, c∗3 = 3 − 2
√

2
and z∗ = 1

log2 (
√

2+1)
. ��

3.2 Modifying the KLSS Algorithm

Here we explain how we can change the algorithm of KLSS to obtain an improved
guarantee of 2

3 log2 n. The algorithm is very similar. Each time we find the cycle
covers C1 and C2 as given by Lemma 3. Instead of selecting the best of C1, C2

or C3 = C1 ∪ C2, we decompose C3 into two Eulerian subgraphs.
The following is the key Lemma used for the decomposition. For every con-

nected component of C3, we can apply the following lemma.

Lemma 4. Let C be a connected directed graph with at least three vertices in
which every vertex has in-degree 2 and out-degree 2. C is allowed to have parallel
edges but no self loops. Then there are either two (vertex disjoint) cycles of
length 2 or one cycle of length at least 3 such that removing the edges of these
cycles from C leaves C connected.

Proof. The edges in C can be partitioned into C1 and C2 such that each of them
induces on C a directed graph with in-degree 1 and out-degree 1. (This was used
in Kaplan et al, and the proof of this fact follows easily from the fact that every
d-regular bipartite graph is a union of d perfect matchings.) Each of C1 and C2

is a collection of cycles that spans all vertices of C. Let ci be the number of
cycles in Ci, for i ∈ {1, 2}. We now proceed with a case analysis.

Case 1. c1 �= c2. Assume in this case without loss of generality that c2 > c1.
One by one, add the cycles of C2 to C1. When the process begins, the number of
connected components is c1. When it ends, the number of connected components
is 1 (because then we have C). Every cycle of C2 added in the process either
reduces the number of connected components, or leaves it unchanged. The in-
equality c2 ≥ (c1− 1)+ 2 shows that the addition of at least two of the cycles of
C2 left the number of connected components unchanged. These two cycles can
be removed from C while still keeping C connected.

Case 2. c1 = c2. Let H denote a bipartite graph in which every cycle of C1 is
a left hand side vertex, every cycle of C2 is a right hand side vertex, and two
vertices are connected by an edge if the corresponding cycles share a vertex.
Note that H is connected (because C is.) We consider three subcases.

1. H has a vertex of degree at least 3. Hence some cycle (say, cycle C∗ of C2)
connects at least three cycles (of C1). The argument of the case c2 > c1 can
be extended to this case, by making C∗ the first cycle of C2 that is added
to C1. The number of connected components drops by at least 2 in the first
iteration, ensuring that at least two other cycles from C2 do not cause a drop
in number of connected components.
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2. H has a vertex of degree 1 and no vertex of degree more than 2. Then H is a
path (because H is connected). If the path is of length 1, it follows that both
C1 and C2 are single cycles (of length at least 3) that span the whole of C,
and hence either one of them may be removed while keeping C connected.
If the path is of length more than 1, then removing the two cycles that
correspond to the endpoints of the path keeps C connected (observe that
all vertices of the two removed cycles are contained in the set of vertices of
their respective neighboring cycles in H).

3. All vertices in H have degree 2. Then H is a cycle. If either C1 or C2 contain
a cycle of length 3 or more, then this cycle can be removed while keeping
H (and hence also C) connected. If all cycles in C1 and C2 are of length 2,
then it must be the case that C can be decomposed into two anti-parallel
cycles (each of length |C| ≥ 3), and removing any one of them keeps C
connected. ��

Now, we modify the algorithm in the following manner. Let C5 be the set of
cycles chosen from each component of C3 without disconnecting each of the
components as given by Lemma 4. Observe that C5 need not be a cycle cover.
Let C4 = C3 \ C5.

Instead of picking the best of C1, C2 or C3 as in Kaplan et al, in each it-
eration we pick the best of C4 or C5 according to the same potential function
w(F )/(log2 ni/c(F )) where ni is the number of vertices in the current graph. The
rest of the algorithm remains the same. We pick a single representative vertex
from each of the connected components of F , delete all vertices and recurse.

Observe that c(C4) = c(C3) as the number of components in C3 and C4 are
equal. Also, c(C5) ≤ ni − 2c(C3) as we pick at least 2-cycles of size 2 or a cycle
of a size at least 3 from each of the component of C3.

Claim 4. In any iteration i, if Fi is chosen then w(Fi)
log2(ni/c(Fi))

≤ αOPT for
α = 2/3.

Proof. Observe that α is the at most the value of the following optimization
problem. Here, wi corresponds to w(Ci)/OPT and ci corresponds to c(Ci)/ni.
These scalings do not affect the value of α.

max z
z ≤ wj

log2
1
cj

∀ j ∈ {4, 5}

w4 + w5 ≤ 2
c4 = c3

c5 ≤ 1− 2c3
wj , cj ≥ 0 ∀ j = 4, 5

At the optimum solution we must have z = w4
log2

1
c4

= w5
log2

1
c5

otherwise we can

change w4 and w5 so as to make them equal without violating the feasibility
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and not decreasing the objective function. Also, we must have w4 +w5 = 2 and
c5 = 1−2c3. Using these equalities, we have that w4 = 2 log2 c4

log2(c4(1−2c4))
which gives

that the objective function to maximize is w4
− log2 c4

= −2
log2(c4(1−2c4))

which gets
maximized when c4(1 − 2c4) gets maximized. But c4(1 − 2c4) has a maximum
value of 1/8 at c4 = 1/4. This implies that at the optimum solution we have
w4 = 4

3 , w5 = 2
3 , c4 = 1

4 , c5 = 1
2 and z = 2

3 . ��

Now, proof of Theorem 1 follows from Claim 1 and Claim 4.
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Abstract. Constant-factor, polynomial-time approximation algorithms
are presented for two variations of the traveling salesman problem with
time windows. In the first variation, the traveling repairman problem,
the goal is to find a tour that visits the maximum possible number of lo-
cations during their time windows. In the second variation, the speeding
deliveryman problem, the goal is to find a tour that uses the minimum
possible speed to visit all locations during their time windows. For both
variations, the time windows are of unit length, and the distance metric
is based on a weighted, undirected graph. Algorithms with improved ap-
proximation ratios are given for the case when the input is defined on a
tree rather than a general graph. A sketch of NP-hardness is also given
for the tree metric.

1 Introduction

For decades the traveling salesman problem (TSP) has served as the archetyp-
al hard combinatorial optimization problem that attempts to satisfy requests
spread over a metric space [15]. Yet as a model of real-life problems, the TSP
is deficient in some respects. In particular, the salesman may not have enough
time to visit all desired locations. Furthermore, a visit to any particular location
may be of value only if it occurs within a certain limited interval of time.

We consider a fundamental version of such a repairman problem, in which
the repairman is presented with a set of service requests. Each service request
is located at a node in a weighted, undirected graph and is assigned a time
window during which it is valid. The repairman may start at any time from any
location and stop similarly. (This latter assumption is at variance with much of
the preceding literature about the repairman problem [1,2]. We choose to frame
our problem without specifying initial and final locations because doing so leads
to an elegant solution that gives insight into such problems).

We handle two variations of our problem. In the first, each service event that
the repairman completes will yield a specified profit. The goal of the repairman
is to choose a subset of requests and then find a service run that satisfies those
requests so as to maximize the total profit possible. In the second variation,

M. Charikar et al. (Eds.): APPROX and RANDOM 2007, LNCS 4627, pp. 119–133, 2007.
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all service requests must be satisfied, with the service provider increasing the
speed by as little as necessary to make a service tour. (To cover a given distance
and arrive within a given time, the deliveryman must travel at least as fast as
some particular minimum speed.) We call this variation the speeding deliveryman
problem, recognizing that, for example, a pizza delivery driver may need to hurry
to deliver the pizza in a timely manner. We appear to be the first to frame this
problem in terms of speed-up, a refreshing departure from the standard emphasis
on distance traveled or profit achieved.

For both variations, we focus on the case in which all time windows are the
same length (i.e., unit-time), and all profits for service events are identical. Ad-
ditionally, we refer to each service event as being instantaneous, although service
times can be absorbed into the structure of the graph in many cases. These re-
strictions still leave problems that are APX-hard, via a simple reduction from
TSP, which has been shown to be APX-hard [16].

Our goal is thus to find polynomial-time approximation algorithms. For the
repairman, they produce a service run whose profit is within a constant factor
of the profit for an optimal service run. For the deliveryman, they produce a
service tour whose maximum speed is within a constant factor of the optimum
speed that accommodates all requests. These variations contrast neatly, as the
repairman is a maximization problem while the deliveryman is a minimization
problem. To the best of our knowledge, we are the first to find approximation
algorithms that get within a constant factor for a general metric. In addition,
we show how to solve both variations with improved constants in the case that
the service network is an edge-weighted tree rather than a general (weighted)
graph. The problems are NP-hard for a tree, as we shall show.

Our algorithms make use of several novel ideas: Ideally, we would like to
partition requests into subsets, handling each subset in some unified fashion.
The greatest challenge is how to play off proximity of location against proximity
of time when forming the subsets. Our solutions partition requests by their
time windows, so that the requests of any subset in the partition are uniformly
available over the entire extent of time under consideration for that subset. We
thus partition time into discrete periods and trim the time window for each
request to be the period that was wholly contained in it. Doing so induces at
most a linear number of periods which we can consider separately, and either
loses the repairman at most a constant fraction of possible profit or increases
the necessary speed of the deliveryman by at most a constant factor.

Once we partition requests on the basis of common trimmed windows, we are
able, for any given common trimmed window, to solve the variation restricted to
trees exactly for the repairman and almost exactly for the deliveryman. We can
then stitch together solutions for each different trimmed window, using dynamic
programming. For general graphs, we rely on approximation algorithms for any
given trimmed window, and again stitch together approximate solutions for each
different trimmed window, once again using dynamic programming.

The approximation algorithms for the traveling repairman seem necessarily to
be more complex than those for the speeding deliveryman. We adapt a constant
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approximation algorithm from [1] for the point-to-point orienteering problem, in
which the goal is to travel from a starting point to an ending point visiting as
many intermediate points as possible without exceeding a budget. Even when
our time periods are discrete and non-overlapping, we must be careful in our use
of dynamic programming as we patch together promising sets into a promising
service run. If the repairman is too greedy and uses too much time in one time
period, then he or she may end up being too late to handle many service requests
in subsequent periods. Thus for each request location, and for each amount of
profit that the repairman could arrive with, we need to identify the earliest time
at which the repairman could have arrived with at least a constant fraction of
that amount of profit in hand. With this more detailed information, we can then
effectively use dynamic programming.

Although we seem to be the first to study the speeding deliveryman problem,
we are not the first to consider the repairman problem, which is a generalization
of a host of repairman, deliveryman and traveling salesman problems such as
those in [1,2,6,14,17]. Much work has been done on related problems in a metric
space on the line. Assuming unit-time windows, a 1

4+ε -approximation was given
for the repairman on a line in [2]. We improve on this approximation to 1

3 and in
a more general setting, a tree. We are the first to give poly-time constant-ratio
algorithms for the unit-time repairman problem on a tree or on a graph.

For general metric spaces and general time windows together, an Ω( 1
(logn)2 )-

approximation was given in [1], whereas a constant approximation is given in
[6], but only when there are a constant number of different time windows. TSP
with time windows has been studied in the operations research community, as
in [7] and [8], where it was exhaustively solved to optimality.

In Sect. 2, we characterize the effects of contracting the time windows of
the service requests. In Sect. 3, we give an approximation algorithm with a
bound of 1

3 for the repairman on a tree. In Sect. 4, we give an approximation
algorithm with a bound of 1

15 for the repairman on a graph. In Sect. 5, we give an
approximation algorithm for a deliveryman in a tree with a maximum increase
in speed by a factor of 4 + ε. In Sect. 6, we give an approximation algorithm for
a deliveryman in a graph with a maximum increase in speed of a factor of 8. In
Sect. 7, we sketch the NP-hardness of the problems on a tree.

2 Trimming Requests

Trimming is a simple and yet powerful technique that can be applied when we
deal with unit-time windows. Starting with time 0, we make divisions in time at
values which are integer multiples of one half, i.e., 0, .5, 1, and so on. We assume
that no request window starts on such a division, because if it did, we could
redefine times to be decreased by a negligible amount. Let a period be the time
interval from one division up to but not including the next division. Because
every service request is exactly one unit long in time, half of any request window
will be wholly contained within only one period, with the rest divided between
the preceding and following periods. We then trim each service request window
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to coincide with the period wholly contained in it, ignoring those portions of the
request window that fall outside of the chosen period.

For the repairman problem, the trimming may well lower the profit of the
best service run, but by no more than a constant factor. Let p(R) denote the
profit of a service run R.

Theorem 1 (Limited Loss Theorem). Consider any instance of the repair-
man problem. Let R∗ be an optimal service run with respect to untrimmed re-
quests. There exists a service run R with respect to trimmed requests such that
p(R) ≥ 1

3 p(R
∗).

Proof. We use an elegant best-of-three argument. Let the target interval of a
request be that part of the request window that coincides with the period to
which the request is trimmed. Call that part of the request window contained in
the previous period its early interval, and call that part of the request window
contained in the following period its late interval.

Now R∗ must have at least one third of its service events in either the target
intervals, the early intervals, or the late intervals. If at least one third of the
service events of R∗ occur in target intervals, then we have R follow the same
path and schedule as R∗ but service only those requests in target intervals.

If at least one third of the service events of R∗ occur in early intervals, then
we take service run R to be R∗ but started .5 units later in time, and with R
servicing those requests that were in early intervals of R∗ but are now in target
intervals of R. Then the number of service events of R will be at least one third
of the number of service events for R∗.

Similarly, if at least one third of the service events of R∗ occur in late intervals,
we take R to be R∗ but started .5 units earlier in time, with R servicing those
requests that were in late intervals of R∗ but are now in target intervals of R.

In each case, it is possible to construct a service run R for trimmed requests
that contains at least one third of the service events of an optimal service run
for untrimmed requests. Since one of these three cases must always hold, we can
always find a desired R. �

For the deliveryman problem, trimming may well increase the necessary speed
of the best service tour, but by no more than a constant factor. Let s(T ) denote
the minimum speed needed for service tour T to visit all service requests.

Theorem 2 (Small Speedup Theorem). Consider any instance of the de-
liveryman problem. Let T ∗ be an optimal service tour with respect to untrimmed
requests. There exists a service tour T̂ with respect to trimmed requests such that
s(T̂ ) ≤ 4s(T ∗).

Proof. We shall define tour T̂ on which the deliveryman travels back and forth
along T ∗ at a speed of 4s(T ∗). During any two consecutive periods, the delivery-
man will make a net advance equal to the advance of T ∗ over those two periods.
Let the starting times of the periods be t0, t1, t2, and so on. Define a function
f(t) that for any given time t gives the location of the deliveryman on T ∗. For-
mally, T̂ is the sequence of locations given by a function f̂(t) as it sweeps from
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time 0 to the latest time which is in the domain of f(t). For ti ≤ t < ti + 1,
where i is even, let

f̂(t) =
{
f (ti − 1 + 4(t− ti)) ti ≤ t < ti + .625 (forward 5 steps)
f (ti + 1.5− 4(t− ti)) ti + .625 ≤ t < ti + 1 (backward 3 steps)

Consider a request r serviced at time t in T ∗. If ti ≤ t < ti+ .5, then the time
window of the request will be trimmed to be one of three periods of length .5:
[ti − .5, ti), [ti, ti + .5), or [ti + .5, ti + 1). We consider cases when i is even or i
is odd separately.

Case 1: i is even
If the window containing r is trimmed to be [ti − .5, ti), service request r
at time ti + .25((t − ti) + .5). If the window is trimmed to be [ti, ti + .5),
service request r at time ti + .25((t− ti) + 1). If the window is trimmed to
be [ti + .5, ti + 1), service request r at time ti + .25((t− ti) + 1.5).

Case 2: i is odd
If the window containing r is trimmed to be [ti − .5, ti), service request r at
time ti + .25((ti− t)+ 2). If the window is trimmed to be [ti, ti + .5), service
request r at time ti + .25((ti − t) + 1.5). If the window is trimmed to be
[ti + .5, ti + 1), service request r at time ti + .25((ti − t) + 1). �

3 Repairman Problem for a Tree

A demonstration of the power of trimming is that we can solve the repairman
problem on a tree exactly in the case that windows are already trimmed. We
first give a dynamic programming algorithm for the repairman problem on a
tree when all requests share an identical time window. To find a path from s to
t of profit p, we start with the direct path from s to t and then add on low-cost
pieces of subtrees that branch off the direct path as necessary to achieve profit
p. We do so by contracting the path into a single node r and using dynamic
programming to sweep up from the leaves, finding the cheapest paths in the tree
for each possible profit.

SWEEP-TREE(node u)

For p from 0 to π(u), set Lu[p] ← 0
For each child v of u,

Call SWEEP-TREE(v), which will generate Lv.
Add 2d(u, v) to each entry in Lv except Lv[0].
Let maxu be the largest profit in Lu and maxv the largest profit in Lv.
For p from 0 to maxu +maxv, set L[p] ← ∞.
For a from 0 to maxu and b from 0 to maxv,

L[a + b] ← min{L[a + b], Lu[a] + Lv[b]}.
Lu ← L
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Our recursive subroutine SWEEP-TREE(r) produces a list Lr of the lowest
costs at which various profit levels can be achieved by including portions of the
tree rooted at r. List Lr is a mapping from profits to costs where Lr[p] is the
cost of achieving profit p, if recorded, and ∞ otherwise. Let π(u) be the profit
gained by visiting u. Note that π(u) counts the number of service requests at u.

If we define π(r) to be the profit of the direct path, then adding d(s, t) to all
the costs in the list Lr yields the costs of the best paths on the full tree starting
at s and ending at t for all possible profit levels.

Lemma 1. For all possible profits, SWEEP-TREE identifies minimum-length
paths from s to t in a total of O(n2) time.

Proof. Let n and related variables represent the sum of the number of nodes in
the subtree rooted at vertex u plus the total profit for the nodes in that subtree.
Let n0 be the amount of n attributable to vertex u, and ni be the amount of n
attributable to the subtree rooted at the ith child of u, for i = 1, 2, . . . , k. Then
the time for SWEEP-TREE is defined by

T (n) ≤ cn0 +
k∑

i=1

⎡

⎣ T (ni) + cni

⎛

⎝1 +
i−1∑

j=0

nj

⎞

⎠

⎤

⎦

Proof by induction establishes that T (n) ≤ dn2 for a suitable constant d. �

Although SWEEP-TREE might be viewed as being vaguely reminiscent of Sect.
2.6.3 in [5], we note that the presentation in [5] is rather indeterminate and that
its claimed running time is not fully polynomial.

Using algorithm SWEEP-TREE, we next give the algorithm REPAIRMAN-
TREE for multiple trimmed windows. This algorithm uses dynamic program-
ming to move from period to period, in increasing order by time. As it progresses,
it finds service runs of all possible profits from every trimmed request in the cur-
rent period through some subset of trimmed requests in the current period and
arriving at any possible trimmed request in a later period. In this way, for every
profit value, we identify the earliest that we can arrive at a request that achieves
that profit value. The critical insight is that we may have to leave a certain pe-
riod very early in order to reach later requests in time. By recording even the low
profit service runs and using them as starting points, we never commit ourselves
to a service run which appears to be promising in early stages but arrives too
late to visit a large number of requests in later stages.

We focus on periods that each contain at least one trimmed request, num-
bering them from S1, the period starting at the smallest time value, up to the
last period Sm. Let n be the total number of requests. For every period Si, we
arbitrarily number its trimmed requests as sij . Let Rkij be the earliest arriving
k-profit sequence of service events ending at sij . Let Akij be the arrival time of
Rkij at sij . For each sij , we initialize every R1

ij to be {sij} and every A1
ij to be

0. For k > 1, let Rkij be initialized to null, and let every other Akij be initialized
to begin(Si+1), where begin(Si) is the first time instant in period Si.
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We use SWEEP-TREE to find a path of shortest length from a given starting
request to a given ending request, subject to accumulating a specified profit. Let
time(R) be amount of time a path R takes. For each indexed period Si, from 1
up to m, we process period Si as described in PROCESS-PERIOD.

PROCESS-PERIOD(Si)

For each trimmed request sij in period Si,
For each possible profit value p,

For each subsequent period Sa that contains a trimmed request,
For each trimmed request sab in Sa, do the following:

Let R be the path corresponding to Lr(p) that results from
SWEEP-TREE(r) with s = sij and t = sab, on the set Si − {sij}.

Let R− be R with its last leg, ending at sab, removed.
For k from 1 to n − p(R),

If Ak
ij + time(R−) < begin(Si+1), then

Let profit q be k + p(R) − 1.
If Ak

ij + time(R) < Aq
ab, then

Set Rq
ab to be Rk

ij followed by R.
Set Aq

ab to be max{Ak
ij + time(R), begin(Sa)}.

After all the periods have been processed, we identify the largest-profit path
found, and return that resulting service run R̂ as the output of algorithm
REPAIRMAN-TREE. A suitably reorganized REPAIRMAN-TREE will take
O(n4) time, since it will make O(n2) calls to SWEEP-TREE, each of which
takes O(n2) time. Applying the Limited Loss Theorem:

Theorem 3. The approximation ratio of REPAIRMAN-TREE is at least 1
3 .

4 Repairman Problem for a Graph

Our approximation algorithm for the repairman on a graph uses approximation
algorithms for the optimization problems below. The cost c(T ) of path, tour, or
tree T is the total cost of its edges under metric d.

Rooted k-Minimum Spanning Tree (k-MST): Given node v and integer
k, find a tree of smallest cost that contains at least k nodes, including v.

Rooted k-Traveling Salesman Problem (k-TSP): Given node v and inte-
ger k, find a smallest-weight tour containing at least k nodes, including v.

Source-Sink k-Path (k-SSP): Given nodes s and t and integer k, find a path
of smallest weight from s to t that contains at least k nodes. (This problem
is called min-cost s-t path in [4].)

Besides approximation algorithms for these problems, we also consider two more
approximation problems for k-SSP. Let the excess of a path P from s to t be
ε(P ) = c(P )− d(s, t).
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Small-Excess k-SSP: Given nodes s and t and integer k, find a path of small
excess from s to t containing at least k nodes. (This problem is called min-
excess path in [4].)

Reduced-Profit k-SSP: Given nodes s and t and integers k and σ > 1, find
a path from s to t containing at least k/σ nodes and costing no more than
an optimal k-SSP.

The final performance bound of our algorithm depends on the approximation
ratio of the Reduced-Profit k-SSP algorithm, which in turn depends on several
other algorithms. First, we discuss a way to approximate k-SSP using a way to
approximate k-MST described in [11]. Second, an algorithm for Small-Excess
k-SSP using an approximation for k-SSP is given in [4]. We note that the ap-
proach in [4] uses a distance bound, whereas for our problem it seems imperative
that we use profit values as a parameter to get an appropriate set of paths. Third,
we will describe a technique similar to the one used in [1] to solve the Reduced-
Profit k-SSP problem using a σ-approximation to Small-Excess k-SSP. Fourth,
we describe how to approximate the repairman problem by nesting the approx-
imation algorithm within a dynamic programming structure. Finally, we coax
a better performance bound out of our algorithm by combining two different
approximations for k-SSP in a mixed strategy approach [9].

Having outlined our approach in the preceding paragraph, we expand on that
brief description:

First – we approximate k-SSP: In [11], Garg used a linear programming
formulation based on the Goemans and Williamson technique [12] to find a
2-approximation to the k-MST problem in polynomial time. We use the
2-approximation to k-MST to find a 4-approximation to k-SSP as follows: Let
T ∗ be an optimal solution to k-MST on set V with two required nodes s and
t. We can force a k-MST to include node t as well by creating a set V ′ from
V with n − 1 copies of t and then defining k′ = k + n − 1, where n = |V |.
We can approximate T ∗ by using the above 2-approximation to k-MST on V ′

with parameter k′ and then removing all extra copies of t. The resulting tree T̂
will have a profit of at least k, contain both s and t, and cost c(T̂ ) ≤ 2c(T ∗).
Path P̂ of profit k from s to t can be constructed from T̂ by doubling up all
its edges except for those on a direct path from s to t in T̂ . Call this algorithm
MST-FOR-SSP.

Lemma 2. Path P̂ produced by MST-FOR-SSP has cost c(P̂ ) ≤ 4c(P ∗)−d(s, t),
where P ∗ is an optimal solution to k-SSP.

Proof. Since P ∗ is a tree of no less cost than T ∗, we have
c(P̂ ) ≤ 2c(T̂ )− d(s, t) ≤ 4c(T ∗)− d(s, t) ≤ 4c(P ∗)− d(s, t). �

Second – we approximate Small-Excess k-SSP: An algorithm from [4] which we
shall call SMALL-EXCESS takes an α-approximation to the k-SSP problem and
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generates a
(

3
2α−

1
2

)
-approximation to Small-Excess k-SSP. Using MST-FOR-

SSP with α = 4, this yields an 11
2 -approximation to the Small-Excess k-SSP

problem.

Third – we approximate Reduced-Profit k-SSP: We describe approximation algo-
rithm REDUCED-PATH for the Reduced-Profit k-SSP problem which is similar
to the one used in [4] for orienteering except that we supply a profit value in-
stead of a distance bound as a parameter. To find a path B, we identify many
possible subpaths Bj by choosing all possible pairs of nodes u, v and running
SMALL-EXCESS between them with profit parameter k/σ. Of all these possible
pairs, we keep the one for which c(Bj) + d(s, u) + d(v, t) is smallest. For that
pair, we form path B by appending (s, u) and (v, t) to Bj .

Lemma 3. Let σ be the smallest whole number no smaller than the approxima-
tion bound for SMALL-EXCESS, and let P ∗ be an optimal k-path from s to t.
Then B is a path from s to t such that c(B) ≤ c(P ∗) and p(B) ≥ 1

σp(P
∗).

Proof. This proof is a modest generalization of the one in [1] used for orienteer-
ing. Split P ∗ into σ pairwise edge-disjoint subpaths, P ∗

1 , . . . , P
∗
σ , such that each

subpath P ∗
i has a profit of at least k/σ. Note that σ need not divide evenly into

k, since we can allow fractional parts of the profit on shared endpoints. Label
the starting and ending points of P ∗

i as ui−1 and ui, respectively. Thus s = u0

and t = uσ. Then

ε(P ∗) = c(P ∗)− d(u0, uσ) ≥
σ∑

i=1

c(P ∗
i )−

σ∑

i=1

d(ui−1, ui)

=
σ∑

i=1

[c(P ∗
i )− d(ui−1, ui)] =

σ∑

i=1

ε(P ∗
i )

If subpath P ∗
j has the minimum excess of all σ subpaths, then ε(P ∗

j ) ≤
1
σ ε(P ∗). Let P̃j be the subpath made by running SMALL-EXCESS from uj−1

to uj with profit parameter k/σ. Thus, ε(P̃j) ≤ σε(P ∗
j ). Then, consider a full

path P̃ which is made by taking a direct edge from u0 to uj−1, running from
uj−1 to uj along P̃j , and then finishing by taking another direct edge from uj
to uσ. We then have

c(P ∗) =
σ∑

i=1

c(P ∗
i ) =

σ∑

i=1

[d(ui−1, ui) + ε(P ∗
i )]

≥ d(u0, uj−1) + d(uj , uσ) + σε(P ∗
j ) ≥ c(P̃ )

Because we considered all possible pairs to construct Bj ,

c(B) ≤ c(P̃ ) ≤ c(P ∗), and p(B) ≥ 1
σ p(P

∗). �

Using the 11
2 -approximation to the Small-Excess k-SSP, we round up to get a

value of σ = � 112 � = 6, and thus a 1
6 -approximation for Reduced-Profit k-SSP.
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Fourth – we approximate the repairman problem: Our approximation algorithm
for the repairman in a graph incorporates the preceding approximation algorithms
within the context of a dynamic programming algorithm with the same overall
structure as the algorithm for a tree. For each indexed period Si, from 1 up to
m, we process period Si as in PROCESS-PERIOD. The only difference is that in-
stead of takingR to be the path corresponding toLr(p) that results from SWEEP-
TREE(r), it takes R to be the output of REDUCED-PATH(sij , sab, p) on the set
Si − {sij}, where sij is the starting request in the path, sab is the ending request
in the path, and p is the profit of which the path must have a constant fraction. As
before, we identify the largest-profit path found and return the resulting service
run R̂ as the output of algorithm REPAIRMAN-GRAPH.

Theorem 4. The approximation ratio of REPAIRMAN-GRAPH is at least 1
18 .

Finally – we incorporate a mixed strategy approach: We can improve the overall
performance bound on the approximation to the k-SSP problem by combining
the k-MST approximation described above with a k-TSP approximation in a
mixed strategy approach [9]. It was claimed in [11] that the same technique used
to find a 2-approximation to k-MST can be used to find a 2-approximation to
k-TSP. Because details supporting this claim are not available, we assume a
constant β-approximation for k-TSP for the analysis below. From results in [10],
β ≤ 3.

We now state an algorithm using an approximation for k-TSP. We use a β-
approximation to k-TSP to find a (β + 1)-approximation to k-SSP in a way
similar to an algorithm given in [3]. First, we create a new set V ′ by merging
nodes s and t into a single node st. We run an all pairs shortest path algorithm
on V ′ and define metric d′ from d using shortest paths. Then, we run the k-TSP
approximation on set V ′ with root st and profit parameter k′ = k − 1, yielding
a tour Û ′. If we treat st as the points s and t at the same location, then Û ′ is a
k-path P̂ ′ from s to t. An optimal tour U ′∗ is an optimal k-path P ′∗ on V ′.

To obtain a k-path on V with the original metric, we expand the node st back
to s and t and delete all edges between s and t. If the degrees of s and t are even,
we add back one edge between them. Since the degrees of all other nodes will be
even and the degrees of s and t will be odd, we then get a k-path from s to t.
We call this algorithm TSP-FOR-SSP. Our algorithm MIXED-REPAIR selects
as P̂ the smaller of the paths found by MST-FOR-SSP and TSP-FOR-SSP.

Lemma 4. Path c(P̂ ) from MIXED-REPAIR satisfies c(P̂ ) ≤
(
2 + β

2

)
c(P ∗),

where P ∗ is an optimal solution to k-SSP and β is the approximation bound for
k-TSP.

Proof. By Lemma 2, c(P̂ ) ≤ 4c(P ∗)− d(s, t).
In the k-TSP formulation, since s and t are at the same location in V ′,

c(P̂ ′) = c(Û ′) ≤ βc(U ′∗) = βc(P ′∗).

Since it must be the case that c(P ′∗) ≤ c(P ∗),
c(P̂ ) ≤ c(P̂ ′) + d(s, t) ≤ βc(P ′∗) + d(s, t) ≤ βc(P ∗) + d(s, t).



Traveling Repairman and Speeding Deliveryman 129

When (4− β)c(P ∗) ≤ 2d(s, t), then the bound from k-MST dominates and
c(P̂ ) ≤ 4c(P ∗)− d(s, t) ≤ 4c(P ∗)− 1

2 (4− β)c(P ∗) =
(
2 + β

2

)
c(P ∗).

When (4− β)c(P ∗) > 2d(s, t), then the bound from k-TSP dominates and
c(P̂ ) ≤ βc(P ∗) + d(s, t) < βc(P ∗) + 1

2 (4− β)c(P ∗) =
(
2 + β

2

)
c(P ∗). �

This new performance bound for k-SSP correspondingly affects the bounds for
the other approximations. Using our

(
2 + β

2

)
-approximation to k-SSP yields a

(
5
2 + 3β

4

)
-approximation to the Small-Excess k-SSP problem. Noting that a 3-

approximation to k-TSP is given in [10], values of β such that 2 ≤ β ≤ 3 will
produce values of 4 or 5 for σ. Thus, the mixed strategy improves the performance
bound of the Reduced-Profit k-SSP algorithm to 1

4 or 1
5 , depending on the value

of β. Again, applying the Limited Loss Theorem:

Theorem 5. The approximation ratio of MIXED-REPAIR is at least 1
15 .

MIXED-REPAIR uses O(n14 logn) time. It makes O(n3) calls to REDUCED-
PATH, which makesO(n2) calls to SMALL-EXCESS, which makesO(n5) calls to
the k-MST approximation algorithm. The k-MST algorithm has two procedures
Q and T , each of which is run no more than n times. Procedure Q runs no
more than O(n) Goemans and Williamson linear programs, each of which takes
O(n2 logn) [12]. With the time for procedure T subsumed by the time for Q,
the time for the k-MST algorithm is O(n4 logn).

5 Deliveryman for a Tree

With the Small Speedup Theorem in our arsenal, the speeding deliveryman
algorithm on a tree is almost as cleanly conceived as the repairman on a tree.
When all requests share the same time window, we can find an optimal solution
as follows. For every possible starting request u and ending request v in the
period, we identify the direct path between u and v. Remove any leaf and its
adjacent edge if the leaf is not u or v or the location of a request, and repeat
until every leaf is either u or v or is the location of a request. We then double
up every edge in the slimmed down tree that is not the direct path from u to v,
and then identify the Euler path from u to v. Since we test all pairs of starting
and ending requests, we clearly find the shortest length path and therefore the
minimum necessary speed to visit all requests in the tree during a single period.
We can find the direct distances between all pairs in the tree and thus the length
of the shortest of the Euler paths in O(n2) time.

To approximate a solution to the problem on a tree over multiple periods,
we develop an algorithm to test if a specific speed is fast enough to visit all
requests during their periods. We use the idea behind the single-period solution
in conjunction with dynamic programming. TEST-SPEED processes every pe-
riod in order and finds the earliest-arriving paths starting at request u, ending
at request v, and visiting all requests in the period for every pair of requests
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u and v. It then glues each of these paths to the earliest-arriving paths which
visit all requests in previous periods and, for every request v in Si, keeps the
earliest-arriving complete path ending at v. Since it finds an earliest-arriving
path for a particular speed, finding a path which visits all requests during their
periods implies that the speed is sufficiently fast.

For u ∈ Si, let the arrival time Au be the earliest time at which a path visiting
all the requests in periods before Si arrives at request u before visiting any other
request in Si. For v ∈ Si, let the departure time Dv be the earliest time at which
a path visiting all requests in the periods up to and including Si ends at request
v. For u, v ∈ Si, let lengthuv be the length of the shortest path from u to v
which visits all requests in Si.

TEST-SPEED( speed )

For each request u in S1, set Au ← 0.
For i from 1 to m

For each request v in Si,
Dv ← minu∈Si

{Au + lengthuv/speed}
If Dv > last time instant of Si, then set Dv ← ∞.

For each request w in Si+1,
Aw ← max{ first time instant of Si+1,minv∈Si

{Dv + d(v, w)/speed}}
If Aw > last time instant of Si+1, then set Aw ← ∞.

If there exists a request v ∈ Sm such that Dv < ∞,
then return “feasible speed”, else return “speed too slow”.

In the next section, we will give a technique which allows us to find a service
tour T̂ on trimmed windows such that 1

2s(T̂ ) ≤ s(T ∗) ≤ s(T̂ ) where T ∗ is an
optimal service tour over trimmed windows. Using TEST-SPEED, our algorithm
DELIVERY-TREE binary searches in this range to find a speed within a factor
of 1+ ε of the optimal speed. We get a total of O(n3 log 1

ε ) time for DELIVERY-
TREE. Applying the Small Speedup Theorem gives:

Theorem 6. DELIVERY-TREE finds a service tour of speed at most 4+ε times
the optimal speed.

6 Deliveryman for a Graph

The algorithm for the deliveryman on a graph takes wonderfully direct advantage
of the Small Speedup Theorem, using a minimum spanning tree (MST) algorithm
as its main workhorse. Given an instance of the problem on trimmed windows,
we find an approximately minimum speed service tour in the following way. For
each period, we find an MST of the points inside. For every period Si but the
last, we find the shortest path which connects the MST of the points in Si to the
MST of the points in Si+1. Let the point in Si which is adjacent to that edge be
called vi, and let the point in Si+1 be called ui+1.
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Within each period Si, we double up all edges in the MST that are not on
the direct path from ui to vi and sequence all edges into an Euler path. We
then connect these m Euler paths by the edges (vi, ui+1) for 1 ≤ i < m. Thus,
we have created a service tour from u1 to vm. We then determine the minimum
speed at which this service tour can be taken and still visit all requests during
their trimmed time windows.

Let c(ui, vj) denote the cost of traveling from ui to vj along the service tour.
For all pairs i and j where 1 ≤ i ≤ m and i ≤ j ≤ m, we find the speed needed
to cover the tour from ui to vj and store these speeds in a set. The value of each
speed will be 2·c(ui,vj)

j−i+1 as the factor of 2 accounts for the .5 unit-time windows.
We search in this list until we find the lowest speed at which we can visit all
requests within their periods. As one of these pairs of vertices must define the
most constraining speed, we find the minimum speed at which we can travel T̂ .
The total running time for our algorithm DELIVERY-GRAPH will be O(n2).

Let T ∗ be the optimal tour over trimmed windows, and let T̂ be the tour
generated by our algorithm. Let T ∗

i be the subtour of tour T ∗ restricted to
requests inside period Si, and T̂i be the subtour of tour T̂ restricted to Si. A
proof by induction on i establishes:

Lemma 5. Traveling T̂ at a speed no greater than twice the minimum required
speed for T ∗, for each Si we never arrive at the first vertex in T ∗

i before arriving
at the first vertex in T̂i.

Theorem 7. DELIVERY-GRAPH finds a service tour of speed at most 8 times
the optimal speed.

7 Sketch of NP-Hardness on a Tree

NP-completeness proofs for many of the time-constrained traveling salesman
problems on a line were given in [17], but we know of no proof that the unit-
time window repairman problem in [2] is NP-hard. However, we give a sketch
of a proof that the repairman problem with unit-length time windows on a
tree is NP-hard. We use a reduction from a version of the partition problem
restricted to positive values: Given a multiset of n positive integers, decide
whether the multiset can be partitioned into two multisets which sum to the
same value, i.e. half the sum of all of the integers in the multiset. This problem is
NP-complete [13].

The idea behind our reduction is as follows. We assume that the sum of
the integers in the multiset is 2K. First create a central node u in a tree by
itself. For each integer in the multiset, create a node and connect it to u with
an edge having the cost of the integer. Then create the start and end nodes s
and t and connect them to u with edges of cost 6K. Also create the midpoint
node v and connect it to u with an edge of cost K. To complete the input for
the repairman problem, we must also associate at least one time window with
each node. Associate the time window [0, 6K] with s and [12K, 18K] with t.
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Associate the time window [6K, 12K] with the each of the nodes corresponding
to an integer and also to the central node u. Finally, associate two time windows,
[3K, 9K] and [9K, 15K], with the midpoint node v. Note that the graph is a tree
and that all the time windows are exactly 6K units long, meeting the unit-length
requirement. The optimal tour has just enough time to visit all of the nodes if
and only if it starts at the start node, visits a set of nodes whose integers sum
to K, visits the midpoint node, visits the remaining nodes which also sum to
exactly K, and finally ends at the end node.

While we have sketched a proof that assumes intervals closed on both ends, it
is possible to modify the proof for intervals closed on one end and open on the
other. A proof that the deliveryman problem on a tree with unit-time windows
is NP-hard follows the same form.
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Abstract. We study the Steiner Tree problem in the model of two-stage stochas-
tic optimization with non-uniform inflation factors, and give a poly-logarithmic
approximation factor for this problem. In this problem, we are given a graph
G = (V, E), with each edge having two costs cM and cT (the costs for Mon-
day and Tuesday, respectively). We are also given a probability distribution π :
2V → [0, 1] over subsets of V , and will be given a client set S drawn from this
distribution on Tuesday. The algorithm has to buy a set of edges EM on Monday,
and after the client set S is revealed on Tuesday, it has to buy a (possibly empty)
set of edges ET (S) so that the edges in EM ∪ ET (S) connect all the nodes in S.
The goal is to minimize the cM (EM ) + ES←π[ cT (ET (S) ) ].

We give the first poly-logarithmic approximation algorithm for this problem.
Our algorithm builds on the recent techniques developed by Chekuri et al. (FOCS
2006) for multi-commodity Cost-Distance. Previously, the problem had been
studied for the cases when cT = σ × cM for some constant σ ≥ 1 (i.e., the
uniform case), or for the case when the goal was to find a tree spanning all the
vertices but Tuesday’s costs were drawn from a given distribution π̂ (the so-called
“stochastic MST case”).

We complement our results by showing that our problem is at least as hard
as the single-sink Cost-Distance problem (which is known to be Ω(log log n)
hard). Moreover, the requirement that Tuesday’s costs are fixed seems essential:
if we allow Tuesday’s costs to dependent on the scenario as in stochastic MST,

the problem becomes as hard as Label Cover (which is Ω(2log1−ε n)-hard). As
an aside, we also give an LP-rounding algorithm for the multi-commodity Cost-
Distance problem, matching the O(log4 n) approximation guarantee given by
Chekuri et al. (FOCS 2006).

1 Introduction

This paper studies the Steiner tree problem in the framework of two-stage stochastic
approximation, which is perhaps best (albeit a bit informally) described as follows. On
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Monday, we are given a graph with two cost functions cM and cT on the edges, and a
distribution π predicting future demands; we can build some edges EM at cost cM . On
Tuesday, the actual demand set S arrives (drawn from the distribution π), and we must
complete a Steiner tree on the set S, but any edgesET bought on Tuesday cost cT . How
can we minimize our expected cost

cM (EM ) + ES←π[ cT (ET (S) ) ] ?

The Stochastic Steiner tree problem has been studied before in the special case when
Tuesday’s cost function cT is a scaled-up version of Monday’s costs cM (i.e., there is an
constant inflation factor σ > 1 such that cT (e) = σ × cM (e)); for this case, constant-
factor approximations are known [10, 12, 9]. While these results can be generalized in
some directions (see Section 1.1 for a detailed discussion), it has been an open question
whether we could handle the case when the two costs cM and cT are unrelated. (We will
refer to this case as the non-uniform inflation case, as opposed to the uniform inflation
case when the costs cM and cT are just scaled versions of each other).

This gap in our understanding was made more apparent by the fact that many other
problems such as Facility Location, Vertex Cover and Set Cover, were all shown to
admit good approximations in the non-uniform inflation model [22, 24]: in fact, the
results for these problems could be obtained even when the edge cost could depend on
the day as well as on the demand set appearing on Tuesday.

Theorem 1 (Main Theorem). There is an O(log2(min(N,λ)) log4 n log logn)-
approximation algorithm for the two-stage stochastic Steiner tree problem with non-
uniform inflation costs withN scenarios, on a graph with n nodes. Here λ=maxe∈E cT
(e)/cM (e), i.e., the maximum inflation over all edges.

This is the first non-trivial approximation algorithm for this problem. Note that the
cost of an edge can either increase or decrease on Tuesday; however, we would like
to emphasize that our result holds only when Tuesday’s costs cT do not depend on the
materialized demand set S. (Read on for a justification of this requirement).

We also show that the two-stage stochastic Steiner tree problem is at least as hard as
the single-source cost-distance problem.

Theorem 2 (Hardness). The two-stage stochastic Steiner tree problem is at least
Ω(log logn)-hard unless NP ⊆ DTIME(nlog log logn).

The hardness result in the above theorem holds even for the special case of Stochastic
Steiner tree when the cost of some edges remain the same between days, and the cost
of the remaining edges increases on Tuesday by some universal factor.

Finally, we justify the requirement that Tuesday’s costs cT are fixed by showing
that the problem becomes very hard without this requirement. Indeed, we can show the
following theorem whose proof is deferred to the journal paper.

Theorem 3. The two-stage stochastic Steiner tree problem when Tuesday’s costs are
dependent on the materialized demand is at least Ω(2log1−ε n) hard for every fixed
ε > 0.
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Finally, we also give an LP-rounding algorithm for the multi-commodity Cost-Distance
problem, matching the O(log4 n) approximation guarantee given by Chekuri et al. [4];
however, we note that the LP we consider is not the standard LP for the problem.

Our Techniques. Our approach will be to reduce our problem to a more general prob-
lem which we call Group-Cost-Distance:

Definition 4 (Group-Cost-Distance). Consider a (multi)graph G = (V,E) with
each edge having a buying cost be and a renting cost ce. Given a set of subsets S1, S2,
. . . , SN ⊆ V , find for each i a tree Ti that spans Si, so as to minimize the total cost

∑

e∈∪iTi

be +
N∑

i=1

∑

e∈Ti

ce. (1.1)

Defining F = ∪iTi and xe = number of trees using edge e, we want to minimize∑
e∈F

(be + xe ce).

The problem can also be called “multicast” cost-distance, since we are trying to find
multicast trees on each group that give the least cost given the concave cost functions on
each edge. Note that when each Si = {si, ti}, then we get the (Multicommodity) Cost-
Distance problem, for which the first poly-logarithmic approximation algorithms were
given only recently [4]; in fact, we build on the techniques used to solve that problem
to give the approximation algorithm for the Group-Cost-Distance problem.

1.1 Related Work

Stochastic Problems. For the Stochastic Steiner tree problem in the uniform inflation
case where all the edge-costs increase on Tuesday by the same amount σ, an O(log n)-
approximation was given by Immorlica et al. [16], and constant-factor approximations
were given by [10, 12, 9]. These results were extended to handle the case when the
inflation factors could be random variables, and hence the probability distribution would
be over tuples of the form (demand set S, inflation factor σ) [11, 15].

A related result is known for the Stochastic Minimum Spanning Tree problem, where
one has to connect all the vertices of the graph. In this case, we are given Monday’s
costs cM , and the probability distribution is over possible Tuesday costs cT . For this
problem, Dhamdhere et al. [7] gave an O(log n + logN) approximation, where N is
the number of scenarios. They solve an LP and randomly round the solution; however,
their random rounding seems to crucially require that all nodes need to be connected
up, and the idea does not seem to extend to the Steiner case. (Note that their problem is
incomparable to ours: in this paper, we assume that Monday’s and Tuesday’s costs were
deterministic whereas they do not; on the other hand, in our problem, we get a random
set of terminals on Tuesday, whereas they have to connect all the vertices which makes
their task easier).

Approximation algorithms for several other problems have been given in the non-
uniform stochastic setting; see [22, 24]. For a general overview of some techniques
used in stochastic optimization, see, e.g., [10, 24]. However, nothing has been known
for the Stochastic Steiner tree problem with non-uniform inflation costs.
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In many instances of the stochastic optimization problem, it is possible that the num-
ber of possible scenarios on Tuesday (i.e., the support of the distribution π) is exponen-
tially large. Charikar et al. [2] gave a useful technique by which we could reduce the
problem to a a much smaller number of scenarios (polynomial in the problem size and
inflation factors) by random sampling. We shall use this tool in our algorithm as well.

Buy-at-Bulk and Cost-Distance Problems. There has been a huge body of work on
so-called buy-at-bulk problems which model natural economies-of-scale in allocating
bandwidth; see, e.g., [3] and the references therein. The (single-source) Cost-Distance
problem was defined by Meyerson, Munagala and Plotkin [20]: this is the case of
Group-Cost-Distance with a root r ∈ V , and each Si = {ti, r}. They gave a ran-
domized O(log k)-approximation algorithm where k = |∪iSi|, which was later deran-
domized by Chekuri, Khanna and Naor [5]. (An online poly-logarithmic competitive
algorithm was given by Meyerson [19].) These results use a randomized pairing tech-
nique that keeps the expected demand at each node constant; this idea does not seem to
extend to Group-Cost-Distance. The Multicommodity Cost-Distance problem (i.e.,
with arbitrary source-sink pairs) was studied by Charikar and Karagiozova [3] who
gave an exp{

√
logn log logn}-approximation algorithm. Very recently, this was im-

proved to poly-logarithmic approximation ratio by Chekuri, Hajiaghayi, Kortsarz, and
Salavatipour [4] (see also [13, 14]). We will draw on several ideas from these results.

Embedding Graph Metrics into Subtrees. Improving a result of Alon et al. [1], Elkin
et al. [8] recently showed the following theorem that every graph metric can be approx-
imated by a distribution over its subtrees with a distortion of O(log2 n log logn).

Theorem 5 (Subtree Embedding Theorem). Given a graph G = (V,E), there ex-
ists a probability distribution DG over spanning trees of G such that for every x, y ∈
V (G), the expected distance E T←DG [dT (x, y)] ≤ βEEST dG(x, y) for βEEST =
O(log2 n log logn).

Note that spanning trees T trivially ensure that dG ≤ dT . The parameter βEEST will
appear in all of our approximation guarantees.

2 Reduction to Group Cost-Distance

Note that the distribution π may be given as a black-box, and may be very complicated.
However, using a theorem of Charikar, Chekuri, and Pál on using sample averages
[2, Theorem 2], we can focus our attention on the case when the probability distri-
bution π is the uniform distribution over some N sets S1, S2, . . . , SN ⊆ V , and hence
the goal is to compute edge sets E0

.= EM , and E1, E2, . . . , EN (one for each sce-
nario) such that E0 ∪Ei contains a Steiner tree on Si. Scaling the objective function by
a factor of N , we now want to minimize

N · cM (E0) +
N∑

i=1

cT (Ei) (2.2)

Basically, the N sets will just be N independent draws from the distribution π. We set
the value N = Θ(λ2ε−5m), where λ is a parameter that measures the “relative cost of
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information” and can be set to maxe cT (e)/cM (e) for the purposes of this paper, m is
the number of edges inG, and ε is a suitably small constant. Let ρST be the best known
approximation ratio for the Steiner tree problem [23]. The following reduction can be
inferred from [2, Theorem 3] (see also [25]):

Lemma 1 (Scenario Reduction). Given an α-approximation algorithm for the above
instance of the stochastic Steiner tree problem with N scenarios, run it independently
Θ(1/ε) times and take the best solution. With constant probability, this gives anO((1+
ε)α)-approximation to the original stochastic Steiner tree problem on the distribution π.

Before we go on, note that E0 and each of the E0 ∪ Ei are acyclic in an optimal solu-
tion. We now give the reduction to Group-Cost-Distance. Create a new (multi)graph,
whose vertex set is still V . For each edge e ∈ E in the original graph, we add two
parallel edges e1 (with buying cost be1 = N · cM (e) and renting cost ce1 = 0) and e2
(with buying cost be2 = 0 and renting cost ce2 = cT (e)). The goal is to find a set of N
trees T1, . . . , TN , with Ti spanning the set Si, so as to minimize

∑
e∈∪iTi

be +
∑N

i=1 c(Ti). (2.3)

It is easily verified that the optimal solution to the two objective functions (2.2) and (2.3)
are the same when we define the buying and renting costs as described above. Using
Lemma 1, we get the following reduction.

Lemma 2. An α-approximation for the Group-Cost-Distance problem implies an
O(α)-approximation for the non-uniform Stochastic Steiner tree problem.

(As an aside, if the distribution π consists of N scenarios listed explicitly, we can do
an identical reduction to Group-Cost-Distance, but now the value of N need not have
any relationship to λ.)

3 Observations and Reductions

Recall that a solution to the Group-Cost-Distance problem is a collection of trees
Ti spanning Si; their union is F = ∪iTi, and xe is the number of trees that use edge
e. Note that if we were just given the set F ⊆ E of edges, we could use the ρST -
approximation algorithm for finding the minimum cost Steiner tree to find trees T ′

i such
that c(T ′

i ) ≤ ρST c(Ti) for any tree Ti ⊆ F spanning Si. Let us define

cost(F) .= b(F) +
∑
i c(Ti); (3.4)

where Ti ⊆ F is the minimum cost Steiner tree spanning Si. We use OPT = F∗

to denote the set of edges used in an optimal solution for the Group-Cost-Distance
instance, and hence cost(OPT) is the total optimal cost. Henceforth, we may specify a
solution to an instance of the Group-Cost-Distance problem by just specifying the set
of edges F = ∪iTi, where Ti is the tree spanning Si in this solution.
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As an aside, note that cost(F) is the optimal cost of any solution using the edges
from F ⊆ E; computing cost(F) is hard given the set F, but that is not a problem since
it will be used only as an accounting tool. Of course, given F, we can build a solution
to the Group-Cost-Distance problem of cost within a ρST factor of cost(F).

We will refer to the sets Si as demand groups, and a vertex in one of these groups as
a demand vertex. For simplicity, we assume that for all i, |Si| is a power of 2; this can
be achieved by replicating some vertices.

3.1 The Pairing Cost-Distance Problem: A Useful Subroutine

A pairing of any set A is a perfect matching on the graph (A,
(
A
2

)
). The following tree-

pairing lemma has become an indispensable tool in network design problems (see [21]
for a survey):

Lemma 3 ( [18]). Let T ′ be an arbitrary tree and let v1, v2, . . . , v2q be an even number
of vertices in T ′. There exists a pairing of the vi into q pairs so that the unique paths
joining the respective pairs are edge-disjoint.

Let us define another problem, whose input is the same as that for Group-Cost-
Distance.

Definition 6 (Pairing Cost-Distance). Given a graph G = (V,E) with buy and
rent costs be and ce on the edges, and a set of demand groups {Si}i, the Pairing Cost-
Distance problem seeks to find a pairing Pi of the nodes in Si, along with a path
connecting each pair of nodes (x, y) ∈ Pi.

Let F′ be the set of edges used by these paths, and let x′e be the number of pairs using
the edge e ∈ F′, then the cost of a solution is

∑
e∈F′(be + x′e ce). As before, given

the set F′, we can infer the best pairing that only uses edges in F′ by solving a min-
cost matching problem: we let cost′(F′) denote this cost, and let OPT′ be the optimal
solution to the Pairing Cost-Distance instance.1 So, again, we can specify a solution
to the Pairing Cost-Distance problem by specifying this set F′. The following lemma
relates the costs of the two closely related problems:

Lemma 4. For any instance, the optimal cost cost′(OPT′) for Pairing Cost-Distance
is at most the optimal cost cost(OPT) for Group-Cost-Distance.

Proof. Let F be the set of edges bought by OPT for the Group-Cost-Distance prob-
lem. We construct a solution for the Pairing Cost-Distance problem. Recall that OPT
builds a Steiner tree Ti spanning Si using the edges in F. By Lemma 3, we can pair up
the demands in Si such that the unique paths between the pairs in Ti are pair-wise edge-
disjoint. This gives us a solution to Pairing Cost-Distance, which only uses edges in
F, and moreover, the number of times an edge is used is at most xe, ensuring a solution
of cost at most cost(OPT).

1 An important but subtle point: note that x′
e counts the number of paths that pass over an edge.

It may happen that all of these paths may connect pairs that belong to the same set Si, and cost
might have to pay for this edge only once: regardless, we pay multiple times in cost′.
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Lemma 5 (Reducing Group-Cost-Distance to Pairing Cost-Distance). If there
is an algorithm A for Pairing Cost-Distance that returns a solution F′ with
cost′(F′) ≤ α cost(OPT), we get an O(α logn)-approximation for the Group-Cost-
Distance problem.

Note that A is not a true approximation algorithm for Pairing Cost-Distance, since
we compare its performance to the optimal cost for Group-Cost-Distance; hence we
will call it an α-pseudo-approximation algorithm.

Proof. In each iteration, when we connect up pairs of nodes in Si, we think of taking
the traffic from one of the nodes and moving it to the other node; hence the number
of “active” nodes in Si decreases by a factor of 2. This can only go on for O(log n)
iterations before all the traffic reaches one node in the group, ensuring that the group
is connected using these pairing paths. Since we pay at most α cost(OPT) in each
iteration, this results in an O(α logn) approximation for Group-Cost-Distance.

4 An Algorithm for Pairing Cost-Distance

In this section, we give an LP-based algorithm for Pairing Cost-Distance; by
Lemma 5 this will imply an algorithm for Group-Cost-Distance, and hence for
Stochastic Steiner Tree.

We will prove the following result for Pairing Cost-Distance (PCD):

Theorem 7 (Main Result for Pairing Cost-Distance). There is an α =
O(βEEST log2H · logn) pseudo-approximation algorithm for the Pairing Cost-
Distance problem, where H = max{

∑
i |Si|, n}.

SinceH = O(Nn) and we think ofN ≥ n, this gives us anO(log2N log3 n log logn)
pseudo-approximation. Before we present the proof, let us give a high-level sketch. The
algorithm for Pairing Cost-Distance follows the general structure of the proofs of
Chekuri et al. [4]; the main difference is that the problem in [4] already comes equipped
with {s, t}-pairs that need to be connected, whereas our problem also requires us to
figure out which pairs to connect—and this requires a couple of new ingredients.

Loosely, we first show the existence of a “good” low density pairing solution—this
is a solution that only connects up some pairs of nodes in some of the sets Si (instead of
pairing up all the nodes in all the Si’s), but whose “density” (i.e., ratio of cost to pairs-
connected) is at most a βEEST factor of the density of OPT. Moreover, the “good”
part of this solution will be that all the paths connecting the pairs will pass through a
single “junction” node. The existence of this single junction node (which can now be
thought of as a sink) makes this problem look somewhat like a low-density “pairing”
version of single-sink cost-distance. We show how to solve this final subproblem within
an O(logH · log n) factor of the best possible such solution, which is at most βEEST
times OPT’s density. Finally, finding these low-density solutions iteratively and us-
ing standard set-cover arguments gives us a Pairing Cost-Distance solution with cost
O(βEEST log2H · logn) cost(OPT), which gives us the claimed theorem.
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4.1 Defining the Density

Consider an instance of the Pairing Cost-Distance (PCD) problem in which the cur-
rent demand sets are Ŝi. Look at a partial PCD solution that finds for each set Ŝi some
set Pi of ti ≥ 0 mutually disjoint pairs {xij , yij}tij=1 along with paths P ij connecting
these pairs. Let P = ∪iPi be the (multi)set of all these t =

∑
i ti paths. We shall use

P to denote both the pairs in it and the paths used to connect them. Denote the cost of
this partial solution by cost′(P) = b(∪P∈PP ) +

∑
P∈P c(P ). Let |P| be the number

of pairs being connected in the partial solution. The density of the partial solution P is
defined as cost′(P)

|P| . Recall that H = max{
∑
i |Si|, n} is the total number of terminals

in the Pairing Cost-Distance instance.

Definition 8 (f -dense Partial PCD solution). Consider an instance I of the Pairing
Cost-Distance problem: a Partial PCD solution P is called f -dense if

cost′(P)
|P| ≤ f · cost(OPT)

H(I) ,

where H(I) is the total number of terminals in the instance I.

Theorem 9. Given an algorithm to find f -dense Partial PCD solutions, we can find an
O(f logH)-pseudo-approximation to Pairing Cost-Distance.

To prove this result, we will use the following theorem which can be proved by standard
techniques (see e.g., [17]), and whose proof we omit.

Theorem 10 (Set Covering Lemma). Consider an algorithm working in iterations: in
iteration � it finds a subset P� of paths connecting up |P�| pairs. Let H� be the number
of terminals remaining before iteration �. If for every �, the solution P� is an f -dense
solution with cost′(P�)/|P�| ≤ f · cost(OPT)

H�
, then the total cost of the solution output

by the algorithm is at most f · (1 + lnH) · cost(OPT).

In the next section, we will show how to find a Partial PCD solution which is f =
O(βEEST logH · logn)-dense.

4.2 Finding a Low-Density Partial PCD Solution

We now show the existence of a partial pairing P of demand points which is βEEST -
dense, and where all the pairs in P will be routed on paths that pass through a common
junction point. The theorems of this section are essentially identical to corresponding
theorems in [4].

Theorem 11. Given an instance of Pairing Cost-Distance on G = (V,E), there ex-
ists a solution F′ to this instance such that (a) the edges in F′ induce a forest, (b) F′ is a
subset of OPT′ and hence the buying part of cost′(F′) ≤ b(OPT′), and (c) the renting
part of cost′(F′) is at most O(βEEST ) times the renting part of cost′(OPT′).

Proof Sketch. The above theorem can be proved by dropping all edges in E \ OPT′

and approximating the metric generated by rental costs ce in each resulting component
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by a random subtree drawn from the distribution guaranteed by Theorem 5. We chose
a subset of OPT′, and hence the buying costs cannot be any larger. Since the expected
distances increase by at most βEEST , the expected renting cost increases by at most
this factor. And since this holds for a random forest, by the probabilistic method, there
must exist one such forest with these properties. �

Definition 12 (Junction Tree). Consider a solution to the Partial PCD problem with
paths P , and which uses the edge set F′. The solution is called a junction tree if the
subgraph induced by F′ is a tree and there is a special root vertex r such that all the
paths in P contain the root r.

As before, the density of a solution P is the ratio of its cost to the number of pairs
connected by it. We can now prove the existence of a low-density junction tree for the
Partial PCD problem. The proof of this lemma is deferred to the journal paper.

Lemma 6 (Low-Density Existence Lemma). Given an instance of Pairing Cost-
Distance problem, there exists a solution to the Partial PCD solution which is a junc-
tion tree and whose density is 2βEEST · cost′(OPT′)

H ≤ 2βEEST · cost(OPT)
H .

In the following section, we give an O(logH · logn)-approximation algorithm for find-
ing a junction tree with minimum density. Since we know that there is a “good” junction
tree (by Lemma 6), we can combine that algorithm with Lemma 6 to get a Partial PCD
solution which is f = O(βEEST logH · logn)-dense.

4.3 Finding a Low-Density Junction Tree

In this section, we give an LP-rounding based algorithm for finding a junction tree
with density at most O(logH · logn) times that of the min-density junction tree. Our
techniques continue to be inspired by [4]; however, in their paper, they were given a
fixed pairing by the problem, and had to figure out which ones to connect up in the
junction tree. In our problem, we have to both figure out the pairing, and then choose
which pairs from this pairing to connect up; we have to develop some new ideas to
handle this issue.

The Linear-Programming Relaxation. Recall the problem: we are given sets Si, and
want to find some partial pairings for each of the sets, and then want to route them
to some root vertex r so as to minimize the density of the resulting solution. We will
assume that we know r (there are only n possibilities), and that the sets Si are disjoint
(by duplicating nodes as necessary).

Our LP relaxation is an extension of that for the Cost-Distance problem given
by Chekuri, Khanna, and Naor [5]. The intuition is based on the following: given a
junction-tree solution F′, let P ′ denote the set of pairs connected via the root r. Now
F′ can also be thought of as a solution to the Cost-Distance problem with root r and
the terminal set ∪(u,v)∈P′{u, v}. Furthermore, the cost cost′(E′) is the same as the op-
timum of the Cost-Distance problem. (This is the place when the definition of cost′

becomes crucial—we can use the fact that the cost measure cost′ is paying for the num-
ber of paths using an edge, not the number of groups using it).
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Let us write an IP formulation: let S = ∪iSi denote the set of all terminals. For each
demand group Si and each pair of vertices u, v ∈ Si, the variable zuv indicates whether
we match vertices u and v in the junction tree solution or not. To enforce a matching, we
ask that

∑
u zuv =

∑
v zuv ≤ 1. For each e ∈ E, the variable ye denotes whether the

edge e is used; for each path from some vertex u to the root r, we let fP denote whether
P is the path used to connect u to the root. Let Pu be the set of paths from u to the root r.
Clearly, we want

∑
P∈Pu

fP ≤ xe for all e ∈ P . Moreover,
∑
P∈Pu

fP ≥
∑
v∈Si

zuv
for each u ∈ Si, since if the node u is paired up to someone, it must be routed to the
root. Subject to these constraints (and integrality), we want to minimize

min

∑
e∈E bexe +

∑
u∈S
∑

P∈Pu
c(P ) fP

∑N
i=1

∑
u,v∈Si

zuv
(4.5)

It is not hard to check that this is indeed an ILP formulation of the min-density junction
tree problem rooted at r. As is usual, we relax the integrality constraints, guess the value
M ≥ 1 of the denominator in the optimal solution, and get:

min
∑

e∈E be xe +
∑

u∈S
∑

P∈Pu
c(P ) fP (LP1)

s.t.
∑N

i=1

∑
u,v∈Si

zuv = M
∑
P∈Pu:Pe fP ≤ xe for all u ∈ S
∑
P∈Pu

fP ≥
∑
v∈Si

zuv for all u ∈ Si, i ∈ [1..N ]
∑

v∈Si
zuv ≤ 1 for all u ∈ Si, i ∈ [1..N ]

xe, fP , zuv = zvu ≥ 0

We now show that the integrality gap of the above LP is small.

Theorem 13. The integrality gap of (LP1) is O(logH · logn). Hence there is an
O(logH · logn)-approximation algorithm for finding the minimum density junction
tree solution for a given Partial PCD instance.

Proof. Consider an optimal fractional solution given by (x∗, f∗, z∗) with value LP ∗.
We start off with z = z∗, and will alter the values in the following proof. Consider each
set Si, and let wi =

∑
u,v∈Si

z∗uv be the total size of the fractional matching within
Si. We find an approximate maximum weight cut in the complete graph on the nodes
Si with edge weights zuv—this gives us a bipartite graph which we denote by Bi; we
zero out the zuv values for all edges (u, v) ∈ Si × Si that do not belong to the cut Bi.
How does this affect the LP solution? Since the weight of the max cut we find is at least
wi/2, we are left with a solution where

∑N
i=1

∑
u,v∈Si

zuv ≥ M/2 (and hence that
constraint is almost satisfied).

Now consider the edges in the bipartite graph Bi, with edge weights zuv—if this
graph has a cycle, by alternatively increasing and decreasing the values of z variables
along this even cycle by ε in one of the two directions, we can make zu′v′ zero for at
least one edge (u′, v′) of this cycle without increasing the objective function. (Note that
this operation maintains all the LP constraints.) We then delete the edge (u′, v′) from
Bi, and repeat this operation until Bi is a forest.
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Let us now partition the edges of the various such forests {Bi}Ni=1 into O(logH)
classes based on their current z values. Let Zmax = maxu,v zuv, and define p = 1 +
2 �logH� = O(logH). For each a ∈ [0..p], define the set Ca to contain all edges
(u, v) with Zmax/2a+1 < zuv ≤ Zmax/2a; note that the pairs (u, v) �∈ ∪pa=1Ca have a
cumulative zuv value of less than (say) Zmax/4 ≤ M/4. Hence, by an easy averaging
argument, there must be a class Ca with

∑
(u,v)∈Ca

zuv ≥ Ω(M/ logH). Define Za =
Zmax/2a; hence |Ca|Za = Ω(M/ logH).

Since we have restricted our attention to pairs in Ca, we can define Bia = Bi ∩ Ca,
which still remains a forest. For any tree T in this forest, we apply the tree-pairing
lemma on the nodes of the tree T , and obtain a matching C′ia on Si of size �|V (T )|/2�.
Defining C′a = ∪iC′ia, we get that |C′a|Za = Ω(M/ logH) as well.

Finally, we create the following instance of the Cost-Distance problem. The ter-
minal set contains all the terminals that are matched in C′a, and the goal is to connect
them to the root. Set the values of the variables f̃P = f∗

P /Za and x̃e = xe/Za. These
settings of variables satisfy the LP defined by [5] for the instance defined above. The
integrality gap for this LP is O(log n) and so we get a solution with cost′ at most
O(log n) ·LP ∗/Za. However, this connects up |C′a| = Ω( M

Za logH ) pairs, and hence the

density is O(logH · logn)LP
∗

M , hence proving the theorem.

5 Reduction from Single-Sink Cost-Distance

Theorem 14. If there is a polynomial time α-approximation algorithm for the two-
stage stochastic Steiner tree problem, then there is a polynomial time α-approximation
algorithm for the single-source cost-distance problem.

The hardness result of Theorem 2 follows by combining the above reduction with a
result of Chuzhoy et al. [6] that the single-source cost-distance problem cannot be ap-
proximated to better than Ω(log logn) ratio under complexity theory assumptions.

Proof of Theorem 14. Consider an instance of the Cost-Distance problem: we are
given a graph G = (V,E), a root vertex r, and a set S of terminals. Each edge e has
buying cost be and rental cost ce. A solution specifies a set of edges E′ which spans the
root and all the nodes in S: if the shortest path in (V,E′) from u ∈ S to r is Pu, then
the cost of the solution is b(E′) +

∑
u∈S c(Pu). We take any edge with buying cost be

and rental cost ce, and subdivide this edge into two edges, giving the first of these edges
a buying cost of be and rental cost∞, and the other edge gets buying cost∞ and rental
cost ce.

We reduce this instance to the two-stage stochastic Steiner tree problem where the
scenarios are explicitly specified. The instance of the stochastic Steiner tree problem
has the same graph. There are |S| scenarios (each with probability 1/|S|), where each
scenario has exactly one unique demand from S. For an edge e which can only be
bought, we set cM (e) = be and cT (e) = ∞; hence any such edge must necessarily be
bought on Monday, if at all. For an ewhich can only be rented, we set cM (e) = cT (e) =
|S| · ce; note that there is no advantage to buying such an edge on Monday, since we
can buy it on Tuesday for the same cost if needed — in the rest, we will assume that
any optimal solution is lazy in this way.
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It can now be verified that there is an optimal solution to the Stochastic Steiner Tree
problem where the subset F ′ of edges bought in the first stage are only of the former
type, and we have to then buy the “other half” of these first-stage edges to connect to
the root in the second stage, hence resulting in isomorphic optimal solutions. �

6 Summary and Open Problems

In this paper, we gave a poly-logarithmic approximation algorithm for the stochastic
Steiner tree problem in the non-uniform inflation model. Several interesting questions
remain open. When working in the black-box model, we apply the scenario reduction
method of Charikar et al. [2], causing the resulting number of scenarios N to be a
polynomial function of the parameter λ, which is bounded by the maximum inflation
factor on any edge. Hence our running time now depends on λ, and the approximation
ratio depends on logλ. Can we get results where these measures depend only on the
number of nodes n, and not the number of scenarios N?

In another direction, getting an approximation algorithm with similar guarantees for
(a) the stochastic Steiner Forest problem, i.e., where each scenario is an instance of the
Steiner forest problem, or (b) the k-stage stochastic Steiner tree problem, remain open.
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A An LP-Based Algorithm for Multicommodity Cost-Distance

In their paper, Chekuri et al. [4] give an approximation algorithm for the Multi-
commodity Cost-Distance problem using a combination of combinatorial and LP-
based techniques. We now give an LP-based algorithm for the Multicommodity Cost-
Distance problem with an approximation guarantee of O(log4 n), thus matching the
result of [4] using a different approach. (Note that this is not the standard LP for the
Multicommodity Cost-Distance problem, which we do not currently know how to
round).

Take an instance of Multicommodity Cost-Distance: let Si = {si, ti} be each
terminal pair we want to connect, and S = ∪iSi. Consider the following linear
program:



Stochastic Steiner Tree with Non-uniform Inflation 147

Z∗
MCD = min

∑
e∈E be ze(p) +

∑
u∈S
∑
P∈Pu∗

c(P ) fP (LP-MCD)

s.t.
∑
p∈V x(u, p) ≥ 1 for all u ∈ S
∑
P∈Pu,p

fP ≥ x(u, p) for all u ∈ S, p ∈ V
∑

P∈Pu,p:Pe fP ≤ ze(p) for all u ∈ S, p ∈ V
x(si, p) = x(ti, p) for all i, p ∈ V

x(u, p), fP , ze(p) ≥ 0

To understand this, consider the ILP obtained by adding the constraints that the vari-
ables are all {0, 1}. Each solution assigns each terminal u to one junction node p
(specified by x(u, p)) such that each si-ti pair is assigned to the same junction (since
x(si, p) = x(ti, p)). It then sends the unit flow at the terminal using flow fP to this
junction p, ensuring that if an edge e is used, it has been purchased (i.e., ze(p) = 1).
The unusual part of this ILP is that the buying costs of the edge are paid not just once,
but once for each junction that uses this edge. (If all the variables ze(p) would be re-
placed by a single variable ze, we would get back the standard ILP formulation of
Multicommodity Cost-Distance).

Lemma 7. Each integer solution to (LP-MCD) is an solution to the Multicommod-
ity Cost-Distance problem with the same cost. Moreover, any solution to the Multi-
commodity Cost-Distance problem with cost OPT can be converted into a solution
for (LP-MCD) with cost at most O(log n)× OPT.

While we defer the proof of this theorem to the final version of the paper, we note
that the former statement is trivial from the discussion above, and the second statement
follows from the paper of Chekuri et al. [4, Theorem 6.1]. Hence, it suffices to show
how to round (LP-MCD).

A.1 Rounding the LP for Multicommodity Cost-Distance

In this section, we show how to round (LP-MCD) to get an integer solution with cost
O(log3 n)× Z∗

MCD. The basic idea is simple:

– Given a fractional solution, we first construct a (feasible) partial solution with
x̂(u, p) ∈ {0, 1} but with fractional fP and ze(p) values. The expected cost of
this partial solution is O(log2 n)× Z∗

MCD.
– Since the x̂ values are integral in this partial solution, each terminal u sends unit

flow to some set of junctions p (chosen by x̂(u, p)), such that each pair si, ti sends
flow to the same set of junctions. We can choose one of these junctions arbitrarily,
and hence each terminal pair is assigned to some junction.

– Finally, note that all the flows to any junction p can be supported by fractional ze(p)
capacities; these capacities are entirely separate from the capacities ze(p′) for any
other terminal p′ in the graph. Hence the problem decomposes into several single-
sink problems (one for each junction), and we can use the rounding algorithm of
Chekuri et al. [5] to round the solutions for each of the junctions p independently
to obtain integer flows fP and integer capacities ze(p) while losing only another
O(log n) in the approximation.
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The last two steps are not difficult to see, so we will focus on the first rounding step (to
make the x(u, p) variables integral). The rounding we use is a fairly natural one, though
not the obvious one.

1. Modify the LP solution to obtain a feasible solution where all x(u, p) values lie
between 1/n3 and 1, and each x(u, p) = 2η(u,p) for η(u, p) ∈ Z≥0. This can be
done losing at most O(1) times the LP cost.

2. For each junction p, pick a random threshold Tp ∈R [1/n3, 1] independently and
uniformly at random. Then round up fP for all P ∈ P∗p, and all ze(p) by a factor
of 1/T . Note that if x(u, p) ≥ T , then we can send at least 1 unit of (fractional)
flow from u to p using these scaled-up capacities ze(p). We set x̂(u, p) = 1, and
call the terminal u satisfied by the junction p. (Note that since x(si, p) = x(ti, p),
if si is satisfied by u then so is ti.)

3. We repeat the threshold rounding scheme in the previous step O(log n) times. We
return a solution {x̂, f̂ , ẑ}, where x̂(u, p) is as described above, and f̂ , ẑ are ob-
tained by summing up all the scaled-up values of f and z over all the O(log n)
steps.

We now show that each terminal has been satisfied with high probability, and that the
expected cost of each solution produced in the second step above is O(log n)×Z∗

MCD.

Lemma 8. The expected cost of the second step above is O(log n)× Z∗
MCD.

Proof. The variable ze(p) gets scaled up to ze(p)/T , whose expected value is
∫ 1

T=1/n3 ze(p)/TdT = ze(p)×O(logN). The same holds for the fP variables.

Lemma 9. Each terminal u is satisfied by a single round of threshold rounding with
constant probability, and hence will be satisfied in at least one of O(log n) rounds with
probability 1− 1/ poly(n).

Lemma 10. The above scheme gives a feasible solution {x̂, f̂ , ẑ} to (LP-MCD) with
x̂ ∈ {0, 1} and cost at most O(log2 n)× Z∗

MCD.

Finally, looking at this solution, decomposing it for each junction p, and using the [5]
rounding scheme converts the flows f̂ and the capacities ẑ to integers as well. Combin-
ing this with Lemma 7 gives us another proof for the following result.

Theorem 15. There is anO(log4 n) approximation algorithm for the Multicommodity
Cost-Distance problem based on LP rounding.



On the Approximation Resistance of a Random

Predicate

Johan H̊astad

Royal Institute of Technology, Stockholm, Sweden

Abstract. A predicate is approximation resistant if no probabilistic
polynomial time approximation algorithm can do significantly better
then the naive algorithm that picks an assignment uniformly at ran-
dom. Assuming that the Unique Games Conjecture is true we prove that
most Boolean predicates are approximation resistant.

1 Introduction

We consider constraint satisfaction problems (CSPs) over the Boolean domain.
In our model a problem is defined by a k-ary predicate P and an instance is given
by a list of k-tuples of literals. The task is to find an assignment to the variables
such that all the k-bit strings resulting from the list of k-tuples of literals under
the assignment satisfy the predicate P . In this paper we focus on Max-CSPs
which are optimization problems where we try to satisfy as many constraints as
possible.

The most famous such problem is probably Max-3-Sat where k = 3 and P is
simply the disjunction of the three bits. Another problem that (almost) falls into
this category is Max-Cut, in which k = 2 and P is non-equality. In traditional
Max-Cut we do not allow negations among the literals and if we do allow negation
the problem becomes Max-E2-Lin-2, linear equations modulo 2 with exactly two
variables in each equation.

It is a classical result that most Boolean CSPs are NP-complete. Already
in 1978 Schaefer [12] gave a complete characterization giving only 5 classes for
which the problem is in P while establishing NP-completeness in the other cases.

Of course if a CSP is NP-complete, the corresponding Max-CSP is NP-hard.
The converse is false and several of Schaefer’s easy satisfiability problems are
in fact NP-hard as optimization problems. We turn to study approximation
algorithms. An algorithm is here considered to be a C-approximation if it, on
each input, finds an assignment with an objective value that is within a factor
C of the optimal solution. We allow randomized approximation algorithms and
in such a case it is sufficient that the expected value, over the random choices of
the algorithm, of the objective value satisfies the desired bound.

To define what is non-trivial is a matter of taste but hopefully there is some
consensus that the following algorithm is trivial: Without looking at the instance
pick a random value for each variable. We say that an approximation ratio is
non-trivial if it gives a value of C that is better than the value obtained by this
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trivial algorithm. We call a predicate approximation resistant if it is NP-hard to
achieve a non-trivial approximation ratio.

It is perhaps surprising but many CSPs are approximation resistant and
one basic example is Max-3-Sat [6]. The famous algorithm of Goemans and
Williamson [1] shows that Max-Cut is not approximation resistant and this re-
sult can be extended in great generality and no predicate that depends on two
inputs from an arbitrary finite domain can be approximation resistant [7].

Zwick [14] established approximability results for predicates that depend on
three Boolean inputs and from this it follows that the only predicates on three
inputs that are approximation resistant are those that are implied by parity or
its negation. A predicate P is implied by a predicate Q iff whenever Q(x) is
true so is P (x) and as an example the negation of parity implies disjunction
as if we know that an odd number of variables are true they cannot all be
false.

Many scattered results on (families of) wider predicates do exist [4,10] and in
particular Hast [5] made an extensive classification of predicates on four inputs.
Predicates that can be made equal by permuting the inputs or negating one or
more inputs behave the same with respect to approximation resistance and with
this notion of equivalence there are 400 different non-constant predicates on 4
Boolean inputs. Hast proved that 79 of these are approximation resistant, estab-
lished 275 to be non-trivially approximable leaving the status of 46 predicates
open. Zwick [13] has obtained numerical evidence suggesting that most of the
latter predicates are in fact non-trivially approximable.

The main result of this paper is to give evidence that a random predicate for a
large value of k is approximation resistant. The result is only evidence in that it
relies on the Unique Games Conjecture (UGC) of Khot [8] but on the other hand
we establish that a vast majority of the predicates are approximation resistant
under this assumption.

We base our proof on the recent result by Samorodnitsky and Trevisan [11]
that establishes that if d is the smallest integer such that 2d − 1 ≥ k then there
is a predicate of width k that accepts only 2d of the 2k possible k-bit strings
and which, based on the UGC, is approximation resistant. We extend their
proof to establish that any predicate implied by their predicate is approximation
resistant.

To establish our main result we proceed to prove that a random predicate is
implied by some predicate which is equivalent to the predicate of Samorodnit-
sky and Trevisan. This is established by a second moment method. A standard
random predicate on k bits is constructed by, for each of the 2k inputs, flipping
an unbiased coin to determine whether that input is accepted. It turns out that
our results apply to other spaces of random predicates. In fact, if we construct a
random predicate by accepting each input with probability k−c for some c > 0
we still, with high probability for sufficiently large k, get an approximation re-
sistant predicate. Here c is a number in the range [1/2, 1] that depends on how
close k is to the smallest number of the form 2d − 1 larger than k.
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We make the proof more self contained by reproving one main technical lemma
of [11] relating to Gowers uniformity norms and influences of functions. Our proof
is similar in spirit to the original proof but significantly shorter and we hence
believe it is of independent interest.

Of course the contribution of this paper heavily depends on how one views the
Unique Games Conjecture, UGC. At the least one can conclude that it will be
difficult to give a non-trivial approximation algorithm for a random predicate.
Our results also point to the ever increasing need to settle the UGC.

An outline of the paper is as follows. We start by establishing some notation
and giving some definitions in Section 2. We prove the lemmas relating to Gowers
uniformity in Section 3 and proceed to establish that any predicate implied by
the predicate used by Samorodnitsky and Trevisan is approximation resistant in
Section 4. We then present our applications of this theorem by first establishing
that a random predicate is approximation resistant in Section 5 and that all
very dense predicates are approximation resistant in Section 6. We end with
some concluding remarks in Section 7.

2 Preliminaries

We consider functions mapping {−1, 1}n into the real numbers and usually into
the interval [−1, 1]. In this paper we use {−1, 1} as the value set of Boolean
variables but still call the values “bits”. For x, x′ ∈ {−1, 1}n we let x · x′ denote
the coordinate-wise product. In {0, 1}n-notation this is the simply the exclusive-
or of vectors.

For any α ⊆ [n] we have the character χα defined by

χα(x) =
∏

i∈α
xi

and the Fourier expansion is given by

f(x) =
∑

α⊆[n]

f̂αχα(x).

We are interested in long codes coding v ∈ [L]. This is a function {−1, 1}L →
{−1, 1} and if A is the long code of v then A(x) = xv. We want our long codes to
be folded, which means that they only contain values for inputs with x0 = 1. The
value when x0 = −1 is defined to be −A(−x). This ensures that the function is
unbiased and that the Fourier coefficient corresponding to the empty set is 0.

For two sets α and β we let αΔβ be the symmetric difference of the two sets.
The influence infif is the expected variance of f when all variables except xi

are picked randomly and uniformly. It is well known that

infi =
∑

i∈α
f̂2
α.
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The following lemma from [10] is useful.

Lemma 2.1. Let (fj)kj=1, {−1, 1}n → [−1, 1] be k functions, and

f(x) =
k∏

j=1

fj(x).

Then, for every i ∈ [n], infi(f) ≤ k
∑k
j=1 infi(fj).

The pairwise cross influence of a set of functions (fj)kj=1 is defined to be the
maximal simultaneous influence in any two of the functions or more formally

cinfi(fj)kj=1 = max
j1 �=j2

min(infi(fj1), infi(fj2)).

Let P be a predicate on k Boolean inputs. An instance of the problem Max-
CSP(P ) is given by a list of k-tuples of literals. The task is to find the assignment
to the variables that maximizes the number of k-tuples that satisfy P .

An algorithm is a C-approximation if it, for any instance I of this problem,
produces an assignment which satisfies at least C · Opt(I) constraints where
Opt(I) is the number of constraints satisfied by an optimal solution.

Let d(P ) be the fraction of k-bit strings accepted by P . The trivial algorithm
that just picks a random assignment satisfies, on the average, a d(P )-fraction
of the constraints and as an optimal solution cannot satisfy more than all the
constraints this yields a (randomized) d(P )-approximation algorithm. We have
the following definition.

Definition 2.1. A predicate P is approximation resistant if, for any ε > 0, it
is NP-hard to approximate Max-CSP(P ) within d(P ) + ε.

Some predicates have an even stronger property.

Definition 2.2. A predicate P is hereditary approximation resistant if any
predicate Q implied by P is approximation resistant.

3 Gowers Uniformity and Influence

Gowers [2,3] introduced the notion of dimension-d uniformity norm Ud(f) which
was used in an essential way by Samorodnitsky and Trevisan [11]. Their result
says that if a function does not have an influential variable and is unbiased then
the dimension-d uniformity norm is small. More importantly for their applica-
tion, [11] also proved that if a set of functions has small cross influences and
at least one function is unbiased then the corresponding product is small. We
slightly extend their result by allowing a small bias of the involved functions.
Allowing this extension makes it possible to give a short, direct proof.

We want to emphasize that the results obtained by Samorodnitsky and Tre-
visan are sufficient for us but we include the results of this section since we
believe that our proofs are simpler and that the extension might be interesting
on its own and possibly useful in some other context.
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Theorem 3.1. Let f : {−1, 1}n → [−1, 1] be a function with maxi infi(f) ≤ ε
and |E[f ]| ≤ δ, then

∣
∣
∣
∣
∣
∣
Ex1,...xd

⎡

⎣
∏

S⊆[d]

f

(
∏

i∈S
xi

)⎤

⎦

∣
∣
∣
∣
∣
∣
≤ δ + (2d−1 − 1)

√
ε.

Proof. We prove the theorem by induction over d. Clearly it is true for d = 1 as
the quantity to estimate equals |f(1n)E[f ]|.

For the induction step let gx
d

(x) = f(x)f(x · xd). Then, by Lemma 2.1,
maxi infigx

d ≤ 4ε. Furthermore

Ex[gx
d

] = 2−n
∑

x

f(x)f(x · xd) = f ∗ f(xd)

and let us for notational simplicity denote this function by h(xd). As convolution
turns into product on the Fourier transform side we have ĥα = f̂2

α. For any α �= ∅
we have f̂2

α ≤ maxi infi(f) ≤ ε and hence

‖h‖22 =
∑

α

ĥ2
α =

∑

α

f̂4
α ≤ f̂4

∅ + ε
∑

α�=∅
f̂2
α ≤ δ4 + ε.

This implies, using the Cauchy-Schwartz inequality, that

Exd [|Ex[gx
d

(x)]|] ≤
√
δ4 + ε ≤ δ2 +

√
ε ≤ δ +

√
ε. (1)

Now
∣
∣
∣
∣
∣
∣
Ex1,...xd

⎡

⎣
∏

S⊆[d]

f

(
∏

i∈S
xi

)⎤

⎦

∣
∣
∣
∣
∣
∣
≤ Exd

∣
∣
∣
∣
∣
∣
Ex1,...xd−1

⎡

⎣
∏

S⊆[d−1]

gx
d

(
∏

i∈S
xi

)⎤

⎦

∣
∣
∣
∣
∣
∣
,

which, by induction, is bounded by

Exd

[
|Ex[gx

d

]|+ (2d−2 − 1)
√

4ε
]
≤ δ + (2d−1 − 1)

√
ε.

Note that by doing some more calculations we can get a better bound as a
function of δ by not doing the wasteful replacement of δ2 by δ in (1). We proceed
to allow the functions to be different and require the pairwise cross influence to
be small.

Theorem 3.2. Let (fS)S⊆[d] be a set of functions {−1, 1}n→ [−1, 1],with maxi
cinfi(fS) ≤ ε and minS �=∅ |E[fS ]| ≤ δ, then

∣
∣
∣
∣
∣
∣
Ex1,...xd

⎡

⎣
∏

S⊆[d]

fS(
∏

i∈S
xi)

⎤

⎦

∣
∣
∣
∣
∣
∣
≤ δ + (2d − 2)

√
ε.
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Proof. We use induction over d. The base case d = 1 is straightforward and let
us do the induction step.

By a change of variables we can assume that |E[f[d]]| ≤ δ. Now define a new
set of functions by

gx
d

S (x) = fS(x)fS∪{d}(x · xd),

for any S ⊆ [d−1]. The cross influence of this set of functions is, by Lemma 2.1,
bounded by 4ε. Let h(xd) be the average of gx

d

[d−1]. Then h = f[d−1] ∗ f[d] and

ĥα = f̂[d−1],αf̂[d],α which yields

‖h‖22 =
∑

α

ĥ2
α = f̂2

[d−1],∅f̂
2
[d],∅ +

∑

α�=∅
f̂2
[d−1],αf̂

2
[d],α ≤

δ2+
∑

α�=∅
min(f̂2

[d−1],α, f̂
2
[d],α)(f̂2

[d−1],α+f̂2
[d],α) ≤ δ2+

∑

α�=∅
ε(f̂2

[d−1],α+f̂2
[d],α) ≤ δ2+2ε.

Using induction we get
∣
∣
∣
∣
∣
∣
Ex1,...xd

⎡

⎣
∏

S⊆[d]

fS

(
∏

i∈S
xi

)⎤

⎦

∣
∣
∣
∣
∣
∣
≤ Exd

∣
∣
∣
∣
∣
∣
Ex1,...xd−1

⎡

⎣
∏

S⊆[d−1]

gS

(
∏

i∈S
xi

)⎤

⎦

∣
∣
∣
∣
∣
∣
≤

Exd

[
|E[gx

d

[d−1]]|+ (2d−1 − 2)
√

4ε
]
≤ δ + 2

√
ε+ (2d − 4)

√
ε ≤ δ + (2d − 2)

√
ε.

4 The ST-Predicate

Assume that 2d−1 ≤ k ≤ 2d− 1. For any integer i with 1 ≤ i ≤ 2d− 1 let î ⊆ [d]
be the set whose characteristic vector is equal to the binary expansion of i. We
define PST (x), a predicate on k-bit strings, to be true if for all triplets i1, i2, and
i3 such that î1Δî2 = î3 we have xi1xi2 = xi3 . Of course the predicate depends
on k but as k (and d) remains fixed we suppress this dependence.

It is not difficult to see that the accepted strings form a linear space of di-
mension d. In fact the following procedure for picking a random string accepted
by PST is a good way to visualize the predicate. For each i that is a power of
two set xi to a random bit. For other values of i set

xi =
∏

j∈î

x2j .

Now consider Max-CSP(PST ) and the following theorem is from [11].

Theorem 4.1. Assuming the UGC, for any ε > 0, it is NP-hard to approximate
Max-CSP(PST ) within 2d−k + ε.

Equivalently, the theorem says that PST , assuming UGC, is approximation re-
sistant, but we need more.
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Theorem 4.2. Assuming UGC, PST is hereditary approximation resistant.

It is satisfying to note that for k = 3 the predicate PST is simply parity and
hence this instance of the theorem was proved in [6] without using the UGC.

Proof. LetQ be any predicate of arity k implied by PST . Our proof is very similar
to the proof of [11] but we use a slightly different terminology. We assume that
the reader is familiar with Probabilistically Checkable Proofs (PCPs) and their
relation to inapproximability result for Max-CSPs. Details of the connection can
be found in many places, one possible place being [6]. The short summary is
that for any γ > 0 we need to define a PCP where the acceptance condition is
given by the predicate Q and such that it is hard to distinguish the case when
the maximal acceptance probability is 1 − γ and the case when the maximal
acceptance probability is d(Q)+γ. It is also needed that the verifier uses O(log n)
random bits when checking proofs of statements of size n. The latter property
implies that the proof is of polynomial size.

As in [11] we use a form of the UGC which, using the terminology of [11],
is called the k-ary unique games. We have variables (vi)ni=1 taking values in a
finite domain of size L, which we assume to be [L]. A constraint is given by
a k-tuple, (vij )kj=1 of variables and k permutations (πj)kj=1. An assignment V
strongly satisfies the constraint iff the k elements πj(V (vij )) are all the same and
the assignment weakly satisfies the constraint if these values are not all distinct.
The following result, originally by Khot and Regev [9] is stated in [11].

Theorem 4.3. If the UGC is true then for every k and ε there is a L = L(k, ε)
such that, given a k-ary unique game problem with alphabet size L, it is NP-hard
to distinguish the case in which there is an assignment that strongly satisfies at
least a (1 − ε)-fraction of the constraints from the case where every assignment
weakly satisfies at most a fraction ε of the constraints.

We proceed to construct a PCP based on the k-ary unique game problem. The
test is as described in [11] but slightly reformulated.

The written proof is supposed to be coding of an assignment which satisfies
a (1 − ε)-fraction of the constraints. For each vi the proof contains the long
code Ai of V (vi). We access these long codes in a folded way as described in
the preliminaries. This folding gives rise to negations in the resulting instance
of Max-CSP(Q). We let permutations act on vectors by π(x)j = xπ(j).

As in many PCPs we use noise vectors μ ∈ {−1, 1}L which has the property
that μv is picked randomly and independently and for each v ∈ [L] it equals 1
with probability 1 − δ and −1 with probability δ, where δ is a parameter to be
determined. It is an important parameter of the test and hence we include it
explicitly. The verifier of the PCP works as follows.

Q-test(δ)

1. Pick a random k-ary constraint, given by variables (vij )kj=1, and permuta-
tions (πj)kj=1.
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2. Pick d independent random unbiased unbiased xi ∈ {−1, 1}L and k inde-
pendent noise functions μj ∈ {−1, 1}L.

3. Let yj =
∏
i∈ĵ x

i and bj = Aij (πj(yj) · μj).
4. Accept if Q(b) = Q(b1, b2, . . . bk) is true.

We first address completeness.

Lemma 4.1. For any γ > 0 there exists δ > 0, ε > 0 such that if there is an
assignment that strongly satisfies a fraction 1− ε of the constraints in the k-ary
unique game problem then the verifier in Q-test(δ) can be made to accept with
probability 1− γ.

Proof. Assume that each Aj is the correct long code of the value V (vj) for an
assignment V that satisfies at least a (1 − ε)-fraction of the constraints. Then
assuming that μjV (vij

) = 1 and πj(V (vij )) = v for all j we have

bj = yjπj(V (vij
)) · μ

j
V (vij

) = yjv =
∏

i∈ĵ

xiv.

Recalling the description of the accepted inputs of PST it follows that b satisfies
PST and hence also Q. The completeness is hence at least 1−ε−kδ and choosing
ε and δ sufficiently small this is at least 1− γ.

Let us turn to the more challenging task of analyzing the soundness.

Lemma 4.2. For any γ > 0, δ > 0 there exist ε = ε(k, δ, γ) > 0 such that if
the verifier in Q-test(δ) accepts with probability at least d(Q) + γ there exists
an assignment that weakly satisfies at least a fraction ε of the constraints in the
k-ary unique game problem.

Proof. We assume that the verifier accepts with probability d(Q) + γ and turn
to define a (randomized) assignment that weakly satisfies a fraction of the con-
straints that only depends on k, δ and γ.

We use the multilinear representation of Q (which is in fact identical to the
Fourier transform)

Q(b) =
∑

β

Q̂β
∏

j∈β
bj .

Note that the constant term Q̂∅ is exactly d(Q) and hence if the verifier accepts
with probability d(Q) + γ there must be some nonempty β such that

|E[
∏

j∈β
bj]| ≥ 2−kγ, (2)

where the expectation is taken over a random constraint of the k-ary unique
game and random choices of xi and μj .

Let us first study expectation over the noise vectors and towards this end let

Bj(y) = Eμ[Aj(y · μ)],

which gives Eμj (bj) = Bij (πj(y
j)). It is a standard fact (for a proof see [6]) that
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B̂j,β = (1− 2δ)|β|Âj,β

and hence
∑

|β|≥t
B̂2
j,β ≤ (1− 2δ)2t (3)

for any t. Now set Γ = 2−2(d+k+2)γ2 and let t = O(δ−1 logΓ−1) be such that

(1− 2δ)2t ≤ Γ/2,

and define
Tj = {i |infiBj ≥ Γ}.

As

infiBj =
∑

i∈β
B̂2
j,β , (4)

by (3) and the definition of t, if i ∈ Tj then we must have at least a contribution
of Γ/2 from sets of size at most t in (4). Using this it follows that |Tj | ≤ 2t/Γ
for any j.

Consider the probabilistic assignment that for each vj chooses a random ele-
ment of Tj . If Tj is empty we choose an arbitrary value for vj .

By (2) we know that for at least a fraction 2−kγ/2 of the constraints we have
∣
∣
∣
∣
∣
∣
Exi,μj

⎡

⎣
∏

j∈β
bj

⎤

⎦

∣
∣
∣
∣
∣
∣
≥ 2−kγ/2. (5)

Fix any such constraint and define the following family of functions.
For any j �∈ β or k < j ≤ 2d − 1 set hĵ to be identically one while if j ∈ β we

define hĵ by
hĵ(y) = Bij (πj(y)).

These definitions imply that

Eμ

⎡

⎣
∏

j∈β
bi

⎤

⎦ =
∏

S⊆[d]

hS

(
∏

i∈S
xi

)

(6)

and hence we are in a position to apply Theorem 3.2. Note first that, by folding,
each h that is non-constant is in fact unbiased and hence, as β is non-empty, the
minimum bias of the set of functions is 0.

We now claim that the maximal cross influence of the function set hS is at
least Γ . Indeed suppose that this is not the case. Then, by Theorem 3.2, the
expectation of (6), over the choice of vectors xi, is at most

(2d − 2)
√
Γ < 2d2−(d+k+2)γ ≤ 2−kγ/2

contradicting (5).
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Thus we have j1, j2 ∈ β and an i such that infihĵ1 ≥ Γ and infihĵ2 ≥ Γ . Now,
by definition, infihĵ1 is the same as infπ−1

j1
(i)(Bij1 ). We conclude that there is

a common element in πj1 (Tij1 ) and πj2 (Tij2 ) and our probabilistic assignment
weakly satisfies the constraint with probability at least

1
|Tij1 |

· 1
|Tij2 |

≥ Γ 2

4t2
.

As this happens for at least a fraction 2−kγ/2 of the constraints our probabilistic
assignment weakly satisfies, on the average, a fraction at least

2−kγΓ 2

8t2

of the constraints. Clearly there exists a standard, deterministic assignment
that satisfies the same fraction of the constraints. This finishes the proof of
Lemma 4.2.

As stated before Lemma 4.1 and Lemma 4.2 together with the fact that the
acceptance criteria of Q-test(δ) is given by Q is sufficient to prove Theorem 4.2.
Note that the randomness used by the verifier is bounded by O(log n) and most
of the randomness is used to choose a random constraints as all other random
choices only require O(1) random bits.

We do not give the details of these standard parts of the proof here. In short,
an approximation algorithm for Max-CSP-(Q) can be used to solve the problem
established to be hard in Theorem 4.3.

5 Random Predicates

Remember that we allow negation of inputs and permutation of input variables
and hence two predicates that can be obtained from each other by such opera-
tions are equivalent. Thus Theorem 4.2 does not only apply to PST but also to
any predicate which is equivalent to it.

Consider the following space of random predicates.

Definition 5.1. Let Qp,k be the probability space of predicates in k variables
where each input is accepted with probability p.

A uniformly random predicate corresponds to a predicate from Q1/2,k but we
will consider also smaller values of p. Whenever needed in calculations we assume
p ≤ 1/2.

We want to analyze the probability that a random predicate from Qp,k is
implied by a negated and/or permuted variant of PST and let us just check that
it is reasonable to believe that this is the case.

We have k! permutations of the inputs and 2k possible ways to negate the
inputs. Thus the expected number of PST -equivalent predicates that imply a
random predicate from Qp,d is

p2d

2kk!.
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There is hope if this number is at least one, which, ignoring low order terms,
happens as soon as

p ≥ k−k2
−d

.

This lower bound is between k−1 and k−1/2 and in particular it is smaller than
any constant. In fact this rough estimate turns out to be rather close to the truth
and the proof is an application of the second moment method. A problem to be
overcome is that some pairs of PST -equivalent predicate have large intersection
of their accepted sets. To address this problem we pick a large subset of the
PST -equivalent predicates with bounded size intersections.

Theorem 5.1. Assuming UGC and 2d−1 ≤ k ≤ 2d − 1 then, there is a value c
of the form c = k2−d(1 − o(1)), such that, with probability 1 − o(1), a random
predicate chosen according to Q(p, k) with p = k−c is approximation resistant.

Proof. In view of Theorem 4.2 we need only prove that a random predicate from
Qp,k with high probability is implied by some predicate which can be obtained
from PST by negations and/or permutations of inputs.

Let us denote the set accepted by PST by L. It is a linear space of dimen-
sion d. Negating one or more inputs gives an affine space that is either L or
completely disjoint from L. We get 2k−d disjoint affine spaces denoted by L+α
where α ranges over a suitable set of cardinality 2k−d. We can also permute the
coordinates and this gives a total of k!2k−t sets

π(L+ α)

Consider
π(L + α) ∩ π′(L + β).

It is an affine space which is either empty or of dimension of the linear space

π(L) ∩ π′(L)

The below lemma is useful towards this end. Due to space limitations the proof
of the lemma will only appear in the full version.

Lemma 5.1. Let d0 and k0 be sufficiently large constants and let r be a number
such that 2d−r ≥ d0 and assume that k ≥ k0. Then, if π and π′ are two random
permutations we have

Pr[dim(π(L) ∩ π′(L)) ≥ r] ≤ 2(2−r)k.

Set R = 2k(r−2) and let us see how to use Lemma 5.1 to choose R different
permutations πi such that

dim(πi(L) ∩ πj(L)) ≤ r

for any i �= j. First pick 2R random permutations. The expected number of pairs
(i, j), i < j, with

dim(πi(L) ∩ πj(L)) > r
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is bounded by 2R22(1−r)k ≤ R and hence there is a choice of 2R permutations
such that the number of such pairs is bounded by R. Erase one of the two
permutations in each such pair and we have the desired set. Let us fix this set
(πi)Ri=1 once and for all.

Let Xi,α be the indicator variable for the event a random predicate from Qk,p
is identically one on the set

πi(L+ α).

Set
X =

∑

i,α

Xi,α.

The probability of the event that the random predicate is not identically one on
any πi(L+ α) is now exactly Pr[X = 0] and we estimate the probability of this
event. Clearly

E[X ] = p2d

2k−dR. (7)

The variance of X equals

E

⎡

⎣
∑

i1,i2,α1,α2

(Xi1,α1 − p2d

)(Xi2,α2 − p2d

)

⎤

⎦ . (8)

We have the following lemma.

Lemma 5.2. We have E[(Xi1,α1 − p2d

)(Xi2,α2 − p2d

)] = 0 if πi1 (L + α1) and
πi2(L+α2) are disjoint while if the size of the intersection is K it is bounded by

p2d+1−K .

Proof. In fact

E[(Xi1,α1 − p2d

)(Xi2,α2 − p2d

)] = E[Xi1,α1Xi2,α2 ]− p2d+1
= p2d+1−K − p2d+1

.

Let us now estimate (8). Terms with i1 = i2 are easy as the corresponding sets
either have full intersection or are disjoint. These give a contribution that is
upper bounded by E[X ]. Now for i1 �= i2 let us fix α1 and consider

∑

α2

E
[
(Xi1,α1 − p2d

)(Xi2,α2 − p2d

)
]
. (9)

It is the case that for some r′ ≤ r we have 2d−r
′
terms with set intersection size

2r
′
while all other intersections are empty leading to the upper estimate

2d−r
′
p2d+1−2r′

≤ 2d−rp2d+1−2r

(using the assumption p ≤ 1/2) for the sum (9). Summing over all i1, i2 and α1

we get

σ2(X) ≤ E[X ] +R22k−d2d−rp2d+1−2r

= E[X ] +R22k−rp2d+1−2r

. (10)
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We have

Pr[X = 0] ≤ σ2(X)
E[X ]2

≤ 1
E[X ]

+
R22k−rp2d+1−2r

R222(k−d)p2d+1 ≤
1

E[X ]
+ 22d−(k+r)p−2r

.(11)

We need to choose p and r to make this probability o(1). Set p = k−c for some
c ≤ 1. Then provided

2r log k < (k + r) − 2d− ω(1)

the second term of (11) is small. This is possible to achieve with r = d−Θ(log d).
Note that this choice also ensures d− r ∈ ω(1) as required by Lemma 5.1.

Fixing this value of r the first term of (11) is o(1) provided that

p2d

≥ 2(2−r)k

which with, p = k−c, is equivalent to

c ≤ k2−d · r − 2
log k

. (12)

As the second factor of the bound in (12) is (1 − o(1)) we have proved
Theorem 5.1.

Apart from adjustments of the error terms this is the best that can be obtained
by the current methods. Namely setting p = k−(k2−d+ε) for ε > 0 the probability
of a random predicate being implied by some PST -equivalent predicate goes to
0 as can be seen from calculating the expected value of the number of such
predicates.

One can always wonder about reasonable values for p for small values of k.
Particularly good values for k are numbers of the form 2d − 1 as this gives an
unusually sparse predicate PST . Numerical simulations suggests that a random
predicate on 7 bits that accepts M of the 128 inputs has a probability at least
1/2 of being implied by a PST -equivalent predicate iff M ≥ 60. Thus it seems
like the asymptotic bound of density essentially k−1 is approached slowly.

6 Very Dense Predicates

As PST only accepts 2d inputs we can derive approximation resistance of many
predicates but let us here give only one immediate application.

Theorem 6.1. Let 2d−1 ≤ k ≤ 2d − 1 and P be any predicate that accepts at
least 2k+1−2k−d inputs, then, assuming the UGC, P is approximation resistant.

Proof. We use the same notation as used in the proof of Theorem 5.1.
We need to prove that any such predicate is implied by a PST -equivalent

predicate. This time we need only apply negations and look at L + α for all
the 2k−d different representatives α. As P only rejects 2k−d − 1 different inputs
and the sets L + α are disjoint, one such set is included in the accepted inputs
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of P . The corresponding suitable negated form of PST hence implies P and
Theorem 6.1 follows from Theorem 4.2.

It is an interesting question how dense a non-trivially approximable predicate
can be. Let dk be the maximum value of d(P ) for all predicates on k variables
which are not approximation resistant. We have d2 = d3 = 3/4 and Hast [5]
proved that d4 = 13

16 and, as we can always ignore any input, dk is an increasing
function of k. It is not obvious whether dk tends to one as k tends to infinity.

Our results show that dense predicates which can be non-trivially approxi-
mated need to be extremely structured as they cannot be implied by any PST -
equivalent predicate.

7 Concluding Remarks

The key result in the current paper is to prove that PST is hereditary approxi-
mation resistant. This is another result indicating that the more inputs accepted
by the predicate P , the more likely it is to be approximation resistant. One could
be tempted to conclude that all approximation resistant predicates are in fact
hereditary approximation resistant. We would like to point that this is false and
Hast [5] has an example of two predicates P and Q where P is approximation
resistant, P implies Q and Q is not approximation resistant.

That a predicate is approximation resistant is almost the ultimate hardness.
There is a stronger notion; approximation resistance on satisfiable instances. In
such a case no efficient algorithm is able to do significantly better than picking
a random assignment even in the case when the instance is satisfiable.

An example of a predicate which is approximation resistant but not approxi-
mation resistant on satisfiable instances is Max-E3-Lin-2, linear equations mod-
ulo 2 with three variables in each equation. In this case, for a satisfiable instance,
it is easy to find an assignment that satisfies all constraints by Gaussian elimi-
nation.

In most cases, however, approximation resistant predicates have turned out to
be approximation resistant also on satisfiable instances and it would seem rea-
sonable to conjecture that a random predicate is indeed approximation resistant
on satisfiable instances. If true it seems hard to prove this fact using the Unique
Games Conjecture in that the non-perfect completeness of UGC would tend to
produce instances of the CSP which are not satisfiable. There are variants of the
unique games conjecture [8] which postulate hardness of label cover problems
with perfect completeness but it would be much nicer to take a different route
not relying on any conjectures.

Another open problem is of course to establish approximation resistance in
absolute terms and not to rely on the UGC or, more ambitiously, to prove the
UGC.

Acknowledgment. I am grateful to Per Austrin for useful comments on the
current manuscript.
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Integrality Gaps of Semidefinite Programs for

Vertex Cover and Relations to �1 Embeddability
of Negative Type Metrics
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Abstract. We study various SDP formulations for Vertex Cover by
adding different constraints to the standard formulation. We rule out
approximations better than 2 − O(

√
log log n/ log n) even when we add

the so-called pentagonal inequality constraints to the standard SDP for-
mulation, and thus almost meet the best upper bound known due to
Karakostas, of 2 − Ω(

√
1/ log n). We further show the surprising fact

that by strengthening the SDP with the (intractable) requirement that
the metric interpretation of the solution embeds into �1 with no distor-
tion, we get an exact relaxation (integrality gap is 1), and on the other
hand if the solution is arbitrarily close to being �1 embeddable, the in-
tegrality gap is 2 − o(1). Finally, inspired by the above findings, we use
ideas from the integrality gap construction of Charikar to provide a fam-
ily of simple examples for negative type metrics that cannot be embedded
into �1 with distortion better than 8/7 − ε. To this end we prove a new
isoperimetric inequality for the hypercube.

1 Introduction

A vertex cover in a graph G = (V,E) is a set S ⊆ V such that every edge e ∈ E
intersects S in at least one endpoint. Denote by vc(G) the size of the minimum
vertex cover of G. It is well-known that the minimum vertex cover problem has
a 2-approximation algorithm, and it is widely believed that for every constant
ε > 0, there is no (2 − ε)-approximation algorithm for this problem. Currently
the best known hardness result for this problem, based on the PCP theorem,
shows that 1.36-approximation is NP-hard [1]. If we were to assume the Unique
Games Conjecture [2] the problem would be essentially settled as 2−Ω(1) would
then be NP-hard [3].

In [4], Goemans and Williamson introduced semidefinite programming as a
tool for obtaining approximation algorithms. Since then semidefinite program-
ming has become an important technique, and for many problems the best known
approximation algorithms are obtained by solving an SDP relaxation of them.
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The best known algorithms for Vertex Cover compete in “how big is the
little oh” in the 2 − o(1) factor. The best two are in fact based on SDP relax-
ations: Halperin [5] gives a (2 − Ω(log logΔ/ logΔ))-approximation where Δ is
the maximal degree of the graph while Karakostas obtains a (2−Ω(1/

√
logn))-

approximation [6].
The standard way to formulate the Vertex Cover problem as a quadratic

integer program is the following:

Min
∑

i∈V (1 + x0xi)/2
s.t. (xi − x0)(xj − x0) = 0 ∀ ij ∈ E

xi ∈ {−1, 1} ∀ i ∈ {0} ∪ V,

where the set of the vertices i for which xi = x0 correspond to the vertex cover.
Relaxing this integer program to a semidefinite program, the scalar variable xi
becomes a vector vi and we get:

Min
∑

i∈V (1 + v0vi)/2
s.t. (vi − v0) · (vj − v0) = 0 ∀ ij ∈ E
‖vi‖ = 1 ∀ i ∈ {0} ∪ V.

(1)

Kleinberg and Goemans [7] proved that SDP (1) has integrality gap of 2− o(1):
given ε > 0 they construct a graph Gε for which vc(Gε) is at least (2 − ε)
times larger than the solution to SDP (1). They also suggested the following
strengthening of SDP (1) and left its integrality gap as an open question:

Min
∑

i∈V (1 + v0vi)/2
s.t. (vi − v0) · (vj − v0) = 0 ∀ ij ∈ E

(vi − vk) · (vj − vk) ≥ 0 ∀ i, j, k ∈ {0} ∪ V
‖vi‖ = 1 ∀ i ∈ {0} ∪ V.

(2)

Charikar [8] answered this question by showing that the same graph Gε but a
different vector solution satisfies SDP (2)1 and gives rise to an integrality gap of
2− o(1) as before. The following is an equivalent formulation to SDP (2):

Min
∑

i∈V 1− ‖v0 − vi‖2/4
s.t. ‖vi − v0‖2 + ‖vj − v0‖2 = ‖vi − vj‖2 ∀ ij ∈ E
‖vi − vk‖2 + ‖vj − vk‖2 ≥ ‖vi − vj‖2 ∀ i, j, k ∈ {0} ∪ V
‖vi‖ = 1 ∀ i ∈ {0} ∪ V

(3)

Viewing SDPs as relaxations over �1: The above reformulation reveals a
connection to metric spaces. The second constraint in SDP (3) says that ‖ · ‖2
induces a metric on {vi : i ∈ {0} ∪ V }, while the first says that v0 is on
the shortest path between the images of every two neighbours. This suggests
a more careful study of the problem from the metric viewpoint which is the
purpose of this article. Such connections are also important in the context of
1 To be more precise, Charikar’s result was about a slightly weaker formulation than

(2) but it is not hard to see that the same construction works for SDP (2) as well.
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the Sparsest Cut problem, where the natural SDP relaxation was analyzed in
the breakthrough work of Arora, Rao and Vazirani [9] and it was shown that
its integrality gap is at most O(

√
logn). This later gave rise to some significant

progress in the theory of metric spaces [10,11].
Let f : (X, d)→ (X ′, d′) be an embedding of metric space (X, d) into another

metric space (X ′, d′). The value supx,y∈X
d′(f(x),f(y))

d(x,y) × supx,y∈X
d(x,y)

d′(f(x),f(y)) is
called the distortion of f . For a metric space (X, d), let c1(X, d) denote the
minimum distortion required to embed (X, d) into �1. Notice that c1(X, d) = 1
if and only if (X, d) can be embedded isometrically into �1, namely without
changing any of the distances. Consider a vertex cover S and its corresponding
solution to SDP (2), i.e., vi = 1 for every i ∈ S ∪ {0} and vi = −1 for every
i �∈ S. The metric defined by ‖ · ‖2 on this solution (i.e., d(i, j) = ‖vi − vj‖2)
is isometrically embeddable into �1. Thus we can strengthen SDP (2) by al-
lowing any arbitrary list of valid inequalities in �1 to be added. The triangle
inequality is one type of such constraints. The next natural inequality of this
sort is the pentagonal inequality: A metric space (X, d) is said to satisfy the pen-
tagonal inequality if for S, T ⊂ X of sizes 2 and 3 respectively it holds that∑

i∈S,j∈T d(i, j) ≥
∑

i,j∈S d(i, j) +
∑

i,j∈T d(i, j). Note that this inequality does
not apply to every metric, but it does hold for those that are �1-embeddable.
This leads to the following natural strengthening of SDP (3):

Min
∑

i∈V 1− ‖v0 − vi‖2/4
s.t. ‖vi − v0‖2 + ‖vj − v0‖2 = ‖vi − vj‖2 ∀ ij ∈ E∑

i∈S,j∈T ‖vi − vj‖2 ≥
∑
i,j∈S ‖vi − vj‖2+∑
i,j∈T ‖vi − vj‖2

∀ S, T ⊆ {0} ∪ V,
|S| = 2, |T | = 3

‖vi‖ = 1 ∀ i ∈ {0} ∪ V

(4)

In Theorem 5, we prove that SDP (4) has an integrality gap of 2 − o(1).
It is important to point out that a-priori there is no reason to believe that
local addition of inequalities such as these will be useless; indeed in the case of
Sparsest Cut where triangle inequality is necessary to achieve the O(

√
logn)

bound mentioned above. It is interesting to note that for Sparsest Cut, it is
not known how to show a nonconstant integrality gap against pentagonal (or
any other k-gonal) inequalities, although recently a nonconstant integrality gap
was shown in [12] and later in [13], in the presence of the triangle inequalities2.

A recent result by Georgiou, Magen, Pitassi and Tourlakis [14] shows and
integrality gap of 2 − o(1) for a nonconstant number of rounds of the so-called
LS+ system for Vertex Cover. It is not known whether this result subsumes
Theorem 5 or not, since pentagonal inequalities are not generally implied by
any number of rounds of the LS+ procedure. We elaborate more on this in the
Discussion section.

One can further impose any �1-constraint not only for the metric defined by
{vi : i ∈ V ∪{0}}, but also for the one that comes from {vi : i ∈ V ∪{0}}∪{−vi :

2 As Khot and Vishnoi note, and leave as an open problem, it is possible that their
example satisfies some or all k-gonal inequalities.
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i ∈ V ∪ {0}}. Triangle inequalities for this extended set result in constraints
‖vi−vj‖2 +‖vi−vk‖2 +‖vj−vk‖2 ≤ 2. The corresponding tighter SDP is used
in [6] to get integraility gap of at most 2−Ω( 1√

logn
). Karakostas [6] asks whether

the integrality gap of this strengthening breaks the “2-o(1) barrier”: we answer
this negatively in Section 4.3. In fact we show that the above upper bound is
almost asymptotically tight, exhibiting integrality gap of 2−O(

√
log logn

logn ).

Integrality gap with respect to �1 embeddability: At the extreme, strength-
ening the SDP with �1-valid constraints, would imply the condition that the met-
ric defined by ‖ · ‖ on {vi : i ∈ {0} ∪ V }, namely d(i, j) = ‖vi − vj‖2 is �1
embeddable. Doing so leads to the following intractable program:

Min
∑
i∈V 1− ‖v0 − vi‖2/4

s.t. ‖vi − v0‖2 + ‖vj − v0‖2 = ‖vi − vj‖2 ∀ ij ∈ E
‖vi‖ = 1 ∀ i ∈ {0} ∪ V
c1({vi : i ∈ {0} ∪ V }, ‖ · ‖2) = 1

(5)

In [15], it is shown that an SDP formulation of Minimum Multicut, even
with the constraint that the ‖ · ‖2 distance over the variables is isometrically
embeddable into �1, still has a large integrality gap. For the Max Cut problem,
which is more intimately related to our problem, it is easy to see that �1 em-
beddability does not prevent integrality gap of 8/9. It is therefore tempting to
believe that there is a large integrality gap for SDP (5) as well. Surprisingly, SDP
(5) has no gap at all: we show in Theorem 2, that the value of SDP (5) is exactly
the size of the minimum vertex cover. A consequence of this fact is that any
feasible solution to SDP (2) that surpasses the minimum vertex cover induces
an �22 metric which is not isometrically embeddable into �1. This includes the
integrality gap constructions of Kleinberg and Goemans, and that of Charikar’s
for SDPs (2) and (3) respectively. The construction of Charikar provides not
merely �22 distance function but also a negative type metric, that is an �22 metric
that satisfies triangle inequality. See [16] for background and nomenclature.

In contrast to Theorem 2, we show in Theorem 3 that if we relax the embed-
dability constraint in SDP (5) to c1({vi : i ∈ {0} ∪ V }, ‖ · ‖2) ≤ 1 + δ for any
constant δ > 0, then the integrality gap may “jump” to 2− o(1). Compare this
with a problem such as Sparsest Cut in which an addition of such a constraint
immediately implies integrality gap at most 1 + δ.

Negative type metrics that are not �1 embeddable: Negative type metrics
are metrics which are the squares of Euclidean distances of set of points in Eu-
clidean space. Inspired by Theorem 2, we construct a simple negative type metric
space (X, ‖·‖2) that does not embed well into �1. Specifically, we get c1(X) ≥ 8

7−ε
for every ε > 0. In order to show this we prove a new isoperimetric inequality for
the hypercube Qn = {−1, 1}n, which we believe is of independent interest.
Theorem 1. (Generalized Isoperimetric inequality) For every set S ⊆ Qn,

|E(S, Sc)| ≥ |S|(n− log2 |S|) + p(S).

where p(S) denotes the number of vertices u ∈ S such that −u ∈ S.
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Khot and Vishnoi [12] constructed an example of an n-point negative type
metric that for every δ > 0 requires distortion at least (log logn)1/6−δ to embed
into �1. Krauthgamer and Rabani [17] showed that in fact Khot and Vishnoi’s
example requires a distortion of at least Ω(log logn). Later Devanur, Khot, Saket
and Vishnoi [13] showed an example with distortion Ω(log logn) even on average
when embedded into �1 (we note that our example is also “bad” on average).
Although the above examples require nonconstant distortion to embed into �1, we
believe that Theorem 6 is interesting because of its simplicity (to show triangle
inequality holds proves to be extremely technical in [12,13]). Prior to Khot and
Vishnoi’s result, the best known lower bounds (see [12]) were due to Vempala,
10/9 for a metric obtained by a computer search, and Goemans, 1.024 for a
metric based on the Leech Lattice. We mention that by [11] every negative type
metric embeds into �1 with distortion O(

√
logn log logn).

2 Preliminaries and Notation

A vertex cover of a graph G is a set of vertices that touch all edges. An inde-
pendent set in G is a set I ⊆ V such that no edge e ∈ E joins two vertices in I.
We denote by α(G) the size of the maximum independent set of G. Vectors are
always denoted in bold font (such as v, w, etc.); ‖v‖ stands for the Euclidean
norm of v, u · v for the inner product of u and v, and u ⊗ v for their tensor
product. Specifically, if v,u ∈ Rn, u⊗ v is the vector with coordinates indexed
by ordered pairs (i, j) ∈ [n]2 that assumes value uivj on coordinate (i, j). Sim-
ilarly, the tensor product of more than two vectors is defined. It is easy to see
that (u ⊗ v).(u′ ⊗ v′) = (u · u′)(v · v′). For two vectors u ∈ Rn and v ∈ Rm,
denote by (u,v) ∈ Rn+m the vector whose projection to the first n coordinates
is u and to the last m coordinates is v.

Next, we give a few basic definitions and facts about finite metric spaces. A
metric space (X, dX) embeds with distortion at mostD into (Y, dY ) if there exists
a mapping φ : X #→ Y so that for all a, b ∈ X γ · dX(a, b) ≤ dY (φ(a), φ(b)) ≤
γD · dX(a, b), for some γ > 0. We say that (X, d) is �1 embeddable if it can be
embedded with distortion 1 into Rm equipped with the �1 norm. An �22 distance
on X is a distance function for which there there are vectors vx ∈ Rm for every
x ∈ X so that d(x, y) = ‖vx−vy‖2. If, in addition, d satisfies triangle inequality,
we say that d is an �22 metric or negative type metric. It is well known [16] that
every �1 embeddable metric is also a negative type metric.

3 �1 and Integrality Gap of SDPs for Vertex Cover – An
“All or Nothing” Phenomenon

It is well known that for Sparsest Cut there is a tight connection between
�1 embeddability and integrality gap. In fact the integrality gap is bounded
above by the least �1 distortion of the SDP solution. At the other extreme
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stand problems like Max Cut and Multi Cut, where �1 embeddability does
not provide any strong evidence for small integrality gap. In this section we
show that Vertex Cover falls somewhere between these two classes of �1-
integrality gap relationship witnessing a sharp transition in integrality gap in
the following sense: while �1 embeddability implies no integrality gap, allowing
a small distortion, say 1.001 does not prevent integrality gap of 2− o(1)!

Theorem 2. For a graph G = (V,E), the answer to the SDP formulated in
SDP (5) is the size of the minimum vertex cover of G.

Proof. Let d be the metric solution of SDP (5). We know that d is the result
of an �22 unit representation (i.e., it comes from square norms between unit
vectors), and furthermore it is �1 embeddable. By a well known fact about �1
embeddable metrics (see, e.g. [16]) we can assume that there exist λt > 0 and
ft : {0} ∪ V → {−1, 1}, t = 1, . . . ,m, such that

‖vi − vj‖2 =
m∑

t=1

λt|ft(i)− ft(j)|, (6)

for every i, j ∈ {0}∪V . Without loss of generality, we can assume that ft(0) = 1
for every t. For convenience, we switch to talk about Independent Set and
its relaxation, which is the same as SDP (5) except the objective becomes
Max

∑
i∈V ‖v0 − vi‖2/4. Obviously, the theorem follows from showing that this

is an exact relaxation.
We argue that (i) It = {i ∈ V : ft(i) = −1} is a (nonempty) independent set

for every t, and (ii)
∑
λt = 2. Assuming these two statements we get

∑

i∈V

‖vi − v0‖2
4

=
∑

i∈V

∑m
t=1 λt|1− ft(i)|

4
=

m∑

t=1

λt|It|
2
≤ max

t∈[m]
|It| ≤ α(G),

and so the relaxation is exact and we are done.
We now prove the two statements. The first is rather straightforward: For

i, j ∈ It, (6) implies that d(i, 0) + d(0, j) > d(i, j). It follows that ij cannot be
an edge else it would violate the first condition of the SDP. (We may assume
that It is nonempty since otherwise the ft(·) terms have no contribution in (6).)
The second statement is more surprising and uses the fact that the solution is
optimal. The falsity of such a statement for the problem of Max Cut (say)
explains the different behaviour of the latter problem with respect to integrality
gaps of �1 embeddable solutions. We now describe the proof.

Let v′
i = (

√
λ1/2f1(i), . . . ,

√
λm/2fm(i), 0). From (6) we conclude that ‖v′

i−
v′
j‖2 = ‖vi − vj‖2, hence there exists a vector w = (w1, w2, ..., wm+1) ∈ Rm+1

and an orthogonal transformation T , such that vi = T (v′
i + w). We know that

1 = ‖vi‖2 = ‖T (v′
i + w)‖2 = ‖v′

i + w‖2 = w2
m+1 +

m∑

t=1

(
√
λt/2ft(i) + wt)2. (7)
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Since ‖v′
i‖2 = ‖v′

0‖2 =
∑m

t+1 λt/2, for every i ∈ V ∪ {0}, from (7) we get
v′

0 ·w = v′
i ·w. Summing this over all i ∈ V , we have

|V |(v′
0 ·w) =

∑

i∈V
v′
i ·w =

m∑

t=1

(|V | − 2|It|)
√
λt/2wt,

or
m∑

t=1

|V |
√
λt/2wt =

m∑

t=1

(|V | − 2|It|)
√
λt/2wt,

and therefore
m∑

t=1

|It|
√
λt/2wt = 0. (8)

Now (7) and (8) imply that

max
t∈[m]

|It| ≥
m∑

t=1

(
√
λt/2ft(0)+wt)2|It| =

m∑

t=1

(
λt|It|

2
+ w2

t |It|
)

≥
m∑

t=1

λt|It|
2

. (9)

As we have observed before
m∑

t=1

λt|It|
2

=
∑

i∈V

‖vi − v0‖2
4

which means (as clearly
∑
i∈V

‖vi−v0‖2

4 ≥ α(G)) that the inequalities in (9) must
be tight. Now, since |It| > 0 we get that w = 0 and from (7) we get the second
statement, i.e.,

∑
λt = 2. This concludes the proof. ��

Now let δ be an arbitrary positive number, and let us relax the last constraint
in SDP (5) to get

Min
∑
i∈V 1− ‖v0 − vi‖2/4

s.t. ‖vi − v0‖2 + ‖vj − v0‖2 = ‖vi − vj‖2 ∀ ij ∈ E
‖vi‖ = 1 ∀ i ∈ {0} ∪ V
c1({vi : i ∈ {0} ∪ V }, ‖ · ‖2) ≤ 1 + δ

Theorem 3. For every ε > 0, there is a graph G for which vc(G)
sd(G) ≥ 2− ε, where

sd(G) is the solution to the above SDP.

The proof appears in the next section after we describe Charikar’s construction.

4 Integrality Gap for Stronger Semidefinite Formulations

In this section we discuss the integrality gap for stronger semidefinite formula-
tions of vertex cover. In particular we show that Charikar’s construction satisfies
both SDPs (11) and (4). We start by describing this construction.
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4.1 Charikar’s Construction

The graphs used in the construction are the so-called Hamming graphs. These
are graphs with vertices {−1, 1}n and two vertices are adjacent if their Hamming
distance is exactly an even integer d = γn. A result of Frankl and Rödl [18] shows
that vc(G) ≥ 2n − (2 − δ)n, where δ > 0 is a constant depending only on γ. In
fact, when one considers the exact dependency of δ in γ it can be shown (see [14])
that as long as γ = Ω(

√
logn/n) then any vertex cover comprises 1 − O(1/n)

fraction of the graph. Kleinberg and Goemans [7] showed that by choosing a
constant γ and n sufficiently large, this graph gives an integrality gap of 2 − ε
for SDP (1). Charikar [8] showed that in fact G implies the same result for the
SDP formulation in (2) too. To this end he introduced the following solution to
SDP (2):

For every ui ∈ {−1, 1}n, define u′
i = ui/

√
n, so that u′

i ·u′
i = 1. Let λ = 1−2γ,

q(x) = x2t + 2tλ2t−1x and define y0 = (0, . . . , 0, 1), and

yi =

√
1− β2

q(1)

⎛

⎜
⎝u′

i ⊗ . . .⊗ u′
i︸ ︷︷ ︸

2t times

,
√

2tλ2t−1u′
i, 0

⎞

⎟
⎠+ βy0,

where β will be determined later. Note that yi is normalized to satisfy ‖yi‖ = 1.
Moreover yi is defined so that yi · yj takes its minimum value when ij ∈ E,

i.e., when u′
i · u′

j = −λ. As is shown in [8], for every ε > 0 we may set t =
Ω(1

ε ), β = Θ(1/t), γ = 1
4t to get that (y0 − yi) · (y0 − yj) = 0 for ij ∈ E, while

(y0 − yi) · (y0 − yj) ≥ 0 always.
Now we verify that all the triangle inequalities, i.e., the second constraint

of SDP (2) are satisfied: First note that since every coordinate takes only two
different values for the vectors in {yi : i ∈ V }, it is easy to see that c1({yi :
i ∈ V }, ‖ · ‖2) = 1. So the triangle inequality holds when i, j, k ∈ V . When
i = 0 or j = 0, the inequality is trivial, and it only remains to verify the case
that k = 0, i.e., (y0 − yi) · (y0 − yj) ≥ 0, which was already mentioned above.
Now

∑
i∈V (1 + y0 · yi)/2 = 1+β

2 · |V | =
(

1
2 +O(ε)

)
|V |. In our application, we

prefer to set γ and ε to be Ω(
√

log logn
logn ) and since, by the above comment,

vc(G) = (1−O(1/n))|V | the integrality gap we get is

(1−O(1/n))/(1/2 +O(ε)) = 2−O(ε) = 2−O
(√

log log |V |
log |V |

)

.

4.2 Proof of Theorem 3

We show that the negative type metric implied by Charikar’s solution (after
adjusting the parameters appropriately) requires distortion of at most 1+ δ. Let
yi and u′

i be defined as in Section 4.1. To prove Theorem 3, it is sufficient to
prove that c1({yi : i ∈ {0} ∪ V }, ‖ · ‖2) = 1 + o(1). Note that every coordinate
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of yi for all i ∈ V takes at most two different values. It is easy to see that this
implies c1({yi : i ∈ V }, ‖ · ‖2) = 1. In fact

f : yi #→
1− β2

q(1)

⎛

⎜
⎝

2
nt

u′
i ⊗ . . .⊗ u′

i︸ ︷︷ ︸
2t times

,
2√
n

2tλ2t−1u′
i

⎞

⎟
⎠ , (10)

is an isometry from ({yi : i ∈ V }, ‖ · ‖2) to �1. For i ∈ V , we have

‖f(yi)‖1 =
1− β2

q(1)

(
2
nt
× n2t

nt
+

2√
n

2tλ2t−1 1√
n

+ 0
)

=
1− β2

q(1)
× (2 + 4tλ2t−1)

Since β = Θ(1
t ), recalling that λ = 1− 1

2t , it is easy to see that for every i ∈ V ,
limt→∞ ‖f(yi)‖1 = 2. On the other hand for every i ∈ V

lim
t→∞

‖yi − y0‖2 = lim
t→∞

2− 2(yi · y0) = lim
t→∞

2− 2β = 2.

So if we extend f to {yi : i ∈ V ∪ {0}} by defining f(y0) = 0, we obtain a
mapping from ({yi : i ∈ V ∪ {0}}, ‖ · ‖2) to �1 whose distortion tends to 1 as t
goes to infinity. ��

4.3 Karakostas’ and Pentagonal SDP Formulations

Karakostas suggests the following SDP relaxation, that is the result of adding
to SDP (3) the triangle inequalities applied to the set {vi : i ∈ V ∪{0}}∪{−vi :
i ∈ V ∪ {0}}.

Min
∑
i∈V (1 + v0vi)/2

s.t. (vi − v0) · (vj − v0) = 0 ∀ ij ∈ E
(vi − vk) · (vj − vk) ≥ 0 ∀ i, j, k ∈ V
(vi + vk) · (vj − vk) ≥ 0 ∀ i, j, k ∈ V
(vi + vk) · (vj + vk) ≥ 0 ∀ i, j, k ∈ V
‖vi‖ = 1 ∀ i ∈ {0} ∪ V.

(11)

Theorem 4. The integrality gap of SDP (11) is 2−O(
√

log log |V |/ log |V |).

Proof. We show that Charikar’s construction satisfies formulation (11). By [8]
and from the discussion in Section 4.1, it follows that all edge constraints and
triangle inequalities of the original points hold. Hence we need only consider
triangle inequalities with at least one nonoriginal point. By homogeneity, we
may assume that there is exactly one such point.

Since all coordinates of yi for i > 0 assume only two values with the same
absolute value, it is clear that not only does the metric they induce is �1 but also
taking ±yi for i > 0 gives an �1 metric; in particular all triangle inequalities that
involve these vectors are satisfied. In fact, we may fix our attention to triangles
in which ±y0 is the middle point. This is since

(±yi −±yj) · (y0 −±yj) = (±yj − y0) · (∓yi − y0).
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Consequently, and using symmetry, we are left with checking the nonnegativ-
ity of (yi + y0) · (yj + y0) and (−yi − y0) · (yj − y0).

(yi+y0)·(yj+y0) = 1+y0·(yi+yj)+yi·yj ≥ 1+2β+β2−(1−β2) = 2β(1+β) ≥ 0.

Finally, (−yi − y0) · (yj − y0) = 1 + y0 · (yi − yj)− yi · yj = 1− yi · yj ≥ 0 as
yi,yj are of norm 1. ��

By now we know that taking all the �1 constraints leads to an exact relaxation,
but not a tractable one. Our goal here is to explore the possibility that stepping
towards �1 embeddability while still maintaining computational feasibility would
considerably reduce the integrality gap. A canonical subset of valid inequalities
for �1 metrics is the so-called Hypermetric inequalities. Again, taking all these
constraints is not feasible, and we instead consider the effect of adding a small
number of such constraints. The simplest hypermetric inequalities beside triangle
inequalities are the pentagonal inequalities. These constraints consider two sets
of points of size 2 and 3, and require that the sum of the distances between
points in different sets is at least the sum of the distances within sets. Formally,
let S, T ⊂ X , |S| = 2, |T | = 3, then we have the inequality

∑
i∈S,j∈T d(i, j) ≥∑

i,j∈S d(i, j)+
∑

i,j∈T d(i, j). To appreciate this inequality it is useful to describe
where it fails. Consider the graph metric of K2,3. Here, the LHS of the inequality
is 6 and the RHS is 8, hence K2,3 violates the pentagonal inequality. In the
following theorem we show that this strengthening past the triangle inequalities
fails to reduce the integrality gap significantly.

Theorem 5. The integrality gap of SDP (4) is 2−O(
√

log log |V |/ log |V |).

Proof. We show that the metric space used in Charikar’s construction is feasible.
By ignoring y0 the space defined by d(i, j) = ‖yi − yj‖2 is �1 embeddable.
Therefore, we wish to consider a pentagonal inequality containing y0 and four
other vectors, denoted by y1,y2,y3,y4. Assume first that the partition of the
five points in the inequality puts y0 together with two other points; then, using
the fact that d(0, 1) = d(0, 2) = d(0, 3) = d(0, 4) and triangle inequality we get
that such an inequality must hold. It remains to consider a partition of the form
({y1,y2,y3}, {y4,y0}), and show that:

d(1, 2)+d(1, 3)+d(2, 3)+d(0, 4)≤d(1, 4)+d(2, 4)+d(3, 4)+d(0, 1)+d(0, 2)+d(0, 3)

Recall that every yi is associated with a {−1, 1} vector ui and with its normal-
ized multiple u′

i. After substituting the distances as functions of the normalized
vectors, our goal will then be to show:

q(u′
1 ·u′

2)+q(u
′
1 ·u′

3)+q(u
′
2 ·u′

3)−q(u′
1 ·u′

4)−q(u′
2 ·u′

4)−q(u′
3 ·u′

4) ≥ −
2q(1)
1 + β

(12)

Let E = q(u′
1 ·u′

2)+q(u
′
1 ·u′

3)+q(u
′
2 ·u′

3)−q(u′
1 ·u′

4)−q(u′
2 ·u′

4)−q(u′
3 ·u′

4). The
rest of the proof analyzes the minima of the function E and ensures that (12)
is satisfied at those minima. We first partition the coordinates of the original
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hypercube into four sets according to the values assumed by u1,u2 and u3.
We may assume that in any coordinate at most one of these get the value 1
(otherwise multiply the values of the coordinate by −1). We get four sets, P0 for
the coordinates in which all three vectors assume value −1, and P1, P2, P3 for
the coordinates in which exactly u1,u2,u3 respectively assumes value 1.

We now argue about the coordinates of u4 at a minimum of E.

Proposition 1. If there is a violating configuration, then there is one in which
u4 is either all 1 or all −1 on each one of P0, P1, P2, P3

For P0, we can in fact say something stronger than we do for P1, P2, P3:

Proposition 2. If there is a violating configuration, then there is one in which
u4 has all the P0 coordinates set to −1.

Proposition 1 is based solely on the (strict) convexity of q. Proposition 2 is more
involved and uses more properties of the polynomial q. Due to lack of space we
omit the proofs of the propositions from this version.

The above characterizations significantly limit the type of configurations we
need to check. The cases that are left are characterized by whether u4 is 1 or
−1 on each of P1, P2, P3. By symmetry all we really need to know is ξ(u4) =
|{i : u4 is 1 on Pi}|. If ξ(u4) = 1 it means that u4 is the same as one of u1,u2

or u4 hence the pentagonal inequality reduces to the triangle inequality, which
we already know is valid. If ξ(u4) = 3, it is easy to see that u′

1u
′
4 = u′

2u
′
3, and

likewise u′
2u

′
4 = u′

1u
′
3 and u′

3u
′
4 = u′

1u
′
2 hence E is 0 for these cases, which

means that (12) is satisfied.
We are left with the cases ξ(u4) ∈ {0, 2}.

Case 1: ξ(u4) = 0
Let x = 2

n |P1|, y = 2
n |P2|, z = 2

n |P3|. Notice that x + y + z = 2
n (|P1|+ |P2|+

|P3|) ≤ 2, as these sets are disjoint. Now, think of

E = q(1− (x+ y))+ q(1− (x+ z))+ q(1− (y+ z))− q(1−x)− q(1− y)− q(1− z)

as a function from R3 to R. We will show that E achieves its minimum at points
where either x, y or z are zero. Assume that 0 ≤ x ≤ y ≤ z.

Consider the function g(δ) = E(x − δ, y + δ, z). It is easy to see that g′(0) =
q′(1 − (x + z)) − q′(1 − (y + z)) − q′(1 − x) + q′(1 − y). We will prove that
g′(δ) ≤ 0 for every δ ∈ [0, x]. This, by the Mean Value Theorem implies that
E(0, x + y, z) ≤ E(x, y, z), and hence we may assume that x = 0. This means
that y1 = y4 which reduces to the triangle inequality on y0,y2,y3.

Note that in g′(0), the two arguments in the terms with positive sign have
the same average as the arguments in the terms with negative sign, namely
μ = 1−(x+y+z)/2. We now have g′(0) = q′(μ+b)−q′(μ+s)−q′(μ−s)+q′(μ−b),
where b = (x− y + z)/2, s = (−x+ y + z)/2. After calculations:

g′(0) = 2t[(μ+ b)2t−1 + (μ− b)2t−1 − (μ+ s)2t−1 − (μ− s)2t−1]

= 4t
∑

i even

(
2t− 1
i

)

μ2t−1−i(bi − si)
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Observe that μ ≥ 0. Since x ≤ y, we get that s ≥ b ≥ 0. This means that
g′(0) ≤ 0. It can be easily checked that the same argument holds if we replace
x, y by x− δ and y + δ. Hence g′(δ) ≤ 0 for every δ ∈ [0, x], and we are done.

Case 2: ξ(u4) = 2 The expression for E is now:

E = q(1−(x+y))+q(1−(x+z))+q(1−(y+z))−q(1−x)−q(1−y)−q(1−(x+y+z))

Although E(x, y, z) is different than in Case 1, the important observation
is that if we consider again the function g(δ) = E(x − δ, y + δ, z) then the
derivative g′(δ) is the same as in Case 1 and hence the same analysis shows
that E(0, x+ y, z) ≤ E(x, y, z). But if x = 0, then y2 identifies with y4 and the
inequality reduces to the triangle inequality on y0,y1,y3. ��

5 Lower Bound for Embedding Negative Type Metrics
into �1

While, in view of Theorem 3, Charikar’s metric does not supply an example
that is far from �1, we may still (partly motivated by Theorem 2) utilize the
idea of “tensoring the cube” and then adding some more points in order to
achieve negative type metrics that are not �1 embeddable. Our starting point is
an isoperimetric inequality on the cube that generalizes the standard one. Such
a setting is also relevant in [12,17] where harmonic analysis tools are used to
bound expansion; these tools are unlikely to be applicable to our case where the
interest and improvements lie in the constants.

Theorem 1. (Generalized Isoperimetric inequality) For every set S ⊆ Qn,

|E(S, Sc)| ≥ |S|(n− log2 |S|) + p(S).

where p(S) denotes the number of vertices u ∈ S such that −u ∈ S.

Proof. We use induction on n. Divide Qn into two sets V1 = {u : u1 = 1} and
V−1 = {u : u1 = −1}. Let S1 = S ∩ V1 and S−1 = S ∩ V−1. Now, E(S, Sc) is
the disjoint union of E(S1, V1 \ S1), E(S−1, V−1 \ S−1), and E(S1, V−1 \ S−1) ∪
E(S−1, V1 \ S1). Define the operator ·̂ on Qn to be the projection onto the last
n − 1 coordinates, so for example Ŝ1 = {u ∈ Qn−1 : (1,u) ∈ S1}. It is easy to
observe that |E(S1, V−1 \ S−1) ∪ E(S−1, V1 \ S1)| = |Ŝ1ΔŜ−1|. We argue that

p(S) + |S1| − |S−1| ≤ p(Ŝ1) + p(Ŝ−1) + |Ŝ1ΔŜ−1|. (13)

To prove (13), for every u ∈ {−1, 1}n−1, we show that the contribution of (1,u),
(1,−u), (−1,u), and (−1,−u) to the right hand side of (13) is at least as large as
their contribution to the left hand side: This is trivial if the contribution of these
four vectors to p(S) is not more than their contribution to p(Ŝ1), and p(Ŝ−1).
We therefore assume that the contribution of the four vectors to p(S), p(Ŝ1),
and p(Ŝ−1) are 2, 0, and 0, respectively. Then without loss of generality we may
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assume that (1,u), (−1,−u) ∈ S and (1,−u), (−1,u) �∈ S, and in this case the
contribution to both sides is 2. By induction hypothesis and (13) we get

|E(S,Sc)| = |E(Ŝ1, Qn−1 \ Ŝ1| + |E(Ŝ−1, Qn−1 \ Ŝ−1| + |Ŝ1ΔŜ−1|
≥ |S1|(n − 1 − log2 |S1|) + p(Ŝ1) + |S−1|(n − 1 − log2 |S−1|) + p(Ŝ−1) + |Ŝ1ΔŜ−1|
≥ |S|n − |S| − (|S1| log2 |S1| + |S−1| log2 |S−1|) + p(Ŝ1) + p(Ŝ−1) + |Ŝ1ΔŜ−1|
≥ |S|n − (2|S−1| + |S1| log2 |S1| + |S−1| log2 |S−1|) + p(S).

Now the lemma follows from the fact that 2|S−1|+|S1| log2 |S1|+|S−1| log2 |S−1|
≤ |S| log2 |S|, which can be obtained using easy calculus. ��

We call a set S ⊆ Qn symmetric if −u ∈ S whenever u ∈ S. Note that p(S) = |S|
for symmetric sets S.

Corollary 1. For every symmetric set S ⊆ Qn

|E(S, Sc)| ≥ |S|(n− log2 |S|+ 1).

The corollary above implies the following Poincaré inequality.

Proposition 3. (Poincaré inequality for the cube and an additional point) Let f :
Qn ∪ {0} → Rm satisfy that f(u) = f(−u) for every u ∈ Qn, and let α = ln 2

14−8 ln 2 .
Then the following Poincaré inequality holds.

1

2n
· 8
7
(4α+1/2)

∑

u,v∈Qn

‖f(u)−f(v)‖1 ≤ α
∑

uv∈E

‖f(u)−f(v)‖1+
1

2

∑

u∈Qn

‖f(u)−f(0)‖1

Proof. It is enough to prove the above inequality for f : V → {0, 1}. We may
assume without loss of generality that f(0) = 0. Associating S with {u : f(u) =
1}, the inequality of the proposition reduces to

1
2n

8
7
(4α+ 1/2)|S||Sc| ≤ α|E(S, Sc)|+ |S|/2, (14)

where S is a symmetric set, owing to the condition f(u) = f(−u). From the
isoperimetric inequality of Theorem 1 we have that |E(S, Sc)| ≥ |S|(x + 1) for
x = n− log2 |S| and so

(
α(x+ 1) + 1/2

1− 2−x

)
1
2n
|S||Sc)| ≤ α|E(S, Sc)|+ |S|/2.

It can be shown that α(x+1)+1/2
1−2−x attains its minimum in [1,∞) at x = 3 whence

α(x+1)+1/2
1−2−x ≥ 4α+1/2

7/8 , and Inequality (14) is proven. ��

Theorem 6. Let V = {ũ : u ∈ Qn} ∪ {0}, where ũ = u ⊗ u. Then for the
semi-metric space X = (V, ‖ · ‖2) we have c1(X) ≥ 8

7 − ε, for every ε > 0 and
sufficiently large n.
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Proof. We start with an informal description of the proof. The heart of the
argument is showing that the cuts that participate in a supposedly good �1
embedding of X cannot be balanced on one hand, and cannot be imbalanced on
the other. First notice that the average distance in X is almost double that of
the distance between 0 and any other point (achieving this in a cube structure
without violating the triangle inequality was where the tensor operation came in
handy). For a cut metric on the points of X , such a relation only occurs for very
imbalanced cuts; hence the representation of balanced cuts in a low distortion
embedding cannot be large. On the other hand, comparing the (overall) average
distance to the average distance between neighbouring points in the cube shows
that any good embedding must use cuts with very small edge expansion, and
such cuts in the cube must be balanced (the same argument says that one must
use the dimension cuts when embedding the hamming cube into �1 with low
distortion). The fact that only symmetric cuts participate in the �1 embedding
(or else the distortion becomes infinite due to the tensor operation) enables us to
use the stronger isoperimetric inequality which leads to the current lower bound.
We now proceed to the proof.

We may view X as a distance function with points in u ∈ Qn ∪ {0}, and
d(u,v) = ‖ũ − ṽ‖2. We first notice that X is indeed a metric space, i.e., that
triangle inequalities are satisfied: notice that X \ {0} is a subset of {−1, 1}n2

.
Therefore, the square Euclidean distances is the same (upto a constant) as their
�1 distance. Hence, the only triangle inequality we need to check is ‖ũ− ṽ‖2 ≤
‖ũ− 0‖2 + ‖ṽ− 0‖2, which is implied by the fact that ũ · ṽ = (u · v)2 is always
nonnegative.

For every u,v ∈ Qn, we have d(u,0) = ‖ũ‖2 = ũ · ũ = (u · u)2 = n2, and
d(u,v) = ‖ũ− ṽ‖2 = ‖ũ‖2 + ‖ṽ‖2 − 2(ũ · ṽ) = 2n2 − 2(u · v)2. In particular, if
uv ∈ E we have d(u,v) = 2n2 − 2(n− 2)2 = 8(n− 1). We next notice that
∑

u,v∈Qn

d(u,v) = 22n×2n2−2
∑

u,v

(u·v)2 = 22n×2n2−2
∑

u,v

(
∑

i

uivi)
2 = 22n(2n2−2n),

as
∑

u,v uiviujvj is 22n when i = j, and 0 otherwise.
Let f be a nonexpanding embedding of X into �1. Notice that

d(u,−u) = 2n2 − 2(u · v)2 = 0,

and so any embedding with finite distortion must satisfy f(u) = f(−u). There-
fore Inequality (3) can be used and we get that

α
∑

uv∈E ‖f(ũ)− f(ṽ)‖1 + 1
2

∑
u∈Qn

‖f(ũ)− f(0)‖1
1
2n

∑
u,v∈Qn

‖f(ũ)− f(ṽ)‖1
≥ 8

7
(4α+ 1/2). (15)

On the other hand,

α
∑

uv∈E d(u,v) + 1
2

∑
u∈Qn

d(u,0)
1
2n

∑
u,v∈Qn

d(u,v)
8α(n2 − n) + n2

2n2 − 2n
= 4α+ 1/2 + o(1). (16)

The discrepancy between (15) and (16) shows that for every ε > 0 and for
sufficiently large n, the required distortion of V into �1 is at least 8/7− ε. ��
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6 Discussion

It is important to understand our results in the context of the Lift and Project
system defined by Lovász and Schrijver [19], specifically the one that uses positive
semidefinite constraints, called LS+ (see [20] for relevant discussion). As was
mentioned in the introduction, a new result of Georgiou, Magen, Pitassi and
Tourlakis [14] shows that after a super-constant number of rounds of LS+, the
integrality gap is still 2 − o(1). To relate LS+ to SDPs one needs to use the
conversion yi = 2zi − z0, where yi is as usual the vectors of the SDP solution
and the zi are the Cholesky decomposition of the matrix of the lifted variables
in the LS+ system. With this relation in mind, it can be shown that the triangle
inequalities with respect to v0 are implied after as little as one round of LS+

and so [14] extends Charikar’s result on the SDP with these types of triangle
inequalities. However, at least for some graphs, triangle inequalities not involving
v0 as well as pentagonal inequalities are not implied by any number of rounds of
LS+. To see this, consider the application of LS+ system to Vertex Cover when
the instance is the empty graph. Since for this instance the Linear Program
relaxation is tight, lifted inequalities must appear in the first round or not at
all. But it is easy to see that even the general triangle inequalities do not appear
after one round and thus will never appear. It is important to note that for the
graphs used in [14] (which are the same as the ones we use here) we do not know
whether the general triangle inequality and whether pentagonal inequalities are
implied after a few rounds of LS+.

Acknowledgment. Special thanks to George Karakostas for very valuable dis-
cussions. We also thank the referees for their detailed and insightful comments.
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Abstract. It is known that online knapsack is not competitive. This
negative result remains true even if the items are removable. In this pa-
per we consider online removable knapsack with resource augmentation,
in which we hold a knapsack of capacity R ≥ 1.0 and aim at maintain-
ing a feasible packing to maximize the total weight of the items packed.
Accepted items can be removed to leave room for newly arriving items.
Once an item is rejected/removed it can not be considered again. We
evaluate an online algorithm by comparing the resulting packing to an
optimal packing that uses a knapsack of capacity one. Optimal online
algorithms are derived for both the weighted case (items have arbitrary
weights) and the un-weighted case (the weight of an item is equal to its
size).

Keywords: On-line algorithms, knapsack, resource augmentation.

1 Introduction

Competitive analysis is a standard approach for evaluating the performance
of online algorithms. However, that is not almighty and occasionally gives us
only little and/or pessimistic information. For example, a certain type of online
problems do not have competitive online algorithms (i.e., the competitive ratio of
any online algorithm diverges). Also for some online problem, several algorithms
that are very different empirically have almost the same competitive ratio, giving
us no useful information, either.

In such a case, there is another popular approach, resource augmentation [9],
which allows online algorithms to use more resource, by a factor of R, than offline
algorithms. In the case of Bin Packing, for example, the online player can use
bins of size R ≥ 1.0 while the offline adversary can use those of size one (and both
try to minimize the number of bins to pack given items). Thus the competitive
ratio becomes a function in R which is more general than the original one which
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is a special case obtained by setting R = 1.0. There are several successful results
in which we can achieve bounded (and relatively small) competitive ratios even
if R is slightly larger than 1.0 [4]. In this paper, we take this approach for the
online removable knapsack problem.

The problem was introduced in [2]. Items i1, i2, · · · are given sequentially. For
each ij , the online player has to decide if accepting or rejecting it. In order to
accept ij, there must be enough space in the knapsack for the item, and to assure
this it is allowed to discard old items in the knapsack. However once an item is
rejected or discarded it will never be considered again. It was shown in [2] that
one can attain an optimal competitive ratios, (

√
5+1)/2, if items are unweighted

(i.e., the weight of each item is the same as its size), but as was shown later by
[3], no competitive algorithms exist for the general (i.e., weighted) case.

Our Contribution. Our model in this paper allows the online player to use
a knapsack of capacity R ≥ 1 while the adversary has a knapsack of capacity
one. Our results includes: (i) Thanks to the resource augmentation, we can eas-
ily prove that the standard greedy algorithm has a bounded competitive ratio,
1/(R − 1), for the weighted case. (ii) Interestingly, this simple algorithm is op-
timal; to show this we use a tricky sequence of sufficiently many items whose
weight changes gradually.

Thus, the online player needs twice (R = 2) as large capacity as the offline
player to attain the same amount of total weight, but can do better for the
unweighted case: (iii) For the unweighted input, we can achieve a competitive
ratio of 2/(2R−1) if R ≥ (1+

√
2)/2 and (

√
4R+ 1+1)/(2R) if R < (1+

√
2)/2.

(Note that the ratio becomes 1.0 when R = 1.5.) This ratio is again optimal.
(iv) Resource augmentation also helps for the classical model which does not
allow the removal of old items: Without resource augmentation, no competitive
algorithm exists even for the unweighted case, but with resource augmentation
we can attain a bounded competitive ratio of 1/(R−1). Note that the competitive
ratio still diverges for the weighted case.

See the following table for the summary. All the ratios in the table are tight.
We furthermore have the conjecture that we can design optimal online algorithms
for the intermediate case between the weighted and unweighted cases, i.e., for
the case that the maximum weight/size ratio of the whole input is known in
advance (assuming that the minimum weight/size ratio is one), by a natural
extension of the above algorithms.

Weighted Unweighted

With Removal
1/(R− 1),

1 < R ≤ 2

2/(2R− 1) if (1 +
√

2)/2 ≤ R ≤ 3/2,

(
√

4R+ 1 + 1)/(2R) if 1 ≤ R < (1 +
√

2)/2,

Without Removal ∞ 1/(R− 1), 1 < R ≤ 2

Related Results. There is a rich literature for resource augmentation. For
instance, see [1] for bin packing and [8] for machine scheduling. The online
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knapsack problem first appeared in [5,6] without removal, where the authors
introduced stochastic models to bypass the difficulty of the standard competi-
tive analysis. Iwama and Taketomi [2] proposed the removable online knapsack
problem and studied its competitive ratio for the unweighted case. Optimal on-
line algorithms for the one-bin case and the multi-bin case (but the gain is
counted by the maximum-loaded single bin), with competitive ratios (

√
5+1)/2

and 1.3815, respectively, were derived. Noga and Sarbua[7] considered a simi-
lar online knapsack problem with resource augmentation. Their model allows
an item to be divided upon its arrival and be packed into the knapsack par-
tially. They gave both a deterministic algorithm and a randomized algorithm,
where the deterministic one achieves the best competitive ratio of 2/R, where
1 ≤ R ≤ 2.

Competitive Ratio. Before closing the introductory section we give the stan-
dard definition of the competitive ratio with resource augmentation for our
problem. Let A be an online algorithm with a knapsack of capacity R ≥ 1
and let OPT be some optimal (offline) algorithm with a knapsack of capac-
ity one. The competitive ratio (abbreviated as CR hereafter) is then defined as
sup
L
OPT (L)/A(L), where A(L) and OPT (L) are the total weight of items ac-

cepted by the online algorithm A and the optimal algorithm OPT , respectively,
for an instance L.

2 The Weighted Case

If R = 1.0 the problem is not competitive, which can be seen as follows: Let
(s, w) denote an item whose size and weight are s and w, respectively. Consider
the sequence of items

(1, 1), (ε2, ε), (ε2, ε), · · · ,
where ε > 0 is a small number. Let A be any online algorithm. Then A must
take the first item (1, 1), otherwise the adversary ends the game immediately.
Now the knapsack is already full and A must discard (1, 1) to take one of the
subsequent small items. If A actually take some (ε2, ε), then the adversary stops
the game and the competitive ratio is 1/ε. Otherwise the adversary keeps giving
the small items, allowing the offline player to eventually achieve the total weight
of ε · 1/ε2 = 1/ε whereas the online player holds only (1, 1). Thus the CR is 1/ε,
too.

Now we assume that R > 1 and consider the following simple greedy algo-
rithm. Suppose that the knapsack currently holds items i1, i2, · · · , ik and the new
item is i0. Then sort those k + 1 items i0, i1, · · · , ik by their weight/size ratio in
nondecreasing order and take the largest ones as many as possible.

Lemma 1. The CR of the greedy algorithm is less than 1/(R− 1).

Proof. Suppose that n items are given so far and let (s1, w1), (s2, w2), · · · , (sn, wn)
be their sorted (by weight/size ratio) sequence. Then by a simple induction one
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can see that at any moment the knapsack either includes all those items (obviously
the lemma holds) or the first k items in this list such that s1 + s2 + · · ·+ sk ≤ R
and s1+s2+· · ·+sk+sk+1 > R. (Note that the knapsack of the online player may
also hold other items which appear after (sk+1, wk+1) in the sorted list.) Thus we
have that s1 + s2 + · · ·+ sk > R − 1 since sk+1 ≤ 1 and hence OPT (=the total
weight of the offline knapsack) is less than (w1 + w2 + · · · + wk) · (1/(R − 1)).
Since the online player achieves a total weight of (w1 +w2 + · · ·+wk), the lemma
holds. ��

Lemma 2. For any fixed c > 0, there does not exist an online algorithm with a
CR of 1

R−1 − c or less.

Proof. We use a similar sequence of items as were used for the case of R = 1.
To see the basic idea, let us assume for the moment that R = 1 + 2/3. Then our
goal is to show that the CR becomes as bad as 1.5 approximately. Suppose that
the input sequence looks like

(1, 1), (ε, σε), (ε, σε), · · · .

The first item must be taken and recall that the online player cannot discard it
for ever when R = 1. Assume that this is also true for a general R > 1. Then
the online player could (approximately) make a total weight of

ON =
2/3
ε
· σε+ 1 =

2
3
σ + 1,

and the offline player

OPT =
1
ε
· σε = σ.

Thus by selecting a sufficiently large σ, the CR would be arbitrarily close to 1.5
and we would be done.

Unfortunately this is too optimistic. Consider the moment when the 2/3 frac-
tion of the knapsack becomes full. Note that the total weight of the small items
staying there, (2/3)σ, is already much more than 1.0 if σ is large. This means
the online player can discard (1, 1) to take the next (and subsequent) small items
without suffering any damage against the adversary.

What if σ is small, say σ = 1.0? Then the above value (2/3)σ is less than
1.0 and the online player cannot discard (1, 1), since if he/she does so, then the
game ends and the CR becomes 1.5 at that moment. But as one can see easily,
this time, the online player can just keep (1, 1) for ever. ON will be as much as
1 + 2/3, which is more than enough since OPT ≤ 1.0.

Thus neither is satisfactory for the adversary. Our solution is to start the
sequence with σ = 1.0 and increase its value very slowly. At the beginning, since
σ = 1.0, the online player has to keep (1, 1) as described above, and subsequently
he/she will also be forced to do the same if the change of σ is slow. More formally,
for any R such that 1.0 < R ≤ 2.0, we use the following sequence of items:
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(1, 1), (ε, ε), · · · · · · , (ε, ε),
(ε, (1 + δ)ε), · · · · · · , (ε, (1 + δ)ε),
(ε, (1 + 2δ)ε), · · · · · · , (ε, (1 + 2δ)ε),
· · · · · · · · · .

Note that all the items excepting the first (1, 1) have the same size. In the
first stage, 1/ε small items of weight ε come, the same number of items with
weight (1 + δ)ε in the second stage and the same number of items with weight
(1 + (i − 1)δ)ε in the ith stage. Here δ > 0 is a sufficiently small number. Now
we can make the following claims:

(i) If the online player discards (1, 1) somewhere in the first stage, then the
game ends and it is easy to see that the CR is at least 1/(R− 1 + ε).

(ii) Suppose that the online player holds (1, 1) at the beginning of the ith stage
(i ≥ 2) and that he/she discards it within that stage. Then the game ends and at
that moment, ON ≤ R−1

ε (1+(i−1)δ)ε+(1+(i−1)δ)ε= (R−1+ε)(1+(i−1)δ)
and OPT ≥

⌈
1
ε

⌉
(1 + (i − 2)δ)ε. (Namely the offline player can hold the whole

small items of the previous stage.) Thus the CR is at least
⌈

1
ε

⌉
ε

R− 1 + ε
· 1 + (i− 2)δ
1 + (i− 1)δ

,

which is arbitrarily close to 1/(R − 1) for any i ≥ 2 if ε and δ are sufficiently
small.

(iii) Suppose that the online player keeps holding (1, 1). Then at the end of
the ith stage (i ≥ 2), ON ≤ R−1

ε (1+(i−1)δ)ε+1 and OPT ≥
⌈

1
ε

⌉
(1+(i−1)δ)ε.

Thus the CR is at least
⌈

1
ε

⌉
ε

R− 1
· 1 + (i− 1)δ
1 + (i− 1)δ + 1/(R− 1)

,

which approaches to
⌈

1
ε

⌉
ε/(R− 1) arbitrarily for a fixed δ as i grows. So, if ε is

sufficiently small, the CR is arbitrarily close to 1/(R− 1).
Thus whatever the online player does, the CR gets as large as the lemma

says. ��
Theorem 1. The greedy algorithm is best possible for the weighted case.

3 The Unweighted Case

In this case we assume that the weight of an item is equal to its size. In other
words we are going to maximize the total size of items packed into the knapsack.

Lemma 3. There is no online algorithm with a knapsack of capacity R ≥ 1 so
that its competitive ratio is less than

λ =

⎧
⎨

⎩

2/(2R− 1) if (1 +
√

2)/2 ≤ R ≤ 3/2,

(
√

4R+ 1 + 1)/(2R) if 1 ≤ R < (1 +
√

2)/2
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Proof. Consider the following sequence of four items for any online algorithm A.

x+ ε, R− x, 1/2, 1/2

For the first item, x satisfies R − 1/2 ≤ x < 1 (its exact value is determined
later) and ε > 0 is a sufficiently small number. Algorithm A has to accept this
item, since otherwise the adversary stops the input. The second item is R − x.
If A decides to accept it, the first item must be removed. In this case the game
is over, and we get the first ratio r1 = (x + ε)/(R− x). (Note that x + ε ≤ 1.0,
which can be in the offline knapsack.) If A discards the second item, the 3rd
item is of size 1/2. If A takes it, then A must discard x + ε and we obtain the
second ratio r2 = (1

2 +R− x)/(1
2 ) = 1 + 2(R− x). If A still keeps the first item,

the fourth item is again 1/2. We thus get the third ratio r3 = (1
2 + 1

2 )/(x + ε).
In the following we deal with two cases.

If R ≥ (1 +
√

2)/2, set x = R− 1/2. Comparing the three ratios we have

r1 >
x

R− x = 2R− 1, r2 = 2, r3 =
2

2R− 1 + ε
<

2
2R− 1

≤ 2R− 1.

Thus

min{r1, r2, r3} = r3 = 2/(2R− 1 + ε)→ 2/(2R− 1), as ε tends to zero.

It follows that the competitive ratio of algorithm A is at least 2/(2R− 1).
If R < (1+

√
2)/2, set x = (

√
4R+ 1− 1)/2 ≥ (

√
5+1)/2. Comparing r2 and

r3 we can see that

r2 − r3 > 1 + 2(R− x)− 1/x

≥ 2 + 2R−
√

4R+ 1− (
√

5 + 1)/2

> 4−
√

5− (
√

5 + 1)/2

> 0

Note that x2 + x = R, which implies that r1 > r3. Thus

min{r1, r2, r3} = r3 → (
√

4R+ 1 + 1)/(2R), as ε tends to zero.

The competitive ratio of algorithm A is at least (
√

4R+ 1 + 1)/(2R). ��
To achieve the matching upper bound, we need the following algorithm, denoted
by UW , which is much more complicated than the weighted case.

Algorithm UW . The algorithm works in two cases.
(1) R ≥ (1 +

√
2)/2. Let B be the set of a big item (of size greater than 1/2)

and S be the set of small items (of size at most 1/2) currently in the knapsack,
respectively. B and S are initially set to be empty. Algorithm UW will output
a feasible packing of B ∪ S.

Case 1.1. If a big item is arriving, compare it with the one in B (if exists),
keep the larger in the knapsack and discard the other. If B is updated, S needs
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updating accordingly: if necessary remove the items of S one by one in any order
until the remaining items can be packed into the knapsack (together with the
item in B).

Case 1.2. If a small item a is coming, update S: If the knapsack has enough
space for a (it can be packed together with the items of S and B), put a to S;
otherwise reject a.

(2) R < (1 +
√

2)/2. Case 2.1. Algorithm UW will end the game if one of
the following two trivial cases occurs: (1) the current packing is already of size
≥ δR = (

√
4R+ 1 − 1)/2; (2) the coming item has a size of at least δR. In the

latter case we discard all items and pack this item in the knapsack.
If the above cases never happen, we do packing as follows: Put the first item

in the knapsack. Case 2.2. As a new item is arriving, pack it into the knapsack
if it can fit in. If there is not enough space we deal with two further cases.
Case 2.3. If the two largest items (among those already in the knapsack and the
new one) can be packed together into the knapsack, then pack the items in the
non-increasing order of size until some item cannot fit in, and stop; Case 2.4. if
it is not this case, remove the largest item and pack the remaining ones into the
knapsack, which is obviously possible.

Theorem 2. The competitive ratio of algorithm UW is

ρG ≤

⎧
⎨

⎩

2/(2R− 1) if (1 +
√

2)/2 ≤ R ≤ 3/2,

(
√

4R+ 1 + 1)/(2R) if 1 ≤ R < (1 +
√

2)/2,

and it is thus an optimal online algorithm.

Proof. To avoid the trivial case we assume that some item is discarded during
the packing by algorithm UW .

We first deal with the case that R ≥ (1 +
√

2)/2. During the packing of
algorithm UW if no small items are removed/discarded, then the total size of
the items in the final packing of algorithm UW is not less than the total size
of an optimal packing with knapsack of capacity one. To see this note that the
packing by algorithm UW accepts all small items and the largest big item, while
an optimal packing (with knapsack capacity of one) cannot do better since two
big items exceeds 1.0. Thus the competitive ratio is at most one. In the following
assume that some small item is removed/discarded by UW . Then the remaining
space of the knapsack is less than 1/2 since the small item cannot fit in the
knapsack. Thus the total size of items packed by UW is greater than R − 1/2.
The competitive ratio ρG ≤ 1/(R − 1/2) = 2/(2R − 1). Notice that we did not
use the condition that R ≥ (1 +

√
2)/2, namely this upper bound holds for the

whole range of R.
For R < (1 +

√
2)/2, we can prove the better upper bound. The bound

(
√

4R+ 1 + 1)/(2R) is trivially achieved if the algorithm ends as one of the two
cases occurs: (1) the current packing is already of size ≥ δR = (

√
4R+ 1− 1)/2;

(2) the coming item has a size of at least δR. Moreover if the total size of the
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items is over R but the two largest ones can fit together into the knapsack we
hold a packing with remaining space less than R/3. The competitive ratio is thus
at most 3/(2R) that is smaller than (

√
4R+ 1 + 1)/(2R).

So, whenever algorithm UW stops, it already holds enough amount of total
weight. Thus we can assume that only Cases 2.2 and 2.4 have happened so far.
We can then claim that no small items are removed/rejected during the packing.
Note that we discard items in Case 2.4 only, i.e., if the incoming item cannot fit
in the knapsack and the sum of the two largest items is larger than R. In this
case, we discard the largest item (it is less than δR but larger than 1/2) and thus
the remaining items, including all the small ones, must fit in the knapsack. Let
y be the largest one (and its size) among all the input items so far and let z be
the largest item (and its size) remaining in the final packing. Clearly y + z > R
and y < δR. It implies that z > R − δR. Recall that we do not have any small
item lost. Let S be the total size of small items. Thus the optimal value is at
most y+ S while Algorithm UW holds a packing of size z +S. The competitive
ratio is at most

(y + S)/(z + S) ≤ y/z < δR/(R− δR) = (
√

4R+ 1 + 1)/(2R). ��

Note that when R = 1 it is exactly the bound (golden ratio) shown in [2].

4 The Model Without Removal

If the online player is not allowed to discard old items and without resource
augmentation, then the CR diverges even for the unweighted case. This is easily
seen by the sequence of only two items, ε followed by 1.0. The online player has
to take the the first item and not enough space for the second one. With resource
augmentation, however, it is enough for him/her to use a simple greedy algo-
rithm. Namely if the current item fits, then it is taken and otherwise discarded.
If the item is discarded, at least the R − 1 fraction of the knapsack has been
filled, which means the CR is at most 1/(R − 1). The online player cannot do
better; the sequence given by the adversary is a simple extension of the above,
namely (R − 1) + ε followed by 1.0.

For the weighted case, resource augmentation is still powerless completely.
The adversary gives the sequence of items

(1, w1), (1, w2), · · · , (1, wn),

where w1 > 0 and wi (i ≥ 2) is determined to satisfy

wi ≥ σ(w1 + w2 + · · ·+ wi−1).

Then, even if the online player knows the maximum number n of items, he/she
cannot maintain the sequence if R < n or cannot achieve any competitive ratio
better than σ. (If R = n then the game is trivial since everything can be held).
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Abstract. We consider the following channel assignment problem arising in
wireless networks. We are given a graph G = (V, E), and the number of wireless
cards Cv for all v, which limit the number of colors that edges incident to v can
use. We also have the total number of channels CG available in the network. For
a pair of edges incident to a vertex, they are said to be conflicting if the colors as-
signed to them are the same. Our goal is to color edges (assign channels) so that
the number of conflicts is minimized. We first consider the homogeneous network
where Cv = k and CG ≥ Cv for all nodes v. The problem is NP-hard by a reduc-
tion from EDGE COLORING and we present two combinatorial algorithms for this
case. The first algorithm is a distributed greedy method, which gives a solution
with at most (1− 1

k
)|E| more conflicts than the optimal solution. We also present

an algorithm yielding at most |V | more conflicts than the optimal solution. The al-
gorithm generalizes Vizing’s algorithm in the sense that it gives the same result as
Vizing’s algorithm when k = Δ+1. Moreover, we show that this approximation
result is best possible unless P = NP . For the case where Cv = 1 or k, we show
that the problem is NP-hard even when Cv = 1 or 2, and CG = 2, and present
two algorithms. The first algorithm is completely combinatorial and produces a
solution with at most (2 − 1

k
)OPT + (1 − 1

k
)|E| conflicts. We also develop an

SDP-based algorithm, producing a solution with at most 1.122OPT + 0.122|E|
conflicts for k = 2, and (2 − Θ( ln k

k
))OPT + (1 − Θ( ln k

k
))|E| conflicts in

general.

1 Introduction

We consider a channel assignment problem arising in multi-channel wireless networks.
In wireless networks nearby nodes interfere with each other and cannot simultaneously
transmit over the same wireless channel. One way to overcome this limitation is to as-
sign independent channels (that can be used without interference) to nearby links of the
network. Consider the example shown in Figure 1. When all links use the same chan-
nel, only one pair of nodes may communicate with each other at a time due to conflicts.
However, if there are three channels available and each node has two wireless interface

M. Charikar et al. (Eds.): APPROX and RANDOM 2007, LNCS 4627, pp. 189–203, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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cards (so it can use two channels), then we may assign a different channel to each link
to avoid conflicts among edges in this channel assignment. Channel assignment to uti-
lize multiple channels have recently been studied by many researchers in networking
community [1,2,3,4].

A B

C

e1: {1}

e2: {2} e3: {3}

{1,3}

{2,3}

{1,2}

Fig. 1. Each node has two wireless interface cards (thus can use two different channels) and three
channels are available in total. We can assign a distinct channel to each link as shown above so
that there is no conflict among edges.

We informally define the SOFT EDGE COLORING problem as follows. We are given
a graph G = (V,E), and constraints on the number of wireless cards Cv for all v,
which limit the number of colors that edges incident to v can use. In addition, we have
a constraint on the total number of channels available in the network (denoted as CG).
For a pair of edges incident to a vertex, they are said to be conflicting if the colors
assigned to them are the same. Our goal is to color edges (assign channels) so that the
number of conflicts is minimized while satisfying constraints on the number of colors
that can be used.

SOFT EDGE COLORING is a variant of the EDGE COLORING problem. In our prob-
lem, coloring need not be proper (two adjacent edges are allowed to use the same
color)—the goal is to minimize the number of such conflicts. In addition, each node
has its local color constraint, which limits the number of colors that can be used by the
edges incident to the node. For example, if a node has two wireless cards (Cv = 2), the
node can choose two colors and edges incident to the node should use only those two
colors.

Our results. We briefly summarize our results. We first consider the homogeneous net-
work where Cv = k and CG ≥ Cv for all nodes v. For an arbitrary k, the problem
is NP-hard by a reduction from EDGE COLORING. We present two combinatorial al-
gorithms for this case. The first algorithm is a simple greedy method, which gives a
solution with at most (1− 1

k )|E| more conflicts than the optimal solution; furthermore,
it can be computed in a distributed fashion. We also present an algorithm yielding at
most |V | more conflicts than the optimal solution. The algorithm generalizes Vizing’s
algorithm in the sense that it gives the same result when k = Δ + 1. In fact, our algo-
rithm gives an optimal solution when dv mod k = k − 1 for all vertices v. Moreover,
we show that this approximation result is best possible unless P = NP .

In a heterogeneous network, we consider the case where each node v can have dif-
ferent Cv = 1 or k. We show that the problem is NP-hard even when Cv = 1 or 2,
and CG = 2, and present two algorithms for this case. The first algorithm is com-
pletely combinatorial and produces a solution with at most (2− 1

k )OPT + (1− 1
k )|E|

conflicts. We also develop an SDP-based algorithm, producing a solution with at most
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1.122OPT +0.122|E| conflicts for k = 2, and (2−Θ( ln k
k ))OPT +(1−Θ( ln k

k ))|E|
conflicts in general (slightly better than the combinatorial algorithm).

Relationship to MIN K-PARTITION and MAX K-CUT. The MIN K-PARTITION prob-
lem is the dual of MAX K-CUT problem where we color vertices with k different colors
so that the total number of conflicts (monochromatic edges) is minimized. Our problem
for the homogeneous network when CG = Cv = k for all v is an edge coloring version
of MIN k-PARITION problem1. Kann et al. [5] showed that for k > 2 and for every
ε > 0, there exists a constant α such that the MIN k-PARTITION cannot be approxi-
mated within α|V |2−ε unless P = NP . In our problem when Cv = k for all v, we
have an approximation algorithm with additive term of |V |.

For the case when Cv = 1 or k, we use a SDP formulation similar to one used for
MAX K-CUT and utilize the upperbounds obtained in [6]. To obtain a (2 − Θ( ln k

k ))-
approximation, we compare the upperbounds with two lowerbounds — one based on
necessary interference at a vertex determined by its degree, and one given by the SDP
relaxation.

Other Related Work. Fitzpatrick and Meertens [7] have considered a variant of graph
coloring problem (called the SOFT GRAPH COLORING problem) where the objective is
to develop a distributed algorithm for coloring vertices so that the number of conflicts is
minimized. The algorithm repeatedly recolors vertices to quickly reduce the conflicts to
an acceptable level. They have studied experimental performance for regular graphs but
no theoretical analysis has been provided. Damaschke [8] presented a distributed soft
coloring algorithm for special cases such as paths and grids, and provided the analysis
on the number of conflicts as a function of time t. In particular, the conflict density on
the path is given as O(1/t) when two colors are used, where the conflict density is the
number of conflicts divided by |E|.

In the traditional edge coloring problem, the goal is to find the minimum number of
colors required to have a proper edge coloring. The problem isNP -hard even for cubic
graphs [9]. For a simple graph, a solution using at most Δ + 1 colors can be found
by Vizing’s theorem [10] where Δ is the maximum degree of a node. For multigraphs,
there is an approximation algorithm which uses at most 1.1χ′ + 0.8 colors where χ′ is
the optimal number of colors required [11] (the additive term was improved to 0.7 by
Caprara et al. [12]).

1.1 Problem Definition

We are given a graph G = (V,E) where v ∈ V is a node in a wireless network and an
edge e = (u, v) ∈ E represents a communication link between u and v. Each node v
can use Cv different channels and the total number of channels that can be used in the
network is CG. More formally, let E(v) be the edges incident to v and c(e) be the color
assigned to e. Then |

⋃
e∈E(v) c(e)| ≤ Cv and |

⋃
e∈E c(e)| ≤ CG.

1 Or it can be considered as MIN k-PARTITION problem when the given graph is a line graph
where the line graph of G has a vertex corresponding to each edge of G, and there is an edge
between two vertices in the line graph if the corresponding edges are incident on a common
vertex in G.
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A pair of edges e1 and e2 in E(v) are said to be conflicting if the two edges use the
same color. Let us define the conflict number (CFe) of an edge e ∈ E to be the number
of other edges that conflict with e. In other words, for an edge e = (u, v), CFe is the
number of edges (other than e itself) in E(u)

⋃
E(v) that use the same channel as e.

Our goal is to minimize the total number of conflicts. That is,

CFG =
1
2

∑

e∈E
CFe. (1)

In the remainder of this paper, we mean channels by colors and use edge coloring
and channel assignment, interchangeably. We also use conflicts and interferences inter-
changeably.

2 Algorithms for Homogeneous Networks

In this section, we consider the case for a homogeneous network where for all nodes
v, the number of channels that can be used is the same (Cv = k). For an arbitrary k,
the problem is NP-hard as the edge coloring problem can be reduced to our problem by
setting k = CG = Δ where Δ is the maximum degree of nodes.

2.1 Greedy Algorithm

We first present and analyze a greedy algorithm for this problem. The algorithm works
as follows: We choose colors from {1, . . . , k} (We only use k colors even whenCG > k
and the approximation ratio of our algorithm remains the same regardless of the value
ofCG.) For any uncolored edge e = (u, v), we choose a color for edge e that introduces
the smallest number of conflicts. More formally, when we assign a color to e = (u, v),
we count the number of edges in E(u)

⋃
E(v) that are already colored with c (denoted

as n(c, e)), and choose color c with the smallest n(c, e).

Theorem 1. The total number of conflicts by the greedy algorithm in homogeneous
networks is at most

CFG =
1
2

∑

e∈E
CFe ≤ OPT + (1 − 1

k
)|E|. (2)

Theorem 1 directly follows from Lemma 2 and 3. The proofs are included in [13].

Lemma 2. The total number of conflicts when Cv = k for all node v is at least
1
2

∑
v
d2v
k − |E|.

Lemma 3. The total number of conflicts introduced by Algorithm 1 is at most 1
2

∑
v

d2v
k −

|E|
k .

Note that the algorithm can be performed in a distributed manner and each node needs
only local information. We can also consider a simple randomized algorithm, in which
each edge chooses its color uniformly at random from {1, . . . , k}. The algorithm gives
the same expected approximation guarantee and it can be easily derandomized using
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conditional expectations. The following corollary of Lemma 2 will be used to prove
approximation factors for heterogenous networks.

Corollary 4. Given an optimal solution, let OPT (S) (S ⊆ V ) be the number of con-

flicts at vertices in S and |E(S)| be
∑

v∈S
dv

2 . Then we haveOPT (S) ≥ 1
2

∑
v∈S

d2v
k −

|E(S)|.

2.2 Improved Algorithm

In this section, we give an algorithm with additive approximation factor of |V |. Our
algorithm is a generalization of Vizing’s algorithm in the sense that it gives the same
result as Vizing’s algorithm when k = Δ+1 whereΔ is the maximum degree of nodes.
We first define some notations. For each vertex v, let mk = �dv

k � and αv = dv −mvk.
Let |Ei(v)| be the size of the color class of color i at vertex v i.e. the number of edges
adjacent to v that have color i.

Definition 5. A color i is called strong on a vertex v if |Ei(v)| = mk + 1. A color i is
called weak on v if |Ei(v)| = mk . A color i is called very weak on v if |Ei(v)| < mk.

Definition 6. A vertex v has a balanced coloring if the number of strong classes at v is
at most min(αv + 1, k− 1) and no color class in E(v) is larger than mk + 1. A graph
G = (V,E) has a balanced coloring if each vertex v ∈ V has a balanced coloring.

In the following we present an algorithm that achieves a balanced coloring for a given
graphG = (V,E); we show in Theorem 16 that a balanced coloring implies an additive
approximation factor of |V | in terms of number of conflicts. In Algorithm
BALANCEDCOLORING(e) described below, we color edge e so that the graph has a
balanced coloring (which may require the recoloring of already colored edges to main-
tain the balanced coloring), assuming that it had a balanced coloring before coloring
e. We perform BALANACEDCOLORING for all edges in arbitrary order. The following
terms are used in the algorithm description. Let |Sv| denote the number of strong color
classes at vertex v.

Definition 7. For vertex v ∈ V with |Sv| < min(αv +1, k− 1) or with |Sv| = k− 1, i
is a missing color if i is weak or very weak on v. For vertex v ∈ V with |Sv| = αv + 1,
i is a missing color if i is very weak on v

Definition 8. An ab-path between vertices u and v where a and b are colors, is a path
connecting u and v and has the following properties:

– Edges in the path have alternating colors a and b.
– Let e1 = (u,w1) be the first edge on that path and suppose e1 is colored a, then u

must be missing b and not missing a.
– If v is reached by an edge colored b then v must be missing a but not missing b,

otherwise if v is reached by an edge colored a then v must be missing b and not
missing a.

Definition 9. A flipping of an ab-path is a recoloring of the edges on the path such that
edges previously with color a will be recolored with color b and vice versa.
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v

(a) STEP 2

v

(b) STEP 3

wi wi

cvcwi ⇒ cv

cv ⇒ cwi

Uncolored ⇒ cv

wi+1

cwi ⇒
Uncolored ⇒ cwiUncolored

Fig. 2. The figures illustrate how recoloring is performed in BALANCEDCOLORING. The colors
beside edges indicate the original color and the color after recoloring.

Algorithm BALANCEDCOLORING(e = (v, w))
Let w1 = w. At i-th round (i = 1, 2, . . .), we do the following.
STEP 1: Let Cv be the set of missing colors on v. If i = 1, Cw1 is the set of missing
colors on w1. When i ≥ 2, Cwi is the set of missing colors on wi minus cwi−1 . (cwi−1 is
defined in STEP 2 at (i−1)-th round). If Cv∩Cwi �= ∅, then choose color a ∈ Cv∩Cwi ,
color edge (v, wi) with a and terminate.
STEP 2: If Cv ∩ Cwi = ∅, choose cv ∈ Cv and cwi ∈ Cwi . Find a cvcwi-path that starts
at wi and does not end at v. If such a path exists, flip this path, color edge (v, wi) with
cv and terminate.
STEP 3: If all cvcwi-paths that start at vertex wi end at v, fix one path and let (v, wi+1)
be the last edge on that path. The edge (v, wi+1) must have color cwi . Uncolor it and
color edge (v, wi) with cwi . Mark edge (v, wi) as used and repeat the above steps with
edge (v, wi+1) (go to (i+ 1)-th round).

Analysis. In the following, we prove that our algorithm terminates and achieves a bal-
anced coloring. First we prove that we can always find a missing color at each round
(Lemma 10 and 11) and at some round j < dv , the algorithm terminates (Lemma 12).
Due to the choice of missing colors and ab-path, we can show that our algorithm gives
a balanced coloring (Lemma 13 and 14).

Lemma 10. For the given edge (v, w1), there is a missing color at v and w1. That is,
Cv �= ∅ and Cw1 �= ∅.

Proof. When |Sv| < min(αv + 1, k − 1) or |Sv| = k − 1, there must be at least one
weak color, which is a missing color. If |Sv| = αv + 1 then we can show that the
remaining k − αv − 1 color classes cannot be all weak (i.e. having size mv). Note that
dv = mvk + αv , so if there are αv + 1 strong color classes and the remaining color
classes have all exactly size mv then the number of edges at v is strictly larger than dv ,
which is not possible. So there must be a very weak class of which size is strictly less
than mv.

For wi, i ≥ 2, we need to choose a missing color at wi other than cwi−1 . We prove in
the following lemma, that there is a missing color other than cwi−1 .

Lemma 11. At i-th round (i ≥ 2), there is a missing color other than cwi−1 at wi.
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Proof. Note first that cwi−1 was not a missing color at wi in (i − 1)-th round since
otherwise we should have stopped at STEP 2. Consider the case that cwi−1 was a strong
color in (i − 1)-th round. As it is not possible that all k colors are strong, there must
be a weak (or very weak) color c other than cwi−1 in (i− 1)-th round. After uncoloring
(u,wi), the number of strong color classes will be reduced and we now have |Sv| <
min(αv + 1, k − 1). Then c is missing at wi in i-th round.

For the case that cwi−1 was a weak color in (i−1)-th round, |Sv| = αv+1 in (i−1)-
th round (otherwise, cwi−1 should have been a missing color). After uncoloring (u,wi),
Sv remains the same but cwi−1 is a very weak color. We need to show that there is a very
weak color other than cwi−1 . The number of edges that have weak or very weak colors is
at most (dv−1)−(αv+1)(mv+1) = (k−αv−1)mv−2 = (k−αv−3)mv+2(mv−1).
Therefore, there must be at least one very weak color other than cwi−1 .

Lemma 12. At some round j < dv there exists a cvcwj -path starting at wj and not
ending at v.

Proof. At some round j, if the algorithm does not terminate at Step 1 of some round
k < j, the colors are going to run out (i.e. the missing color cwj is the same as color
cwi , i < j and all edges (v, wi) with color cwi have been already used by the algorithm).
We show that there is no cvcwi -path connecting v and wj (thus the algorithm has to
terminate at Step 2). Suppose that there exists a cvcwi-path P connecting v and wj , v
is missing color cv and not missing color cwi , so v must be reached on an edge colored
cwi . Let e = (v, wi) be the edge in P adjacent to v. Since we used in the algorithm all
edges with color cwi , then edge (v, wi) must have been already used by the algorithm.
Now rewind the algorithm to the point where (v, wi) was uncolored, wi is missing cwi

and not missing cv , so if P exists there must be also a cvcwi -path connecting wi and
wj . This contradicts that at round i < j we could not find such path.

Lemma 13. A flipping of an ab-path in a graph with balanced coloring will not violate
the balanced coloring.

Proof. Suppose an ab-path runs from u to v. Suppose u is missing color b and not
missing color a. Let e = (u,w0) be the first edge of that path, so it is colored by
a. Flipping the ab-path will recolor e with color b, but since b was missing on u the
color class |Eb(v)| will not exceed mv + 1, and also the number of strong classes will
not become larger than min(αv + 1, k − 1) as we made color a missing on u. The
same argument works for v but with possibly b and a interchanged in the argument. For
internal vertices on the path nothing changes as the number of edges colored a and b
stays the same.

Lemma 14. Let v be a vertex that has a balanced coloring. Let e ∈ E(v) be uncol-
ored and let i be a missing color on v. Coloring e with i will not violate a balanced
coloring at v.

Proof. Suppose that at a vertex v, |Sv| < min(αv+1, k−1). Then the number of strong
color classes at v is strictly less than αv + 1 and coloring edge e with i will not violate
a balanced coloring at v as |Sv| will not exceed min(αv + 1, k − 1) and Ei(v) will not
exceedmv + 1 (i is missing on v). Suppose at a vertex v, |Sv| = αv + 1, then we show
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in Lemma 10 and 11 that there must be a very weak color class. When |Sv| = k − 1,
the remaining color is very weak as one edge is not colored. Thus coloring e with i will
not make Ei(v) a strong color class and the number of strong color classes remains the
same. So the balanced coloring at v will not be violated.

Theorem 15. The above algorithm terminates and achieves a balanced coloring.

Proof. In Lemma 12 we show that at some round j, (1 ≤ j ≤ dv), if we do not termi-
nate at Step 1 of the algorithm then there will be a cvcwj -path P starting at wj and not
ending at v. Now, if for some i, (1 ≤ i ≤ j), Cv ∩ Cwi �= ∅ then vertices v and wi are
missing the same color cv. By Lemma 14, coloring edge (v, wi) with color cv will not
violate a balanced coloring at v or at wi, hence the algorithm terminates at Step 1 with
a balanced coloring for G.

If ∀i, i ≤ j, C ∩ Cwi = ∅ we show that the algorithm terminates at Step 2 of round
j. As mentioned above, at round j there will be a cvcwj -path P starting at wj and not
ending at v. On this path, the edge adjacent to wj is colored with cv since wj is missing
cwj and not missing cv . Note that flipping path P will recolor this edge with color cwj

making color cv missing on wj . Furthermore, by Lemma 13, flipping P will not violate
the balanced coloring at any vertex in P . Thus cv is now missing at v and wj and as
in Step 1 we can now color edge (v, wj) with color cv without violating a balanced
coloring at v or wj . So the algorithm terminates at Step 2 with a balanced coloring.

Theorem 16. A balanced coloring of a graph achieves a |V | additive approximation
factor.

Proof. We have shown an algorithm that colors the edges of a graph G = (V,E) such
that the coloring is balanced at each vertex. Here we show that the algorithm introduces
at each vertex v ∈ V one more conflict than the optimal solution. At each vertex v
suppose there is an ordering on the size of the color classes, 1 being a strong class and
k being the weakest class. Note that at a vertex v, the number of conflicts is minimized
when the number of strong classes is αv and the remaining colors are weak. As the
number of strong classes achieved by our algorithm is at most αv + 1, the first αv
classes introduce the same number of conflicts in both the optimal and our solution.

The (αv + 1)th color class in a balanced coloring which is strong, exceeds the cor-
responding color class in OPT (which is necessarily weak) by 1. Then the additional
number of conflicts is 1

2 (mv + 1)mv − 1
2mv(mv − 1) = mv .

Now if there is an additional edge in the (αv+1)th color class in a balanced coloring
then there must be an additional edge in some color class i, αv+1 < i < k inOPT i.e.
some color class i is weak inOPT but very weak in our balanced coloring. The number
of additional conflicts of OPT in i is 1

2mv(mv − 1)− 1
2 (mv − 1)(mv− 2) = mv − 1 .

So, finally the additional number of conflicts introduced by the balanced algorithm is 1
at each vertex. Thus the approximation factor is |V |.

Corollary 17. When αv = k − 1 for all v, the algorithm gives an optimal solution.

Proof. Note that the balanced coloring gives exactly k− 1 strong color classes and one
weak color class when αv = k − 1, which is the optimal.
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We can show that the approximation ratio given by the algorithm is best possible unless
P = NP . The proof is in the next theorem.

Theorem 18. It is NP-hard to approximate the channel assignment problem in homo-
geneous networks within an additive term of o(|V |1−ε), given a constant ε.

Proof. Suppose that we have a simple graph G = (V,E). It is known that finding
the edge chromatic number χ′(G) of G is NP-hard (the edge chromatic number is the
minimum number of colors for edge-coloringG) [9]. By the Vizing’s theorem [10], the
chromatic index of a simple graphG is Δ orΔ+1 whereΔ is the maximum degree of
any vertex v ∈ V .

Given a constant ε, let G′ = (V ′, E′) be the graph which has |E| 1ε −1 copies of G.
Note that |E′| = |E| 1ε . We set CG = Cv = Δ If χ′(G) = Δ then the optimal solution
of the channel assignment problem is 0. Otherwise if χ′(G) = Δ + 1, then each of
component of G′ has at least one conflict and therefore, the optimal solution has at
least |E| 1ε −1 conflicts, which is the same as |E′|1−ε. Thus if we have an approximation
algorithm with additive term of o(|E′|1−ε) for a graphG′ = (V,E′), we can decide the
chromatic index of G, which is NP-hard. Contradiction.

3 Networks Where Cv = 1 or k

In this section, we present two algorithms for networks with Cv = 1 or k and analyze
the approximation factors of the algorithms. The case where Cv = 1 or k is interesting
since (i) it reflects a realistic setting, in which most of mobile stations are equipped
with one wireless card and nodes with multiple wireless cards are placed in strategic
places to increase the capacity of networks. (ii) as shown in Theorem 19, the problem
is NP-hard even when Cv = 1 or 2. (The proof is in [13]).

Theorem 19. The channel assignment problem to minimize the number of conflicts is
NP-hard even when Cv = 1 or 2, and CG = 2.

3.1 Extended Greedy Algorithm

We first present an extended greedy algorithm when Cv = 1 or k, and CG ≥ Cv . The
approximation factor is 2− 1

k . Even though the algorithm based on SDP (semi-definite
programming) gives a slightly better approximation factor (see Section 3.2), the greedy
approach gives a simple combinatorial algorithm. The algorithm generalizes the idea of
the greedy algorithm for homogeneous networks. In this case, an edge cannot choose
its color locally since the color choice of an edge can affect colors for other edges to
obey color constraints.

Before describing the algorithm, we define some notations. Let Vi ⊆ V be the set
of nodes v with Cv = i (i.e., we have V1 and Vk). V1 consists of connected clusters
V 1

1 , V
2
1 , . . . V

t
1 , such that nodes u, v ∈ V1 belong to the same cluster if and only if

there is a path composed of nodes in V1 only. (See Figure 3 for example.) Let Ei1 be
a set of edges both of which endpoints are in V i1 . We also define Bi1 to be a set of
edges whose one endpoint is in V i1 and the other is in Vk. We can think ofBi1 as a set of
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edges in the boundary of cluster V i1 . Note that all edges in Ei1
⋃
Bi1 should have the

same color. Ek is a set of edges both of which endpoints are in Vk. E1 is defined
to be

⋃
iE

i
1.

V1
1

V2
1

V4
1

V3
1

Fig. 3. The figure show an example of clusters V i
1 when Cv = 1 or k. Black nodes have only one

wireless card and white nodes have k wireless cards. Dotted lines belong to Bi
1.

In the greedy algorithm for homogeneous networks, each edge greedily chooses a
color so that the number of interferences it creates (locally) is minimized. Similarly,
when Cv = 1 or k, edges in the same cluster V i1 choose a color so that the number of
conflicts it creates is minimized. Formally, we choose a color c with minimum value
of
∑

e=(u,v)∈Bi
1,v∈Vk

nc(v) where nc(v) is the number of edges e′ ∈ E(v) with color

c. Once edges in Ei1
⋃
Bi1 for all i choose their colors, the remaining edges (edges

belonging to Ek) greedily choose their colors.
Any edges (u, v) incident to a vertex in V1 should use the same color and therefore

are conflicting with each other no matter what algorithm we use. Given an optimal so-
lution, consider OPT (V1) and OPT (Vk) where OPT (S) is the number of conflicts
at vertices in S ⊆ V . Similarly, we have CF (V1) and CF (Vk) where CF (S) is the
number of conflicts at vertices in S ⊆ V in our solution. Then we have OPT (V1) =
CF (V1). Therefore, we only need to compare OPT (Vk) and CF (Vk).

Theorem 20. The number of conflicts created by the extended greedy algorithm at Vk
is at most (2− 1/k)OPT + (1 − 1/k)|E|.
Proof. We will simply show that the number of conflicts created by the extended greedy
algorithm at Vk is at most (2 − 1/k)OPT (Vk) + (1 − 1/k)|E(Vk)| where |E(Vk)| is∑

v∈Vk

dv

2 as CF (V1) = OPT (V1). For each e ∈ E \ E1, n(e) be the number of
conflicts at vertices in Vk which are introduced when we assign a channel to e. Then
the total number of conflicts at Vk is

∑
n(e).

We first consider the number of conflicts created when we assign colors to edges
in Bi1 (recall that Bi1 is a set of edges of which endpoints are in V i1 and Vk ). For an
edge e = (u, v) where u ∈ V i1 and v ∈ Vk, let dv(e) be the number of edges in E(v)
to which a color is assigned before e. Then when we choose a color for Ei1

⋃
Bi1, the

number of conflicts at vertices in Vk with edges not in Ei1
⋃
Bi1, is at most

∑
v∈Vk

∑
e∈E(v)

⋂
Bi

1
dv(e)

k
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as we choose a color with minimum conflicts. If v has ei(v) edges inBi1, 1
2ei(v)(ei(v)−

1) additional conflicts (between edges in Bi1) are created. For edges in Ek we use the
greedy algorithm presented in Section 2, and therefore, the number of conflicts created

when we assign colors in Ek is at most
∑

v∈Vk

∑
e∈E(v)

⋂
Ek

dv(e)

k .
Summing up all the conflicts,

∑

e∈E\E1

n(e) ≤
∑
v∈Vk

∑
e∈E(v) dv(e)

k
+

∑
i

∑
v∈Vk

(e2i (v)− ei(v))
2

As for each node v,
∑
e∈E(v) dv(e) ≤

dv(dv−1)
2 −

∑
i(e

2
i (v)−ei(v))

2 (colors for edges in

Bi1 will be determined at the same time), we have
∑

e∈E\E1

n(e) ≤ 1
k

∑

v∈Vk

(
dv(dv − 1)

2
−
∑

i e2
i (v)− ei(v)

2
) +

∑
i

∑
v∈Vk

(e2
i (v)− ei(v))
2

=
1
2

∑

v∈Vk

dv(dv − 1)
k

+ (1− 1
k

)

∑
i

∑
v∈Vk

(e2
i (v)− ei(v))
2

=
1
2

∑

v∈Vk

d2
v

k
− 1

2

∑

v∈Vk

dv + (1− 1
k

)

∑
i

∑
v∈Vk

(e2
i (v)− ei(v))
2

+
1
2
(1− 1

k
)
∑

v∈Vk

dv

≤ (2− 1
k

)OPT (Vk) + (1− 1
k

)|E(Vk)|.

where OPT (Vk) is the optimal number of conflicts at vertices in Vk and |E(Vk)| be∑
v∈Vk

dv

2 .

The last inequality comes from the fact that both 1
2

∑
v∈Vk

d2v
k −

1
2

∑
v∈Vk

dv (by
Corollary 4) and 1

2

∑
i

∑
v∈Vk

(e2i (v)−ei(v)) are lower bounds on the optimal solution.

Note that as in the homogeneous case, we can obtain the same expected approximation
guarantee with a randomized algorithm, i.e., choose a color uniformly at random for
each cluster V i1 . Note also that the approximation ratio remains the same for any CG ≥
k. In the following section, we obtain a slightly better approximation factor using SDP
relaxation when Cv = 1 or k and CG = k.

3.2 SDP-Based Algorithm

In this subsection, we assume that k different channels are available in the network and
all nodes have 1 or k wireless cards. We formulate the problem using semidefinite pro-
gramming. Consider the following vector programming (VP), which we can convert to
an SDP and obtain an optimal solution in polynomial time. We have an m-dimensional
unit vector Ye for each edge e (m ≤ n).

VP: min
∑

v

∑

e1,e2∈E(v)

1
k

((k − 1)Ye1 · Ye2 + 1) (3)

|Ye| = 1 (4)

Ye1 · Ye2 = 1 if Cv = 1, e1, e2 ∈ E(v) (5)

Ye1 · Ye2 ≥
−1
k − 1

for e1, e2 ∈ E(v) (6)
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We can relate a solution of VP to a channel assignment as follows. Consider k unit
length vectors in m-dimensional space such that for any pair of vectors vi and vj , the
dot product of the vectors is − 1

k−1 . (It has been shown that − 1
k−1 is the minimum pos-

sible value of the maximum of the dot products of k vectors [6,14].) Given an optimal
channel assignment of the problem, we can map each channel to a vector vi. Ye takes
the vector that corresponds to the channel of edge e. If Cv is one, all edges incident to
v should have the same color. The objective function is exactly the same as the num-
ber of conflicts in the given channel assignment since if Ye1 = Ye2 (e1 and e2 have
the same color), it contributes one to the objective function, and 0 otherwise. Thus the
optimal solution of the VP gives a lower bound of the optimal solution in the channel
assignment problem.

The above VP can be converted to a semidefinite programming (SDP) and solved in
polynomial time (within any desired precision) [15,16,17,18,19], and given a solution
for the SDP, we can find a solution to the corresponding VP, using incomplete Cholesky
decomposition [20].

We use the rounding technique used for MAXCUT by Goeman and Williamson [21]
when k = 2 and show that the expected number of interferences in the solution is at
most 1.122OPT + 0.122|E|.When k > 2, we obtain the approximation guarantee of
(2− 1

k −
2(1+ε) ln k

k +O( k
(k−1)2 ) with additive term of (1− 2(1+ε) ln k

k−1 (1− k
(k−1)2 ))|E|,

where ε(k) ∼ ln ln k

(ln k)
1
2

.

When k = 2: We select a random unit vector r, and assign channel one to all edges
with Ye · r ≥ 0 and channel two to all other edges.

Lemma 21. [21] For −1 ≤ t ≤ 1, arccos t
π ≥ α

2 (1− t), where α > .87856.

Theorem 22. The expected number of total conflicts by our algorithm is at most
1.122OPT + 0.122|E|.

Proof. See [13].

When k > 2: We use the rounding algorithm for MAX k-CUT when k > 2 [6]. Given
an optimal solution for VP, we obtain a coloring as follows. We first select k random
vectors, denoted as R = {r1, r2, · · · , rk}. Each random vector ri = (ri,1, ri,2, . . . ri,n)
is selected by choosing each component ri,j independently at random from a standard
normal distribution N(0, 1). For each edge e, assign e to vector ri if ri is the clos-
est vector to Ye (i.e., the vector with the maximum value of Ye · ri). Ties are broken
arbitrarily.

Let βij = Yei · Yej . Let P include all pairs of edges in E(v) for any v ∈ Vk. For
a pair (i, j) ∈ P , (i, j) is included in pP (positive pairs)⊆ P if βij ≥ 0 and (i, j) is
included in nP (negative pairs) ⊆ P if βij < 0. We utilized the following two lemmas
from [6].

Lemma 23. [6] For (i, j) ∈ nP , E[Xij ] = 1
k + 2(1 + ε) lnk

k βij + O(β2
ij) where

ε(k) ∼ ln ln k

(lnk)
1
2

[22]

Lemma 24. For (i, j) ∈ pP , E[Xij ] ≤ 1
k ((k − 1)βij + 1)
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nP pP

nP

nP

pP

pP

Val1

Val2

Our Solution

Fig. 4. The expected number of conflicts in nP is bounded by V al1(nP ) and conflicts in pP is
bounded by V al2(pP )

Proof. As E[Xij ] = 1
k ((k − 1)βij + 1) when βij = 0 and 1, and E[Xij ] is a convex

function in [0, 1] [6], we have the lemma.

Note the if we simply compare the lowerbound obtained by SDP and the upperbound
given in Lemma 23 and 24, we cannot obtain a constant factor approximation. However,
by carefully combining the lowerbound in Corollary 4, we can obtain a slightly better
approximation factor than the greedy algorithm. We define V al1(S) to be 1

k |S| for any
set S ⊆ P . In addition, let V al2(S) be 1

k

∑
(i,j)∈S((k−1)βij +1). That is, V al2(S) is

a lowerbound obtained by SDP relaxation and V al1(S) is a lower bound based on the
fact that all edges incident to a vertex can interfere with each other. As shown in Figure
4, simply combining two lowerbounds gives a 2-approximation. To prove a better bound
than greedy, we first prove the following lemmas.

Lemma 25. The number of conflicts by the algorithm is at most V al2(P )+δ( k−1
2(1+ε) ln k

− 1) +
∑

(i,j)∈nP O(β2
ij) where δ = − 2(1+ε) ln k

k

∑
(i,j)∈nP βij .

Proof

∑

(i,j)∈P

E[Xij ] =
∑

(i,j)∈pP

E[Xij ] +
∑

(i,j)∈nP

E[Xij ]

≤
∑

(i,j)∈pP

1
k

((k − 1)βij + 1) +
∑

(i,j)∈nP

(
1
k

+ 2(1 + ε)
ln k

k
βij + O(β2

ij))

= V al2(P ) +
∑

(i,j)∈nP

(
1
k

+ 2(1 + ε)
ln k

k
βij)−

∑

(i,j)∈nP

1
k

((k − 1)βij + 1) +
∑

(i,j)∈nP

O(β2
ij)

≤ V al2(P ) + δ(
k − 1

2(1 + ε) ln k
− 1) +

∑

(i,j)∈nP

O(β2
ij).

(7)

Lemma 26. The number of conflicts by the algorithm is at most V al1(P )−δ+V al2(P )
(1− 1

k ) +
∑

(i,j)∈nP O(β2
ij) where δ = − 2(1+ε) ln k

k

∑
(i,j)∈nP βij .

Proof. By Lemma 23 the number of conflicts of pair of edges innP is at mostV al1(nP )
− δ +

∑
(i,j)∈nP O(β2

ij) and by Lemma 24 the number of conflicts of pair of edges in

pP is at most V al1(pP ) + k−1
k

∑
(i,j)∈pP βij so we have:
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∑

(i,j)∈P
E[Xij ] ≤ V al1(nP )− δ + V al1(pP ) +

k − 1
k

∑

(i,j)∈pP
βij +

∑

(i,j)∈nP
O(β2

ij)

= V al1(P )− δ +
k − 1
k

∑

(i,j)∈pP
βij +

∑

(i,j)∈nP
O(β2

ij)

≤ V al1(P )− δ + V al2(P )(1 − 1
k
) +

∑

(i,j)∈nP
O(β2

ij) (8)

Theorem 27. The number of conflicts created by the algorithm is at most ((2 − 1
k −

2(1+ε) ln k
k +O( k

(k−1)2 ))OPT +(1− 2(1+ε) ln k
k−1 (1− k

(k−1)2 ))|E|, where ε(k) ∼ ln ln k

(ln k)
1
2

.

Proof. By Lemma 25 and 26 the number of conflicts is upper bounded by min(V al2(P )
+ δ( k−1

2(1+ε) ln k − 1), V al1(P ) − δ + V al2(P )(1 − 1
k )) +

∑
(i,j)∈nP

O(β2
ij), which is maximized when δ = 2(1+ε) lnk

k−1 (V al1(P )− 1
kV al2(P )). Let f(k) =

2(1+ε) ln k
k−1 . Then the maximum number of conflicts is

(1− f(k))V al1(P ) + (1− 1
k

+
f(k)
k

)V al2(P ) +
∑

nP

O(β2
ij).

Note that V al1(P ) ≤ OPT (Vk) + |E(Vk)| and V al2(P ) ≤ OPT (Vk). Therefore, the
total conflict at Vk is at most

(2− 1
k
− (k − 1)f(k)

k
)OPT (Vk) + (1− f(k)|E(Vk)|+

∑

nP

O(β2
ij).

Since β2
ij ≤ 1

(k−1)2 , we have the theorem.

4 Discussion

Note that in all of our algorithms the total number of different colors used in the network
is only maxCv rather thanCG. Although the number of conflicts may be reduced using
more colors than maxCv (see for example Figure 1), it is not easy to make sure that
each edge has at least one channel which are available at both endpoints in that case.
In fact, it may be possible that the size of the set of common channels is small, which
may result in creating more conflicts. One possible solution is to further improve the
solution by recoloring edges with additional colors after obtaining the solution by the
algorithm. It will be an interesting future work to analyze how much we can improve
the performance by such recoloring.

Acknowledgements. The second author would like to thank Nikhil Bansal for useful
discussions.
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Abstract. The Max-Min allocation problem is to distribute indivisi-
ble goods to people so as to maximize the minimum utility of the peo-
ple. We show a (2k − 1)-approximation algorithm for Max-Min when
there are k people with subadditive utility functions. We also give a
k/α-approximation algorithm (for α ≤ k/2) if the utility functions are
additive and the utility of an item for a person is restricted to 0, 1 or U
for some U > 1. The running time of this algorithm depends exponen-
tially on the parameter α. Both the algorithms are combinatorial, simple
and easy to analyze.

1 Introduction

The problem of allocating goods to people has received extensive attention in
economics. The properties expected of the allocation may depend on the kind of
goods available, the motives of the distributor or of the people interested in the
goods, and finally, the utility that a person can derive from a bundle of goods.
In this paper, we consider the Max-Min allocation problem where:

– There are m indivisible items.
– There are k people interested in the items. Our goal (or, the distributor’s

goal) is to maximize the minimum utility of the people. Each person is
assumed to answer questions about their utilities truthfully.

– The utility functions of the people are subadditive. If the utility functions
are additive, we call the problem Max-Min+.

Variants of Max-Min have received extensive attention in literature. Mjelde [8]
studies the problem of allocating resources to various activities with the goal of
maximizing the minimum return from the activities. Mjelde considers the case
where the resources are infinitely divisible and the return from an activity is
a concave function of the weighted resources invested in it. Younis et al. [11]
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consider the problem of assigning workloads to sensors so as to maximize the
time before the battery of some sensor runs out. Ramirez-Marquez et al. [9] look
at the problem of designing series-parallel systems with the goal of maximizing
the minimum reliability of the subsystems. The “on-line” version of Max-Min+

has been studied by [2,5,10].
We are interested in algorithms that can compute the value of the maxi-

mum attainable minimum utility. It can be shown that computing the
optimum value exactly is NP-hard. Bezáková and Dani [4] showed that approx-
imating this quantity within a factor of 2 − ε is also NP-hard. They also gave
a (m − k + 1)-approximation algorithm for Max-Min+. For the case when the
utility functions are “maximal”, they gave an exact algorithm. Golovin [6] gave a
k-approximation algorithm for Max-Min+ by rounding the solution to a natural
LP for the problem. Golovin also gave a l-approximation algorithm if we can ig-
nore 1/l fraction of the people for any l and a (m−k+1)-approximation algorithm
if the utility functions are submodular. For a special case of Max-Min+ called
“Big Goods/Small Goods”, where the small goods have utility 0 or 1 to a per-
son and the big goods have utility 0 or x (x > 1), Golovin gave a O(

√
k)-

approximation.
Bansal and Sviridenko [3] define a configuration LP for Max-Min+ and show

that it has a gap of Ω(
√
k). For the special case when the utility of the jth item

to a person is either 0 or uj , they use the LP to approximate the optimum to
within O(log log k/ log log log k). Asadpour and Saberi [1] recently showed that
the gap of the configuration LP for Max-Min+ demonstrated by [3] is essentially
tight. They give a randomized rounding procedure that produces anO(

√
k log3 k)

approximate solution. To construct a separation oracle for the configuration LP,
one needs to solve the single person “minimum knapsack” problem. This can
be done efficiently if the utility functions are additive, but not when they are
subadditive. Golovin’s [6] approach also does not immediately yield a result when
the utility functions are subadditive because it depends on fractionally allocating
items of a certain value to every person.

1.1 Our Results

Our first main result is to give a combinatorial (2k−1)-approximation algorithm
for Max-Min.

Theorem 1. There exists an algorithm that when given a Max-Min instance
over k people (with subadditive utility functions) and m items finds a (2k − 1)-
approximate allocation in time polynomial in k and m.

Starting with an estimate a on the optimum, the algorithm finds the set of peo-
ple who must be given a “big” item (that is, an item of utility ≥ b = a/(2k− 1),
the target) in any solution of value a and gives them one big item each. For the
rest of the people, the algorithm finds a bundle of “small” items that has util-
ity ≥ b for them. To accomplish this, the algorithm starts by giving small items
of value b to some people. Whenever the algorithm runs out of items even though
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there are people who are yet to get any items, the algorithm tries to reallocate
the bundles to people who can derive greater utility from them and free some
items.

We point out the limitations of the algorithm and suggest how they can be
overcome to construct a better combinatorial algorithm. Using these ideas, we
get a better approximation for the special case of Max-Min+ where the utility of
an item to a person is either 0, 1 or U for some U > 1. The (0, 1, U)-Max-Min+

problem seems to be interesting because it still captures the fact that an item
may have varying degrees of utility to different people, something that makes the
problem very hard to tackle. It is also worth noting that the LP gap examples for
the configuration LP shown by Bansal and Sviridenko [3] are of this restricted
form. Note that this model is more general than the model of “Big Goods/Small
Goods” studied by Golovin [6] since here, an item can be big for one person and
small for another. We generalize the flow problem defined by Golovin [6] for Big
Goods/Small Goods to (0, 1, U)-Max-Min+ and obtain a a k/α-approximation
algorithm.

Theorem 2. There exists an algorithm that when given a (0, 1, U)-Max-Min+

instance (over k people and m items) and a number α ≤ k/2 as input finds an
allocation of value ≥ α ·OPT/k in time mO(1)kO(α), where OPT is the optimum
for the Max-Min+ instance.

For example, this gives a non-trivial running time of mO(1)2Õ(k2/3) if we are
interested in a k1/3-approximation.

In the next section, we define the problem formally. In Section 3 we describe
the (2k − 1)-approximation algorithm for Max-Min. Finally, in Section 4 we
describe our algorithm for (0, 1, U)-Max-Min+.

2 Preliminaries

Definition 1. The function u : 2T → R is said to be monotone if u(S1 ∪ S2) ≥
u(S1) for all disjoint subsets S1 and S2 of T . The function u is said to be a utility
function (or a valuation) if u is monotone and u(∅) = 0. With a little abuse of
notation, for t ∈ T we use u(t) to denote u({t}). A function u : 2T → R is said
to be a subadditive if u(S1 ∪ S2) ≤ u(S1) + u(S2) for all disjoint subsets S1 and
S2 of T . It is submodular if u(S1 ∪ S2) + u(S1 ∩ S2) ≤ u(S1) + u(S2) for all
subsets S1 and S2of T . A function u is additive if u(S1 ∪ S2) = u(S1) + u(S2)
for all disjoint subsets S1 and S2 of T .

We refer the reader to Lehmann et al. [7] for a discussion about the class of
subadditive functions and its various subclasses.

Let P = {p1, p2, . . . , pk} be the set of people. Let T = {t1, t2, . . . , tm} be the
set of indivisible items. Let ui be the utility function of person pi. An allocation
is a partition T1, T2, . . . , Tk of the set T into k sets, one for each person. The
value of this allocation is mini∈[k]ui(Ti), where [k] denotes the set {1, 2, . . . , k}.
The Max-Min problem is to find an allocation that maximizes this quantity.
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The optimum of the Max-Min problem is the value of such an allocation. Unless
otherwise stated, we assume that the utility functions under consideration are
subadditive. We also assume that we are given valuation oracles for the utility
functions (see [7]). That is, we can query the utility of a subset S of items to
any person pi and get back the answer ui(S) in constant time.

Max-Min+ is the special case of Max-Min where all the utility functions are
additive. We will consider a version of the Max-Min+ problem where the utility
ui(tj) of an item tj for a person pi can either be 0, 1, or U for some U > 1 (U can
be a part of the input). We call this version the (0, 1, U)-Max-Min+ problem.

3 A (2k − 1)-Approximation Algorithm for Max-Min

We first give an algorithm that finds a (2k − 1)-approximate solution when the
value of the optimum is known. We will use this to construct an algorithm that
can find an approximate solution without knowing the optimum.

3.1 Finding an Approximate Solution When the Optimum Is
Known

Let the optimum of the problem be given to be a = (2k − 1)b. We are expected
to find an allocation of value ≥ b. We first give a general outline of Algorithm 1.

The algorithm first checks if for every person, the net worth of her “small”
items is at least a.

Definition 2. An item tj is said to be small for pi if ui(tj) < b.

Note that an item that is small for one person may be “big” for another. There-
fore, we must always talk of an item being big or small with reference to some
person. If the net value of all small items for a person pi is less than a, then in
any solution of value a, pi must get a big item. But once we give a person a big
item, we need not give her any other item in a solution of value b.

Using the above observation as the basis, the algorithm constructs a set Q0 ⊆
P of people who need to be given at least one big item each in any solution of
value a. For the purpose of finding a allocations of value b, we can safely restrict
our attention to only those allocations where all people in Q0 get big items. The
algorithm allocates everyone in Q0 one big item each. It then tries to satisfy one
person from P \Q0 at a time. For these people, the algorithm completely ignores
any contribution from big items.

Definition 3. Given a utility function u : 2T → R, define ub : 2T → R to be
ub(S) = u({tj : tj ∈ S and u(tj) < b})

Informally, ub is a modified utility function that ignores big items. Note that if
u is subadditive, so is ub. Using ubi as the utility function for people in P \ Q0

only makes the problem harder to solve (Ignoring big items is convenient when
analyzing how the small items of a person are distributed). The algorithm may
allocate items to the first i people only to discover that the leftover set of items
do not have much utility for pi+1. The algorithm is forced to reallocate the items
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to make pi happy. A person is happy if she has been allocated a subset of items
of value at least b to her. For the purpose of reallocating goods, the algorithm
uses a reallocation graph.

Definition 4. Given (Q0, T0, (Ti)i∈[k]), where Q0 ⊆ P and (T0, T1, . . . , Tk) is a
partition of T , define the reallocation graph as follows:

– There is one vertex for every person in P \Q0 and a vertex for T0.
– There is an edge from pi1 to pi2 if ubi1(Ti2) ≥ 2b.
– There is an edge from pi1 to T0 if ubi1(T0) ≥ b.

Here, Ti is the set of items given to person pi (T0 is the set of unallocated items).
In a sense, the reallocation graph shows where a person can find b worth of small
items as a bundle, either as a bundle of value 2b from some other person or from
the set of free items. We exclude the people in Q0 from the graph because the
algorithm will never reallocate items given to them. Based on the reallocation
graph, the algorithm reallocates items using one of the two rules (we will show
that at least one of the two rules is always applicable):

– (Rule 1:) If there is a simple cycle (a cycle on which every vertex appears only
once), then the number of unallocated items |T0| can be increased without
changing the number of happy people (see lines 8-13). To accomplish this,
give the ith person on the cycle the items that the (i+ 1)th person currently
has. We will show that each person can return at least one item back to T0

and still stay happy.
– (Rule 2:) If there is a simple path from an person pi with no items to T0,

then pi can be made happy without affecting any other person’s happiness
(see lines 16-19). To accomplish this, give the lth person on the path items
that the (l + 1)th person currently has. Give the last person on the path
items from T0.

During each application of the above rules, we ensure that a person keeps only
a minimal set of items that makes her happy. This gives a bound on the utility
a person derives from the bundle given to her.

Lemma 1. At any time in the algorithm, for any pi ∈ P \Q0, either Ti is empty
or ubi(Ti) ∈ [b, 2b).

Proof. Note that if tj ∈ S, then ubi(S) − ubi(S \ tj) ≤ ubi(tj) < b (the first
inequality follows from subadditivity of ubi). This implies that if ubi(S) ≥ 2b, it
can not be a minimal set satisfying ubi(S) ≥ b. �

Theorem 3. For any value of the parameter a such that 0 < a <∞, Algorithm
1 either:

– Fails at Line 4, in which case the optimum is less than a, or
– Returns an allocation of value ≥ b = a/(2k − 1) in time polynomial in k

and m.
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Algorithm 1. An algorithm to approximate Max-Min when the optimum
is specified

Input: k, m, (ui)i∈[k], a = (2k − 1)b, where 0 < a < ∞
Output: An allocation (T1, . . . , Tk) of value ≥ b

Set Si ← {tj ∈ T : ui(tj) < b}, the set of small items for person i. Compute1

ai = ui(Si), the net worth of small items to pi.
Let Q0 be the set of people pi satisfying ai < a.2

Set T0 ← T . Set Ti ← ∅ for all i ∈ [k].3

Give all people in Q0 an arbitrary big item each (Update the Tis accordingly).4

If it is not possible, stop.
while there is an unhappy person do5

if there is a cycle in the current reallocation graph then6

/*Implements Rule 1. */
Let pi1 , pi2 , . . . , piL be a simple cycle (with the edges being from pil to7

pil+1).
Set T ′ ← Ti1 .8

Take away the items Ti1 currently with pi1 .9

for l = 1 to L − 1 do10

Take away the items Til+1 currently with pil . Give a minimal set of11

these items of value ≥ b to pil and return the rest to T0.
end12

Give a minimal subset of T ′ of value ≥ b to piL . Return the rest of the13

items in T ′ to T0.
else if there is a path from an unhappy person pi to T0 in the reallocation14

graph then
/*Implements Rule 2. */
Let pi = pi1 , pi2 , . . . , piL , T0 be a simple path from pi to T0.15

for l = 1 to L − 1 do16

Take away the items Til+1 currently with pil+1 . Give a minimal set17

of these items of value ≥ b to pil and return the rest to T0.
end18

Give a minimal set of items of value ≥ b from T0 to piL .19

end20

Return the allocation (T1, T2, . . . , Tk−1, Tk ∪ T0) as the answer.21

Proof. If pi ∈ Q0, then pi must get a big item in any allocation of value ≥ a.
This is because ui(S) ≤ ui(Si) < a ∀S ⊆ Si (by monotonicity of ui). Therefore,
if these people can not all be given some big item simultaneously, there can not
be an allocation of value a. Therefore, if the algorithm fails, it does so because
the optimum is less than a.

Now assume the algorithm does not fail at Line 4. If the reallocation graph
has a cycle, every person on the cycle is first given a set of items of value at least
2b (since an edge from pi1 to pi2 means that the utility of the items currently
with pi2 for pi1 is ≥ 2b). The algorithm then takes one or more items away from
these people and returns to T0 (since from Lemma 1, a set of value ≥ 2b can’t be
a minimal set of value b). Since every time we reallocate items for people on some
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cycle, we return an item back to T0 ⊆ T , in at most m applications of Rule 1,
we would have eliminated all cycles.

Assume now that the graph G has no cycle. Assume a person pi is unhappy.
The set of items T is currently partitioned into sets T0, T1, T2, . . . , Tk, of which
at most k are non-empty (since Ti is empty). Also if i′ ∈ P \ Q0, ubi′(T ) ≥ a.
Suppose i′ ∈ P \Q0 does not have an edge to T0. Then at least one of the k− 1
non-empty sets in T1, T2, . . . , Tk is worth at least (a− b)/(k− 1) = 2b to her (by
the subadditivity of ubi′ and also since ubi′(T0) < b). But this set can not be a
set of items given to a person in Q0 (since people in Q0 only get one item and
a single item is worth less than b under ubi′). Hence every person in P \Q0 has
an outgoing edge in G, either to T0 or to some other person. But if T0 is not
reachable from pi, there must be a cycle in the graph, a contradiction. �
We can now perform a binary search on the possible values of the optimum and
get an approximation factor of O(k). But using some properties of Algorithm 1,
we next obtain a (2k − 1)-approximation by doing a binary search over a set of
size O(km).

3.2 Finding a (2k − 1)-Approximation to Max-Min When the
Optimum Is Not Known

Using Algorithm 1 as a subroutine, Algorithm 2 tries to find an allocation that is
a (2k− 1)-approximation for Max-Min. The main idea is as follows. Suppose we
increase the input parameter a to Algorithm 1 starting from a very small number.
Suppose for some a = a0, Algorithm 1 successfully returns an allocation, but
fails when called with a = a0 + ε for infinitesimally small ε > 0. Then one of the
two events must happen at a = a0 + ε

– An item that is big for some person at a = a0 is no longer big at a = a0 + ε.
– A new person pi enters Q0 because ai = a0, where ai = ui({tj ∈ T : ui(tj) <
a0/(2k − 1)}).

Therefore, it is enough to check the behavior of Algorithm 1 at these mk =
O(m2) values of a. It is sufficient to do a binary search on this list of O(m2)
values of a to find a number for which the algorithm succeeds, but fails for the
next. We will now prove Theorem 1.

Proof. We will show that Algorithm 2 satisfies the conditions of the theorem.
Assume that that the optimum of the input instance is greater than zero. If
Algorithm 1 is called with a = (2k− 1)b1, all items of non-zero value are big for
a person since b = mini,jui(tj). Therefore, Algorithm 1 just attempts to allocate
one item of non-zero value to every person. Hence, this call to Algorithm 1
succeeds since the optimum is non-zero.

Suppose a call to Algorithm 1 with parameter a = a′ succeeds for some
a′ ∈ A, but fails with parameter a = a′′ for the next larger value of a′′ ∈ A.
From the analysis of Algorithm 1, we know that the optimum is less than a′′.
But suppose the optimum OPT satisfies a′ < OPT < a′′. Algorithm 1 would
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Algorithm 2. An algorithm to approximate Max-Min

Input: k, m, (ui)i∈[k]

Output: An allocation (T1, . . . , Tm) of value within a factor 2k − 1 of the
optimum

Check if there is no allocation of non-zero value. If this is the case, then return1

any allocation as the answer.
Let B = {ui(tj) : ui(tj) > 0}, the set of non-zero values of singleton sets to the2

people. Let the elements of the set be b1, b2, . . . in increasing order.
Let A denote the set of values of a we will try. Set A ← {(2k − 1)b : b ∈ B}3

for bl ∈ B do4

Let Si = {tj : ui(tj) < bl}, that is, the set of items that will be small for pi5

with respect to bl + ε. Let ai = ui(Si).
Add all elements of {ui(Si)}i∈[k] between bl and bl+1 to A (If bl is the6

largest number in B, use bl+1 = ∞).
end7

By a binary search, find an a ∈ A for which Algorithm 1 succeeds, but fails for8

the next larger value in A.
Return the allocation returned by Algorithm 1 for this value of a as the answer.9

have succeeded if called with parameter a = OPT . Let b0 = OPT/(2k − 1)
and b′′ = a′′/(2k − 1). Note that the set of big items for a person is the same
with respect to any b ∈ (a′/(2k − 1), b′′] (since no ui(tj) lies in the interval
(a′/(2k − 1), b′′)). This also implies that ai, the net worth of all small items
to person pi, is the same when calculated with respect to b = b0 or b = b′′.
But we know that no ai/(2k − 1) lies in the interval [b0, b′′) either. Therefore,
if Algorithm 1 succeeds when called with parameter OPT , it will also succeed
with parameter a′′. Therefore, our assumption that a′ < OPT must be wrong. If
OPT ≤ a′, then the allocation found using Algorithm 1 with a = a′ must have
value ≥ a′/(2k − 1) ≥ OPT/(2k − 1).

If the call to Algorithm 1 with the largest a ∈ A succeeds, then we must have
found a solution of value ui(T ) for some i, which is obviously optimum. �

3.3 Limitations of Algorithm 1

We first give an example to show that the analysis is the best possible for Al-
gorithm 1. Consider the problem over k people with additive utility functions.
There are two groups of items. There are k−1 items in the first group such that
the jth item is of value 2k − 1 to pj and value zero to everyone else. There are
2k−1 items that are of unit value to everyone. The optimum is to give all the unit
valued items to pk and the k−1 big items to the first k−1 people. But when called
with a = 2k − 1, Algorithm 1 treats every item as big. The algorithm then just
matches every person to one item and returns a (2k − 1)-approximate solution.

Suppose we want to use the same idea to find a k-approximation (or even just
a (2−ε)k-approximation). Since the optimum in the above example is 2k−1, and
we should find a solution of value 2 (since our target b = 2k−1

(2−ε)k > 1). Since the
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unit valued items are now small for everyone, and there are 2k − 1 small items,
we will conclude no one needs to get big items. But then the best allocation that
can be found has value one.

Intuitively, one limitation of the algorithm is that once it decides who gets
big items, it does not re-evaluate its decision when it gets stuck. In the above
example, it is clear that many of the people share the same set of small items.
Hence most of them must be given big items to find a significantly better solution.
This limits the algorithm to a k-approximation because a person could lose her
small items to k − 1 other people, who all might have got big items in a better
solution. An extra factor of 2 comes in because even if we shoot for a solution of
value b, we might have to give some people close to 2b worth of small items. One
can also come up with examples where the right choice of big items is critical. In
the next section we present an algorithm that takes care of these issues, albeit
for a restricted version of Max-Min.

4 A (k/α)-Approximation Algorithm for
(0, 1, U)-Max-Min+

We now give a (k/α)-approximation for (0, 1, U)-Max-Min+ that runs in time
mO(1)kO(α). We call the items of utility U to a person big for that person.
Suppose the value of the optimum is OPT . Then there is a solution of value
OPT/2 in which for a person pi, pi either gets only unit valued items or only
gets big items. We will restrict our attention to such allocations only, where
all the items a person gets have same utility to her. We call such allocations
uniform. We will find a β = k/(2α)-approximation over such allocations.

We first give an algorithm that finds an approximate solution when the
value of the optimum over uniform allocations is provided as extra informa-
tion. Since the optimum over uniform allocations is in the set {1, 2, . . . ,m} ∪
{U, 2U, . . . , Um}, we can just call the algorithm for each of these O(m) values.

Algorithm 3 maintains a set of people Q such that there exists a uniform
allocation of value a in which all the people in Q get a big items. The goal is
to allocate nU = � aβU � big items to everyone in Q and n1 = � aβ � unit valued
items to everyone else. The algorithm must somehow figure out which big items
to give to a person in Q. It should also be able to check if there are enough small
items for people not in Q. For this purpose we define a allocation-flow problem.

Definition 5. Given Q ⊆ P , define the network flow problem NQ as follows.

– The set of vertices is {s, t} ∪ P ∪ T , where s and t are the source and sink
respectively.

– There is an edge from s to every person pi ∈ Q with capacity nU .
– There is an edge from s to every person pi /∈ Q with capacity n1.
– There is an edge from pi ∈ Q to item tj with infinite capacity if ui(tj) = U .
– There is an edge from pi /∈ Q to item tj with infinite capacity if ui(tj) = 1.
– There is an edge from every item to the sink t with capacity 1.

We call NQ the allocation-flow problem.



Approximation Algorithms for the Max-Min Allocation Problem 213

If there is a flow that saturates all edges out of s in NQ, it defines an allocation
of value �a/β� in a natural way. Otherwise, the algorithm tries to grow Q based
on the following lemma.

Lemma 2. Consider a uniform allocation of value a, in which everyone in Q
gets big items. Suppose {s} is not a minimum cut in NQ. Suppose {s} ∪R ∪ T ′

be a minimum cut for some R ⊆ P and T ′ ⊆ T . Then in this allocation, all but
l = �n1·|R\Q|−1

a � people from R get big items too.

Proof. First observe that there are no edges from R to T \T ′ (since all such edges
have infinite capacity). Therefore, all items that are big for people in Q ∩R are
in T ′. At the same time, all unit-valued items for people in R \ Q are also in
T ′. Also, the value of the cut {s} is n1 · |P \Q|+ nU · |Q|. The value of the cut
{s}∪R∪ T ′ is n1 · |(P \R) \Q|+ nU · |(P \R)∩Q|+ |T ′|. Hence the number of
items in T ′ is upper bounded by n1 · |R \Q|+ nU · |R ∩Q| − 1 , since otherwise
{s} is also a minimum cut. If we give nU big items to every person in Q ∩R, it
leaves at most n1 · |R\Q|−1 items in T ′. But then we cannot give a unit-valued
items to more than l = �n1·|R\Q|−1

a � people from R. Therefore, the other people
in R must get big items. �

Algorithm 3. An algorithm to approximate (0, 1, U)-Max-Min+ given the
optimum over uniform allocations.

Input: (k, m, (ui)i∈[k], a) where a ≥ β ≥ 4 is the optimum over uniform
allocations

Output: An allocation of value ≥ a/β.

Set Q ← ∅, Q0 ← ∅, c = 0 /*The Qcs record how Q grows with time. */1

while {s} is not a minimum cut do2

Set c ← c + 13

Find a minimum cut in NQ. Let Rc denote the set of people on the same4

side as s in this cut.
if Rc contains only people from Q then stop.5

Non-deterministically pick some lc =

⌊
n1 · |Rc \ Q| − 1

a

⌋

people from
6

Rc \ Q. Add everyone except these lc people to Q.
Set Qc ← Q.7

end8

Find an integral flow in NQ saturating the edges leaving s.9

Give item tj to person pi if there is a flow of value 1 from tj to pi.10

Theorem 4. Let k/(2α) = β ≥ 4 and a ≥ β. If there is a uniform allocation
of value a, then one of the non-deterministic branches of the algorithm succeeds
in finding an allocation of value a/β. Also, Algorithm 3 can be converted to a
deterministic algorithm that runs in time mO(1)kO(α).
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Proof. Initially, Q0 = ∅ and hence trivially, there is a uniform allocation of value
a in which everyone in Q0 gets big item. If the algorithm stops at Line 5, then
there is no solution of value a in which everyone in Qc−1 gets big items. By
Lemma 2, assuming everyone in Qc−1 gets big items in some uniform allocation,
at least one of the non-deterministic branches at Line 6 generates a set Qc such
that everyone in Qc also gets big items in this allocation. Therefore, every branch
proceeds as if it computed a valid set Qc.

If lc = 0, everyone in Rc gets added to Qc and no non-determinism is used.
In this case, the size of Q goes up by at least 1 since Rc \Qc−1 �= ∅. We will now
show that every time the algorithm uses non-determinism, the size of Q goes up
by O(1/α) fraction of the people. If lc ≥ 1, then

|Rc \Qc−1| ≥ lca/n1 =
lca

�a/β� ≥
lca

2a/β
=
lck

4α

The second inequality follows from our assumption a ≥ β. Therefore, every time
we use non-determinism, the size ofQ goes up by lck/(4α)−lc = lc(k/(4α)−1) ≥
lck/(8α). But this means that

∑
c lck/(8α) ≤ k, which implies

∑
c lc ≤ 8α.

At any time at Line 6, the number of non-deterministic branches generated is
at most klc . Construct a “non-determinism tree” where a node, representing a
branch of computation, has a child for every non-deterministic branch it creates.
If we label each node by the lc it generated, its fan-out is bounded by klc . Also,
the sum of labels from the root to any leaf is at most 8α. Therefore the number
of nodes in the non-determinism tree is at most kO(α). �

If the optimum over uniform allocations is ≤ β, a β-approximate uniform allo-
cation is just any allocation of value ≥ 1. This is trivial to find since U > 1
and hence we just need to give one item of non-zero value to everyone. If
k/8 ≤ α ≤ k/2, we can solve the problem by brute force (just try all 2k possible
values for Q). The running time in this case is 2O(α)mO(1). This completes the
proof of Theorem 2.

5 Conclusion

We showed a (2k−1)-approximation algorithm for the Max-Min allocation prob-
lem. An improvement in running time can be obtained if we are willing to restrict
ourselves to submodular utility functions. Algorithm 1 can be made greedy in
this case. The detailed algorithm and analysis can be found in Appendix A.

We also showed an approximation algorithm for (0, 1, U)-Max-Min+ where
there is a trade-off between the approximation factor and running time. It would
be interesting to see if this trade-off can be improved. The more interesting
problem would be to generalize the algorithm to Max-Min+. Even if there are
only three non-zero values for items, it is not clear how the algorithm can be
generalized. In this case, when {s} is not a minimum cut in the allocation-flow
problem, we have no good bound on the number of people who must be given
larger items.
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Another challenging open problem is to improve the factor 2 − ε hardness of
approximation shown by Bezáková and Dani [4].
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A A Greedy (2k − 1)-Approximation Algorithm for
Submodular Max-Min

We will describe a greedy algorithm that finds a (2k−1)-approximation when the
optimum is given as an additional input. We can then use this as a subroutine
for Algorithm 2 since submodular functions are also subadditive and since failing
conditions of Algorithms 1 and 4 are the same. As in the subadditive case, we
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find a set of people who must get a big item in any solution of value a. Then
we pick one unallocated item at a time and let the unhappy people bid for it
(Recall a person is unhappy if she has less than b worth of items). A person bids
the incremental utility that she would get from the item. The incremental utility
of an item tj when a person already has a subset S of the items is defined as
u(tj |S) = u(tj ∪ S) − u(S), where u is the utility function1. The item is given
to someone who has the highest bid. It is critical that we let only the currently
unhappy people to participate in the bidding since otherwise the items may end
up with just a few people.

Algorithm 4. An algorithm to to approximate Max-Min with submodular
utility functions when the optimum is specified

Input: k, m, (ui)i∈[k], a = (2k − 1)b, where 0 < a < ∞
Output: An allocation (T1, . . . , Tm) of value ≥ b

Set Si ← {tj ∈ T : ui(tj) < b}, the set of small items for person i. Compute1

ai = ui(Si), the net worth of small items to pi.
Let Q0 be the set of people pi satisfying ai < a.2

Set T0 ← T . Set Ti ← ∅ for all i ∈ [k].3

Give all people in Q0 a big item each (Update the Tis accordingly). If it is not4

possible, stop.
Set H ← Q0, the set of happy people.5

while H �= P do6

Pick an item tj from T0. Set T0 ← T0 \ tj .7

Calculate the bid of person pi as Bij = ub
i(tj |Ti). /*Refer to Definition8

3. */
Let p′

i ∈ P \ H be an unhappy person with the highest bid.9

Set Ti′ ← Ti′ ∪ tj .10

if ub
i′(Ti′) ≥ b then add pi′ to H . /*pi′ is also happy now. */11

end12

Return the allocation (T1, T2, . . . , Tk−1, Tk ∪ T0) as answer.13

Lemma 3. At any moment, a person pi /∈ Q0 is either unhappy or ubi(Ti) < 2b.

Proof. If ui is submodular, then so is ubi . For any item tj /∈ Ti, ubi(Ti ∪ tj) ≤
ubi(Ti)+u

b
i(tj) < ubi(Ti)+b from submodularity of ubi . Since ubi(Ti) only increases

in steps less than b and a person can not bid once ubi(Ti) ≥ b, ubi(Ti) < 2b. �

Lemma 4. At Line 7 in Algorithm 4, T0 is never empty.

Proof. Suppose T0 is empty at Line 7 when p1 is still unhappy. At this moment,
(T1, T2, . . . , Tk) is a partition of T . At most |Q0| items that are small for p1 were
given away to people in Q0. For any item with tj ∈ Ti with some other person
pi at this moment, p1 bid some number B1j that was at most the bid Bij of

1 As shown in Lehmann et al. [7], an equivalent definition of submodularity of u is
that ∀tj ∈ T, S1, S2 ⊆ T : u(tj |S1) ≥ u(tj |S1 ∪ S2).
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pi. If T ′
1 ⊆ T1 was the set of items with p1 when tj was picked from T0, then

Bij ≥ B1j = ub1(tj |T ′
1) ≥ ub1(tj |T1) ≥ ub1(tj |T1 ∪ S) for any S ⊆ T . The last two

inequalities follow from submodularity of ub1.
Relabel the items so that the first |Q0| items are with people in Q0 and the

last m′ items are with people in P \ Q0 \ p1, the m − |Q0| − m′ items in the
middle being with p1. Then,

u1(S1) = ub1(T ) =
∑

j∈[m]

ub1(tj |{t1, t2, . . . , tj−1})

≤
∑

j≤|Q0|
ub1(tj) + ub1(T1) +

∑

j>m−m′

ub1(tj |{t1, t2, . . . , tj−1})

< b|Q0|+ b+
∑

j>m−m′

winning bid for tj

= b(|Q0|+ 1) +
∑

pi∈P\Q0\p1

⎛

⎝
∑

tj∈Ti

Bij

⎞

⎠

= b(|Q0|+ 1) +
∑

pi∈P\Q0\p1

ubi(Ti)

< b(|Q0|+ 1) + 2b(k − |Q0| − 1) ≤ (2k − 1)b,

which contradicts p1 /∈ Q0. The second inequality follows from the analysis in
the previous paragraph. �



Hardness of Embedding Metric Spaces of Equal Size

Subhash Khot� and Rishi Saket��

Georgia Institute of Technology
{khot,saket}@cc.gatech.edu

Abstract. We study the problem embedding an n-point metric space into an-
other n-point metric space while minimizing distortion. We show that there is no
polynomial time algorithm to approximate the minimum distortion within a factor
of Ω((log n)1/4−δ) for any constant δ > 0, unless NP ⊆ DTIME(npoly(log n))).
We give a simple reduction from the METRIC LABELING problem which was
shown to be inapproximable by Chuzhoy and Naor [10].

1 Introduction

Given an embedding f : X #→ Y from a finite metric space (X, dX) into another metric
space (Y, dY ), define

Expansion(f) := max
i,j∈X,i�=j

dY (f(i), f(j))
dX(i, j)

,

Contraction(f) := max
i,j∈X,i�=j

dX(i, j)
dY (f(i), f(j))

.

The distortion of f is the product of Expansion(f) and Contraction(f).
The problem of embedding one metric space into another has been well studied in

Mathematics, especially in the context of bi-lipschitz embeddings. Metric embeddings
have also played an increasing role in Computer Science; see Indyk’s survey [12] for
an overview of their algorithmic applications. Much of the research in this area has fo-
cussed on embedding finite metrics into a useful target space such as �2, �1 or distribu-
tions over tree metrics. For example, Bourgain’s Theorem [8] shows that every n-point
metric space embeds into �2 with distortion O(log n). Fakcharoenphol, Rao, and Tal-
war [11], improving on the work of Bartal [7], show that every n-point metric embeds
into a distribution over tree metrics with distortionO(log n). Recently, the class of neg-
ative type metrics has received much attention, as they arise naturally as a solution of a
SDP-relaxation for the SPARSEST CUT problem. Arora, Lee, and Naor [3], building
on techniques from Arora, Rao, and Vazirani [4], show that every n-point negative type
metric embeds into �2 with distortion O(

√
logn log logn).

� Research supported in part by Sloan Foundation Fellowship, Microsoft New Faculty Fellow-
ship and NSF CAREER award CCF-0643626.

�� Research supported in part by Subhash Khot’s Sloan Foundation Fellowship and Microsoft
New Faculty Fellowship.

M. Charikar et al. (Eds.): APPROX and RANDOM 2007, LNCS 4627, pp. 218–227, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Hardness of Embedding Metric Spaces of Equal Size 219

Given two spaces (X, dX) and (Y, dY ), let cY (X) denote the minimum distortion
needed to embed X into Y . A natural computational problem is to determine cY (X),
exactly or approximately (call it the MIN-DISTORTION problem). Of course, the
complexity of the problem depends on the nature of the two spaces. It is known that
c�2(X) can be computed in polynomial time for any n-point metricX , using a straight-
foward SDP-relaxation. It is however NP-hard to determine whether c�1(X) = 1. When
the target space is the line metric, the problem is hard, even to approximate within a
factor nβ for some constant 0 < β < 1, as shown by Badoiu, Chuzhoy, Indyk, and
Sidiropoulos [6].

One variant of the problem is when X and Y are of equal size and explicitly given
(call it the MIN-DISTORTION= problem). Though a very natural problem, it has not
been studied until recently, and not much is known about its complexity. The prob-
lem was formulated by Kenyon, Rabani, and Sinclair [14] motivated by applications to
shape matching and object recognition. Note that when both are shortest path metrics
on n-vertex graphs, determining whether cY (X) = 1 is same as determining whether
the two graphs are isomorphic. On the positive side, Kenyon et al. give a dynamic pro-
gramming based algorithm when the metrics are one-dimensional and the distortion is
at most 2 +

√
5. In this case, the bijection f between the two point sets must obey cer-

tain properties regarding how the points are relatively ordered, which enables efficient
computation of all such possible embeddings in a recursive manner. On the negative
side, Papadimitriou and Safra [15] showed that cY (X) (when |X | = |Y |) is hard to
approximate within a factor of 3, and the result holds even when both point sets are in
R3. They give a clever reduction from GRAPH 3-COLORING.

In this paper, we prove the following inapproximability result.

Theorem 1. (Inapproximability of MIN-DISTORTION=) For any constant δ > 0,
there is no polynomial time algorithm to approximate the distortion required to embed
an n-point metric space into another n-point metric space within a factor of
(logn)1/4−δ , unless NP ⊆ DTIME(npoly(logn)).

2 Preliminaries

In this section we formally state the problem MIN-DISTORTION=, and some of the
tools we require for the construction in the next section. We will be concerned only with
finite metric spaces i.e. metrics on finite sets of points.

Definition 1. The problem of MIN-DISTORTION= is, given two n point metric
spaces (X, dX) and (Y, dY ), computing an embedding f of X into Y with the mini-
mum distortion.

A related problem is METRIC LABELING which was introduced by Kleinberg and
Tardos [13].

Definition 2. The problem of METRIC LABELLING is the following. Given a
weighted graph G(V,E, {we}e∈E) and a metric space (X, d), along with a cost func-
tion c : V ×X #→ R, the goal is to find a mapping h of V to X such that the following
quantity is minimized,
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∑

(u,v)∈E(G)

w(u, v) · d(h(u), h(v)) +
∑

u∈V
c(u, f(u)).

The problem is essentially of finding a ‘labeling’ of the vertices of the graph G with
the points in the metric space X , so as to minimize the sum of the connection costs
(cost of labelling vertices in G with points in X) and weighted ‘stretch’ of the edges of
G. A special case of METRIC LABELING is the (0,∞)-EXTENSION problem in
which, essentially, the connection costs are 0 or∞. It is formally defined as follows.

Definition 3. The problem of (0,∞)-EXTENSION is the following. Given a weighted
graph G(V,E, {we}e∈E) and a metric space (X, d), along with a subset of allowed
labels s(u) ⊆ X for every vertex u ∈ V (G), the goal is to find a mapping h of V to X ,
satisfying h(u) ∈ s(u) for all u ∈ V (G), such that the following quantity is minimized,

∑

(u,v)∈E(G)

w(u, v) · d(h(u), h(v)).

It has been shown that METRIC LABELING is equivalent to its special case of
(0,∞)-EXTENSION [9]. For METRIC LABELING Kleinberg and Tardos [13] ob-
tained an O(log n log logn) approximation, where n is the size of the metric X , which
was improved to O(log n) [11]. Chuzhoy and Naor [10] give a hardness of approxima-
tion factor of (logn)1/2−δ for METRIC LABELING. The instance that they construct
is the (0,∞)-EXTENSION version of METRIC LABELING, and moreover G is
unweighted.

Definition 4. A 3-SAT(5) formula φ is a 3-CNF formula in which every variable ap-
pears in exactly 5 clauses.

The reduction in [10] starts with an instance of the MAX-3-SAT(5) problem in which,
given a 3-SAT(5) formula φ, the goal is to find an assignment to the variables that satis-
fies the maximum number of clauses. The following is the well known PCP
theorem [2] [5].

Theorem 2. (PCP theorem): There exists a positive constant ε such that, given an in-
stance φ of MAX-3-SAT(5) there is no polynomial time algorithm to decide whether
there is an assignment to the variables of φ that satisfies all the clauses (Yes instance)
or that no assignment satisfies more than 1− ε fraction of the clauses, unless P = NP.

Overview of reduction. The construction of [10] yields a (0,∞)-EXTENSION ver-
sion with graph G and target metric H , where both G and H are unweighted graphs,
with the metric on H being the shortest path metric. They show that in the Yes case,
there is an embedding of V (G) into V (H) such that the end points of an edge of G are
mapped onto end points of some edge of H , so that the stretch of every edge in G is 1.
However, in the No case in any such embedding, for at least a constant fraction of edges
of G, their end points are mapped onto pairs of vertices in H which are Ω(k) distance
apart, where k is a parameter used in the construction so that k = θ(log |V (H)|)1/2−δ .
This yields a hardness of approximation factor of (logn)1/2−δ for METRIC LABEL-
ING for any δ > 0.
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The main idea behind our reduction is to start with the instance constructed in [10]
and view the graphG also as a metric, and the mapping h as an embedding ofG intoH .
This makes sense since their instance is a (0,∞)-EXTENSION version and moreover
G is unweighted, in which case the quantity to be optimized is just the average stretch
of every edge in G by the embedding h.

The reduction proceeds in three steps where the first step constructs the instance
of [10]. The second involves adding additional points in the two metrics in order to
equalize the number of points in both the metrics and third step enforces the constraints
of allowed labels, by adding some more points in the two metrics. The entire construc-
tion and analysis is presented in the following section.

3 Reduction from MAX-3-SAT(5)

Our reduction from MAX-3-SAT(5) is based on the construction in [10] for the hard-
ness of METRIC LABELING. We modify the instance of METRIC LABELING to
obtain a ‘gap’ instance of MIN-DISTORTION=. In this section we describe the entire
construction and analysis of the hardness factor.

3.1 Construction

We describe the k-prover protocol used in [10]. Let φ be a MAX-3-SAT(5) formula,
and let n be the number of clauses in φ. Let P1, P2, . . . , Pk be k provers (the parameter
k will be set to θ(poly(logn))). The protocol is as follows,

– For each (i, j), 1 ≤ i < j ≤ k, the verifier chooses a clause Cij from φ uniformly
at random, and randomly selects xij a distinguished variable from Cij . Pi is sent
Cij and returns an assignment to the variables of Cij . Pj is sent xij and returns
as assignment to the variable xij . Every other prover is sent both Cij and xij and
returns assignments to all the variables of the clause. Hence, the verifier sends

(
k
2

)

coordinates to each prover.
– The verifier accepts if the answers of all the provers are consistent and satisfy all

the clauses of the query.

We will denote the set of random strings used by the verifier as R. For r ∈ R, let
qi(r) be the query sent to prover Pi when r is the random string chosen by the verifier.
Let Qi = ∪rqi(r) be the set of all possible queries of to Pi. For q ∈ Qi, let Ai(q) be
the set of all answers to q that satisfy all the clauses in q. Let Pi and Pj (1 ≤ i < j ≤ k)
be any two provers, and qi ∈ Qi and qj ∈ Qj be two queries such that for some r ∈ R,
qi = qi(r) and qj = qj(r). Let Ai ∈ Ai(qi) and Aj ∈ Aj(qj) be respective answers to
these queries. Then, Ai and Aj are called weakly consistent if the assignments to Cij
in Ai and xij in Aj are consistent and satisfy the clause Cij . They are called strongly
consistent if they are also consistent in all the other coordinates and also satisfy all the
other clauses. The following theorem is due to Chuzhoy and Naor [10].

Theorem 3. There is a constant 0 < ε < 1 such that if φ is a Yes instance, then there is
a strategy of the k provers such that the verifier accepts, and if φ is a No instance, then
for any pair of provers Pi andPj, the probability that their answer is weakly consistent
is at most 1− ε

3 .
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We now construct our instance of MIN-DISTORTION= starting from a MAX-3-
SAT(5) formula φ. The reduction proceeds in three stages. At each stage we obtain
two metric spaces, with the first stage yielding exactly the METRIC LABELING in-
stance of [10] and at the end of the third stage we obtain two metric spaces of equal size
which constitute the desired instance of MIN-DISTORTION=.

STEP I. In this step we construct two graphs G1 and H1 which are same as the graphs
constructed in the METRIC LABELING instance of [10]. The construction of the
graph G1 is as follows.

– For every prover Pi and every q ∈ Qi, there is a vertex v(i, q).
– For every random string r ∈ R, there is a vertex v(r).
– There is an edge of length 1 between v(r) and v(i, q) if q = qi(r).

Call the vertices ofG1 as ‘query’ vertices. The graphH1 is constructed in the following
manner.

– For every i (1 ≤ i ≤ k), every q ∈ Qi, and answer Ai ∈ Ai(q), there is a vertex
v(i, q, Ai).

– For every r ∈ R and every pairwise strongly consistent answers A1, A2, . . . , Ak
to the queries q1(r), q2(r), . . . , qk(r) respectively (where Ai ∈ Ai(qi(r)) for 1 ≤
i ≤ k), there is a vertex v(r, A1, A2, . . . , Ak).

– There is an edge of length 1 between v(i, q, Ai) and v(r, A1, A2, . . . , Ak) if q =
qi(r) and the ith coordinate of the tuple (A1, A2, . . . , Ak) is Ai.

The vertices of H1 will be referred to as ‘label’ vertices. Figure 1 shows the local
structure of G1 and H1. It can be seen that for every ‘query’ vertex u in G1, there is
a set of ‘label’ vertices s(u) in H1, such that {s(u)}u∈V (G1) is a partition of V (H1).
For the sake of convenience, we modify our notation to let V (G1) = {u1, u2, . . . , uN},

v(r)

v(1, q1)

v(2, q2)

v(i, qi)
v(k, qk)

v(1, q1, A1)

v(2, q2, A2)

v(i, qi, Ai)
v(k, qk, Ak)

v(r, A1, . . . , Ak)

qi = qi(r) qi = qi(r)
Ai ∈ Ai

{A1, . . . , Ak} strongly consistent

Query vertices of G1 Label vertices of H1

Fig. 1. Vertices of G1 and H1. All edges are of length 1.
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where N = |V (G1)| and V (H1) = ∪Ni=1s(ui), and let �i1, �
i
2, . . . , �

i
mi

be the elements
of s(ui), wheremi = |s(ui)|. Also note that there is an edge between the sets s(ui) and
s(uj) in H1 only if there is an edge between ui and uj in G1. The graphs G1 and H1

with the partition {s(ui)}ui∈V (G1) constitute the instance of METRIC LABELING
of [10]. They show that in the Yes case, there is a labeling of every ui ∈ V (G1) with
a label from s(ui) such that each edge in G1 is mapped to an edge in H1, while in
the No case in every such labeling, a constant fraction of edges in G1 are mapped to
pairs of vertices Ω(k) distance apart in H1. Figure 2 illustrates this structure of G1 and
H1. Let dG1 and dH1 denote the shortest path metric on G1 and H1 respectively. Note
that eventually we want two metric spaces of equal cardinality, in the next step of the
construction we achieve that goal.

ui1

ui3

ui2

s(ui1)

s(ui3)

s(ui2)

G1 H1

Fig. 2. Structure of G1 and H1

STEP II. We first modify G1 as follows. For every vertex ui (1 ≤ i ≤ N ) in G1, we
add mi − 1 vertices ti1, t

i
2, . . . t

i
mi−1 and add an edge from each tij to ui of length

√
k.

Let G2 be the new graph created in this process and dG2 be the shortest path metric on
G2. The transformation is shown in Figure 3.

We truncate dH1 from below to
√
k and from above to 10k, i.e. if the distance be-

tween a particular pair of points is less than
√
k then it is set to

√
k and if it is greater

than 10k then it is set to 10k, otherwise it remains the same. We also truncate dG1 from
above to 10k , but not from below. Let H2 be the new resultant graph and dH2 be this
new metric on V (H2). Observe that G2 and H2 have the same number of vertices.

STEP III. We now have two graphs G2 and H2 with equal number of vertices. How-
ever, we desire that any ‘good’ embedding of vertices of G2 into H2 map the set
{ui, ti1, . . . , timi−1} onto the set s(ui). For this we add new vertices to both the graphs
in the following manner. Let ηi = 2−iN . For every i (1 ≤ i ≤ N ), we add mi ver-
tices αi1, α

i
2, . . . , α

i
mi

to G2, where αimi
is at a distance ηi from ui and similarly αij
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ui

ui

√
k

√
k

√
k

√
k

t1 t2

tj

tmi−1

G1 G2

Fig. 3. Transformation from G1 to G2

is at a distance of ηi from tij for each j = 1, 2, . . . ,mi − 1. Similarly, in the graph
H , we add vertices vertices βi1, β

i
2, . . . , β

i
mi

, such that βij is at a distance of ηi from
�ij for j = 1, 2, . . . ,mi. Let G3 and H3 be the graphs formed in this manner (refer to
Figure 4), with the metrics dG3 and dH3 extended to the new vertices according to the
distances defined above. Note that we have ensured that G3 and H3 have equal number
of vertices. We output G3 and H3 along with the respective metrics dG3 and dH3 on
V (G3) and V (H3) respectively, as the instance of MIN-DISTORTION=.

Remark. Note that all the distances in G2 and H2 were at least 1. In G3 and H3 each,
we addedmi edges of length 2−iN , for i = 1, . . . , N . So, any bijection between V (G3)
and V (H3) must map edges of length 2−iN in G3 to edges of length 2−iN in H3 for
i = 1, . . . , N , otherwise at least one edge will be stretched or contracted by a factor of
at least 2N . Therefore, this ensures that in any embedding of G3 into H3, for any given
i (1 ≤ i ≤ N ) the set {αi1, . . . , αimi

} is mapped onto the set {βi1, . . . , βimi
} and the set

{ui, ti1, . . . , timi−1} is mapped onto the set {�i1, . . . , �imi
}, otherwise the distortion is at

least 2N .

3.2 Analysis

Yes instance. Suppose that the MAX-3-SAT(5) formula had a satisfying assignment,
say σ to the variables. We will construct an embedding f of V (G3) into V (H3) such
that no edge in G3 is contracted, whereas any edge in G3 is stretched by at most a
factor of O(

√
k), which leads to an embedding with distortion at most O(

√
k). For

any i (1 ≤ i ≤ N ), consider the vertex ui. We recall that ui was a ‘query’ vertex,
and s(ui) is the set of ‘label’ vertices corresponding to ui. We set f(ui) to be a label
vertex in s(ui) given by the satisfying assignment σ. The map f takes ti1, t

i
2, . . . , t

i
mi−1

arbitrarily to the remainingmi−1 vertices in s(ui). The vertex αij (1 ≤ j ≤ mi−1) is
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ui

t1 t2

tj

tmi−1

ui

t1 t2

tj

tmi−1

ηi

ηi

ηi

ηi

ηi

αmi

α1

α2

αj

αmi−1

G2 G3

�1 �1

�2 �2

�j
�j

�mi

�mi

s(ui) s(ui)

β1

β2

βjβmi

ηi
ηi

ηi

ηi

H2 H3

Fig. 4. Transformation from G2 to G3 and H2 to H3

mapped to βij′ such that βij′ at distance ηi to f(tij). Similarly, the vertex αimi
is mapped

to βij′′ which is at a distance of ηi from f(ui).
Consider any two vertices ui and ui′ in in G1 that are adjacent. Since σ is a satisfy-

ing assignment, we have that the vertices f(ui) and f(ui′) are also adjacent in H1. And
since adjacent vertices remain adjacent in G3 and adjacent vertices in H1 have distance√
k in H3, therefore the stretch of the edge (ui, uj) in G3 is

√
k. The edge (ui, tij)

(1 ≤ j ≤ mi − 1) has length
√
k and since the diameter of the metric on H3 (and G3)

is O(k), the stretch of the edge is at most O(
√
k). Also, clearly the distances of the

edges (ti1, α
i
1), . . . , (t

i
mi−1, α

i
mi−1), (ui, αmi) are not stretched or contracted. One key

fact that we have utilized is that there is an edge (in H1) between s(ui) and s(ui′) only
if ui and ui′ are adjacent in G1. This ensures that there is no edge (in G1) contracts,
which guarantees that no distance in G3 contracts. Therefore, there is an embedding of
the vertices of G3 into H3 with distortion at most O(

√
k).

No instance. Suppose that the MAX-3-SAT(5) formula has no satisfying assignment
that satisfies more that 1 − ε fraction of the clauses. In this case, as a consequence of
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Proposition 4.4 and Lemma 4.5 of [10], we have that in every mapping g of V (G1) into
V (H1), such that g(u) ∈ s(u), for all u ∈ V (G), there is a constant fraction of edges
of G1 whose end points are mapped to pairs of vertices of H1 that are θ(k) distance
apart in H1. Since we truncate the metric on dH1 from above to Ω(k), it is also true for
the truncated metric on H1.

As noted in the remark after step III of the construction, any embedding f of V (G3)
into V (H3) which does not satisfy the condition that f(ui) ∈ s(ui) for all i = 1, 2,
. . . , N incurs a distortion of at least 2N > k. Therefore we may assume that the
above condition holds for f . Now, using what we stated above, we get that there is
a unit distance edge (ui, ui′) is stretched by a factor of Ω(k), i.e. dH3(f(ui), f(ui′) ≥
Ω(k) · dG1(ui, ui′). Note that unit distances in G1 are preserved in G3 and the trun-
cation of distances of H1 to

√
k from below only helps us. Therefore, in this case the

distortion is at least Ω(k).

Construction size. Since each query consists of at most k2 clauses, the size of R is at
most 3 ·nk2

and there are at most 7k
2

answers to each query. Also, since in steps II and
III we blow up the size only polynomially, we have that the total size of the construction
is at most nO(k2).

Hardness factor. In the Yes case we have an embedding of G3 into H3 with dis-
tortion at most O(

√
k), while in the No case any embedding has distortion at least

Ω(k). Therefore, we have a hardness factor Ω(
√
k) and choosing k = poly(logn),

we have k = Ω((log |V (G3)|)1/2−δ). Therefore, we get that there is no polynomial
time algorithm to approximate the distortion of embedding two n-point metrics within
a factor of (log(n))1/4−δ of the optimal for any positive constant δ, unless NP ⊆
DTIME(npoly(logn)). This proves Theorem 1.

4 Conclusion

In this paper we have shown a hardness factor of (logn)1/4−δ for approximating the
distortion required to embed two general n point metrics. An interesting question is
whether such a superconstant lower bound also holds for constant dimensional metrics.
Papadimitriou and Safra [15] prove a 3 factor hardness of approximating the distortion
for 3-dimensional metrics. Extending such a constant factor hardness to 2-dimensional,
or 1-dimensional metrics is an important question. On the algorithmic side the only
positive result is for the case when the metrics are 1-dimensional and the optimum
distortion is at most 2 +

√
5 [14], and extending it to higher dimensions remains an

open question. For general n point metrics, no non-trivial upper bound is known, and it
would be interesting if a reasonable upper bound can be derived for this problem.

References

1. Arora, S.: Polynomial time approximation schemes for Euclidean Traveling Salesman and
other Geometric problems. Journal of the ACM 45(5), 753–782 (1998)

2. Arora, S., Lund, C., Motawani, R., Sudan, M., Szegedy, M.: Proof verification and the hard-
ness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)



Hardness of Embedding Metric Spaces of Equal Size 227

3. Arora, S., Lee, J.R., Naor, A.: Euclidean distortion and the sparsest cut. In: Proc. STOC, pp.
553–562 (2005)

4. Arora, S., Rao, S., Vazirani, U.V.: Expander flows, geometric embeddings and graph parti-
tioning. In: Proc. STOC, pp. 222–231 (2004)

5. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP. Journal
of the ACM 45(1), 70–122 (1998)

6. Badoiu, M., Chuzhoy, J., Indyk, P., Sidiropoulos, A.: Low-distortion embeddings of general
metrics into the line. In: Proc. STOC, pp. 225–233 (2005)

7. Bartal, Y.: On approximating arbitrary metrices by tree metrics. In: Proc. STOC, pp. 161–168
(1998)

8. Bourgain, J.: On Lipschitz embeddings of finite metrics in Hilbert space. Israel Journal of
Mathematics 52, 46–52 (1985)

9. Chekuri, C., Khanna, S., Naor, J., Zosin, L.: Approximation algorithms for the metric la-
beling problem via a new linear programming formulation. In: Proc. SODA, pp. 109–118
(2001)

10. Chuzhoy, J., Naor, J.: The hardness of Metric Labeling. In: Proc. FOCS, pp. 108–114 (2004)
11. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics

by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)
12. Indyk, P.: Algorithmic applications of low-distortion embeddings. In: Proc. FOCS, pp. 10–33

(2001)
13. Kleinberg, J., Tardos, E.: Approximation algorithms for classification problems with pairwise

relationships: metric labeling and Markov random fields. Journal of the ACM 49, 616–630
(2002)

14. Kenyon, C., Rabani, Y., Sinclair, A.: Low distortion maps between point sets. In: Proc.
STOC, pp. 272–280 (2004)

15. Papadimitriou, C.H., Safra, S.: The complexity of low-distortion embeddings between point
sets. In: Proc. SODA, pp. 112–118 (2005)



Coarse Differentiation and Multi-flows

in Planar Graphs

James R. Lee� and Prasad Raghavendra

University of Washington
{prasad,james}@cs.washington.edu

Abstract. We show that the multi-commodity max-flow/min-cut gap
for series-parallel graphs can be as bad as 2. This improves the largest
known gap for planar graphs from 3

2 to 2. Our approach uses a technique
from geometric group theory called coarse differentiation in order to
lower bound the distortion for embedding a particular family of shortest-
path metrics into L1.

1 Introduction

In the past 15 years, low-distortion metric embeddings—following the initial
work of Linial, London, and Rabinovich [25]—have become an integral part of
theoretical computer science, and the geometry of metric spaces seems to lie
at the heart of some of the most important open problems in approximation
algorithms (for some recent examples see, e.g. [4,3,1,16,13] and the discussions
therein). For background on the field of metric embeddings and their applications
in computer science, we refer to Matoušek’s book [27, Ch. 15], the surveys [20,24],
and the compendium of open problems [26].

One of the central connection between embeddings and theoretical CS lies in
the correspondence between low-distortion L1 embeddings, on the one hand, and
the Sparsest Cut problem (see, e.g. [25,5,4,3]) and concurrent multi-commodity
flows (see, e.g. [18,12]) on the other. This relationship allows us to bring so-
phisticated geometric and analytic techniques to bear on classical problems in
graph partitioning and in the theory of network flows. In the present paper, we
show how techniques developed initially in geometric group theory can be used
to shed new light on the connections between sparse cuts and multi-commodity
flows in planar graphs.

Multi-commodity Flows and Sparse Cuts. Let G = (V,E) be a graph
(network), with a capacity C(e) ≥ 0 associated to every edge e ∈ E. Assume that
we are given k pairs of vertices (s1, t1), ..., (sk, tk) ∈ V × V and D1, . . . , Dk ≥ 1.
We think of the si as sources, the ti as targets, and the value Di as the demand
of the terminal pair (si, ti) for some commodity κi.

In the MaxFlow problem the objective is to maximize the fraction λ of the
demand that can be shipped simultaneously for all the commodities, subject to
� Research supported by NSF CAREER award CCF-0644037.
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the capacity constraints. Denote this maximum by λ∗. A trivial upper bound on
λ∗ is the sparsest cut ratio. Given any subset S ⊆ V , we write

Φ(S) =
∑

uv∈E C(uv) · |1S(u)− 1S(v)|
∑k

i=1Di · |1S(si)− 1S(ti)|
,

where 1S is the characteristic function of S. The value Φ∗ = minS⊆V Φ(S) is
the minimum over all cuts (partitions) of V , of the ratio between the total ca-
pacity crossing the cut and the total demand crossing the cut. In the case of
a single commodity (i.e. k = 1) the classical MaxFlow-MinCut theorem states
that λ∗ = Φ∗, but in general this is no longer the case. It is known [25,5] that
Φ∗ = O(log k)λ∗. This result is perhaps the first striking application of met-
ric embeddings in combinatorial optimization (specifically, it uses Bourgain’s
embedding theorem [7]).

Indeed, the connection between L1 embeddings and multi-commodity flow/cut
gaps can be made quite precise. For a graph G, let c1(G) represent the largest
distortion necessary to embed any shortest-path metric on G into L1 (i.e. the
maximum over all possible assignments of non-negative lengths to the edges of
G). Then c1(G) gives an upper bound on the ratio between the sparsest cut ratio
and the maximum flow for any multi-commodity flow instance on G (i.e. with
any choices of capacities and demands) [25,5]. Furthermore, this connection is
tight in the sense that there is always a multi-commodity flow instance on G
that achieves a gap of c1(G) [18].

Despite significant progress [29,18,12,8], some fundamental questions are still
left unanswered. As a prime example, consider the well-known planar embedding
conjecture (see, e.g., [18,24,26,12]):

There exists a constant C such that every planar graph metric embeds
into L1 with distortion at most C.

In initiating a systematic study of L1 embeddings [18] for minor-closed fam-
ilies, Gupta, Newman, Rabinovich, and Sinclair put forth the following vast
generalization of this conjecture (we refer to [14] for the relevant graph theory).

Conjecture 1 (Minor-closed embedding conjecture). If F is any non-trivial minor-
closed family, then supG∈F c1(G) <∞.

Lower Bounds on the Multi-commodity Max-Flow/Min-Cut Ratio
in Planar Graphs. While techniques for proving upper bounds on the L1-
distortion required to embed such families has steadily improved, progress on
lower bounds has been significantly slower, and recent breakthroughs in lower
bounds for L1 embeddings of discrete metric spaces that rely on discrete Fourier
analysis [22,21] do not apply to excluded-minor families.

The best previous lower bound on c1(G) when G is a planar graph occured
for G = K2,n, i.e. the complete 2 × n bipartite graph. By a straightforward
generalization of the lower bound in [29], it is possible to show that c1(K2,n)→ 3

2
as n → ∞ (see also [2] for a particularly simple proof of this fact in the dual
setting).
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We show that, in fact there is an infinite family of series-parallel (and hence,
planar) graphs {Gn} such that limn→∞ c1(Gn) = 2.

1.1 Results and Techniques

Our lower bound approach is based on exhibiting local rigidity for pieces of
metric spaces under low-distortion embeddings into L1. This circle of ideas, and
the relationship to theory of metric differentiation are long-studied phenomena in
geometric analysis (see e.g. [19,30,6,10]). More recently, they have been applied
to the study of L1 embeddings [11] based on local rigidity results for sets of finite
perimeter in the Heisenberg group [17]; see [23] for the relevance to integrality
gaps for the Sparsest Cut problem.

Our basic approach is simple; we know that c1(K2,n) ≤ 3
2 for every n ≥ 1.

But consider s, t ∈ V (K2,n) which constitute the partition of size 2. Say that a
cut S ⊆ V (K2,n) is monotone with respect to s and t if every simple s-t path
in K2,n has at most one edge crossing the cut (S, S̄). It is not difficult to show
that if an L1 embedding is composed entirely of cuts which are monotone with
respect to s and t, then that embedding must have distortion at least 2− 2

n .
Consider now the recursively defined family of graphs K�k

2,n, where K�1
2,n =

K2,n and K�k
2,n arises by replacing every edge of K�k−1

2,n with a copy of K2,n.
The family {K�k

2,2}k≥1 are the well-known diamond graphs of [28,18]. We show
that in any low-distortion embedding of K�k

2,n into L1, for k ≥ 1 large enough,
it is possible to find a (metric) copy of K2,n for which the induced embedding
is composed almost entirely of monotone cuts. The claimed distortion bound
follows, i.e. limn,k→∞ c1(K�k

2,n) = 2. In Section 5, we exhibit embeddings which
show that for every fixed n, limk→∞ c1(K�k

2,n) < 2 and also for every fixed k,
limn→∞ c1(K�k

2,n) < 2, thus it is necessary for the lower bound to be asymptotic
in both parameters. (E.g. for the diamond graphs, limk→∞ c1(K�k

2,2 ) ≤ 4
3 ).

The ability to find these monotone copies of K2,n inside a low-distortion L1

embedding of K�k
2,n arises from two sources. The first is the coarse differentiation

technique of Eskin, Fischer, and Whyte [15] which gives a discrete approach to
finding local regularity in distorted paths; this is carried out in Section 3. The
second aspect is the relationship between regularity and monotonicity for L1

embeddings which is expounded upon in Section 3.2.

2 Preliminaries

For a graph G, we will use V (G), E(G) to denote the sets of vertices and edges.
Further, let dG denote the shortest path metric on the graph G. For an integer
n, let K2,n denote the complete bipartite graph with 2 and n vertices on either
side.

An s-t graph G, is a graph two of whose vertices are labelled s and t. For an
s-t graph G, we will use s(G), t(G) to denote the vertices in G labelled s and t
respectively. Throughout this article, the graphs K2,n are considered s-t graphs
in the natural way (the two vertices forming a partition are labeled s and t).
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We define the operation & as follows.

Definition 1. Given two s-t graphs G and H, define H & G to be the graph
obtained by replacing each edge e = (u, v) ∈ E(H) by a copy of G. Formally,

– V (H &G) = V (H) ∪ E(H)× (V (G)− {s(G), t(G)})
– For every edge e = (u, v) ∈ E(H), there are |E(G)| edges

E(H) = {(ev1 , ev2)|(v1, v2) ∈ E(G− s− t)} ∪{(u, ew)|(s, w) ∈ E(G)}
∪{(ew, v)|(w, v) ∈ E(G)}

– s(H &G) = s(H), t(H &G) = t(H).

Note that, there are two ways to substitute an edge with an s-t graph. Thus, in
the above definition we are assuming some arbitrary orientation for each edge.
However for our purposes, the graphs K2,n are symmetric and thus the distinc-
tion does not arise. For a s-t graph G and integers k, define G�k recursively as
G�1 = G and G�k = G�k−1 &G.

Definition 2. For two graphs G, H, a subset of vertices X ⊆ V (H) is said to be
a copy of G if there exists a bijection f : V (G)→ X such that dH(f(u), f(v)) =
C · dG(u, v) for some constant C, i.e. there is a distortion 1 map from G to X.

Now we make the following two simple observations about copies in the graph
G&H .

Observation 1. The graph H &G contains |E(H)| copies of the graph G, one
copy corresponding to each edge in H.

Observation 2. The subset of vertices V (H) ⊆ V (H & G) form a copy of H.
In particular, dH�G(u, v) = dG(s, t) · dH(u, v)

For a graph G, we can write the graph G�N as G�N = G�k−1 & G & GN−k.
By observation 1, there are |E(G�k−1)| = |E(G)|k−1copies of G in G�k−1 &G.
Now using observation 2, we obtain |E(G)|k−1 copies of G in G�N . We refer to
these as the level k copies of G, and their vertices as level k vertices.

In the case of K�N
2,n , we will use a compact notation to refer to the copies of

K2,n. We will refer to the n vertices other than s, t in K2,n by M = {mi}ni=1. For
two level k vertices x, y in KN

2,n, we will use K(x,y)
2,n to denote the copy of K2,n

between x and y, i.e x and y are the vertices labelled s and t in the copy. Note
that such a copy does not exist between all pairs of level k vertices. Further, for
any copy K(x,y)

2,n of K2,n, we will use the notation M(K(x,y)
2,n ) = {mi(K

(x,y)
2,n )} to

refer to the corresponding vertices in the copy.

Embeddings and Distortion. If (X, dX), (Y, dY ) are metric spaces, and f :
X → Y , then we write ‖f‖Lip = supx �=y∈X

dY (f(x),f(y))
dX(x,y) . If f is injective, then

the distortion of f is ‖f‖Lip · ‖f−1‖Lip. If dY (f(x), f(y)) ≤ d(x, y) for every
x, y ∈ X , we say that f is non-expansive.

For a metric space X , we use c1(X) to denote the least distortion required
to embed X into L1. The value c1(G) for a graph G refers to the minimum L1

distortion of the shortest path metric on G.
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3 Coarse Differentiation

The lower bounds results in this paper rely on the technique of coarse differ-
entiation from geometric group theory. In this section, we will derive the basic
lemma of coarse differentiation that we will use later.

Given a non-expansive map f : Y → X between two metric spaces (X, d) and
(Y, d′), the objective of the coarse differentiation argument is to obtain, some
subset of Y on which the function f appears fairly regular(differentiable). To
make this precise, we present the following definition:

Definition 3. A path P = {x1, x2, . . . , xk} in a metric space (X, d) is said to
ε-efficient if

k−1∑

i=1

d(xi, xi+1) ≥ (1 + ε)d(x1, xk)

Note that the quantity on the left is always at least d(x1, xk) by triangle in-
equality. Thus, the above inequality implies that the triangle inequality is close
to being tight. i.e the path {x1, x2, . . . , xk} is “nearly straight”.

Definition 4. A function f : Y → X is said to be ε-efficient with respect to
a path P = {y1, y2, . . . , yk} ∈ Y if the path f(P) = {f(y1), f(y2), . . . f(yk)} is
ε-efficient in X.

For the sake of exposition, we first present the coarse differentiation argument
on a function from [0, 1]. We will later derive the more general result used in the
lower bound argument.

Let f : [0, 1] → X be a non expansive map in to a metric space (X, d). Let
M ∈ N be given, and for each k ∈ N, let Lk = {jM−k}Mk

j=0 ⊆ [0, 1] be the set
of level-k points, and let Sk =

{
(jM−k, (j + 1)M−k) : j ∈ {1, . . . ,Mk − 1}

}
be

the set of level-k pairs.
For an interval I = [a, b], f |I denotes the restriction of f to the interval I.

Now we say that f |I is ε-efficient at granularity M if

M−1∑

j=0

d

(

f

(

a+
(b− a)j
M

)

, f

(

a+
(b− a)(j + 1)

M

))

≤ (1 + ε) d(f(a), f(b)).

Further, we say that a function f is (ε, δ)-inefficient at level k if
∣
∣
{
(a, b) ∈ Sk : f |[a,b] is not ε-efficient at granularity M

}∣
∣ ≥ δMk.

In other words, the probability that a randomly chosen level k restriction f |[a,b]
is not ε-efficient is at least δ. Otherwise, we say that f is (ε, δ)-efficient at level
k. The main theorem of this section follows.

Theorem 3 (Coarse differentiation). If a non-expansive map f : [0, 1]→ X
is (ε, δ)-inefficient at an α-fraction of levels k = 1, 2, . . . , N , then dist(f |LN+1) ≥
1
2εαδN .
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Proof. Let D = dist(f |LN+1), and let 1 ≤ k1 < · · · < kh ≤ N be the h ≥ �αN�
levels at which f is (ε, δ)-inefficient.

Let us consider the first level k1. Let S′
k1
⊆ Sk1 be a subset of size |S′

k1
| ≥

�δ|Sk1 |� for which

(a, b) ∈ S′
k1 =⇒ f |[a,b] is not ε-efficient at granularity M

For any such (a, b) ∈ S′
k1

, we know that

M−1∑

j=0

d
(
f
(
a+ jM−k1−1

)
, f
(
a+ (j + 1)M−k1−1

))
> (1 + ε)d(f(a), f(b))

≥ d(f(a), f(b)) + ε
M−k1

D
.

by the definition of (not being) ε-efficient, and the fact that d(f(a), f(b)) ≥
|a− b|/D. For all segments (a, b) ∈ Sk1 − S′

k1
, the triangle inequality yields

M−1∑

j=0

d
(
f
(
a+ jM−k1−1

)
, f
(
a+ (j + 1)M−k1−1

))
≥ d(f(a), f(b))

By summing the above inequalities over all the segments in Sk1 , we get

∑

(u,v)∈Sk1+1

d (f(u), f(v)) ≥
∑

(a,b)∈Sk1

d(f(a), f(b)) +
εδ

2D
,

where the extra factor 2 in the denominator on the RHS just comes from remov-
ing the floor from |S′

k1
| ≥ �δ|Sk1 |�. Similarly, for each of the levels k2, . . . , kh, we

will pick up an excess term of εδ/(2D). We conclude that

1 ≥
∑

(u,v)∈SN+1

d (f(u), f(v)) ≥ εδh

2D
,

where the LHS comes from the fact that f is non-expansive. Simplifying achieves
the desired conclusion.

3.1 Family of Maps

Let F denote a family of non-expansive maps from Lk = {jM−k}Mk

j=0 ⊂ [0, 1] to
a metric space (X, d). For r < k, we say that the family F is (ε, δ)-inefficient at
level r if
∣
∣
{
(a, b) ∈ Sr, f ∈ F : f |[a,b] is not ε-efficient at granularity M

}∣
∣ ≥ δM r|F|.

Theorem 4. If a family F of non-expansive maps from LN+1 ={jM−N−1}MN+1

j=0

to (X, d) is (ε, δ)-inefficient at an α-fraction of levels k = 1, 2, . . . , N , then for
some f ∈ F , dist(f |P) ≥ 1

2εαδN .
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Proof. Define the metric d′ on X |F| by

d′(x, y) =
1
|F|

|F|∑

i=1

d(xi, yi)

The family F = {f1, f2, . . . , f|F|} defines a non-expansive map from F : Lk →
X |F| by F (x) = (f1(x), f2(x), . . . , f|F|(x)). Observe that the proof of Theorem 3
holds for non-expansive maps defined only on LN+1 ⊂ [0, 1]. The result follows
by applying Theorem 3 to the function F .

3.2 Efficient L1-Valued Maps and Monotone Cuts

Any map f : X → L1 is a probability distribution over cuts of X . In this
section, we will study how these cuts act on paths in X with respect to which f
is ε-efficient. Towards this, we make the following definition:

Definition 5. A path P = {x1, x2, . . . , xk} is said to be monotone with respect
to a cut (S, S), if the cut separates at most one of the edges of the path P.
Formally, S ∩ P = {x1, x2, . . . , xi} for some 1 ≤ i ≤ k.

Lemma 1. If a function f : X → L1 is ε-efficient with respect to a path P =
{x1, x2, . . . , xk} then P is monotone with respect to at least 1− ε fraction of the
cuts(under the probability distribution on cuts induced by f).

Proof. If the path P is not monotone with respect to a cut (S, S), then

k−1∑

i=1

|1S(xi)− 1S(xi+1)| ≥ 2|1S(x1)− 1S(xk)|

Pick a random cut (S, S) with the probability distribution induced by f . Let E
denote the event that the cut is not monotone with respect to P . For the purpose
of contradiction, suppose the path P is not monotone with respect to ε-fraction
of the cuts, i.e Pr[E ] > ε. Then we have,

k−1∑

i=1

‖f(xi)− f(xi+1)‖1 = E
[ k−1∑

i=1

|1S(xi)− 1S(xi+1)|
∣
∣
∣E
]
Pr[E ]

+E
[ k−1∑

i=1

|1S(xi)− 1S(xi+1)|
∣
∣
∣E
]
Pr[E ]

≥ 2E
[
|1S(x1)− 1S(xk)|

]
Pr[E ]

+E
[
|1S(x1)− 1S(xk)|

]
(1− Pr[E ])

≥ (1 + Pr[E ]) E
[
|1S(x1)− 1S(xk)|

]

> (1 + ε)‖f(x1)− f(xk)‖1

This is a contradiction, since f is ε-efficient with respect to P .
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4 L1 Distortion Lower Bound

Our lower bound examples are the recursively defined family of graphs -
{K�k

2,n}∞k=1. In the case n = 2, the graphs K�k
2,n are the same as diamond

graphs [28,18].

Lemma 2. Given an s-t graph G and ε,D > 0, there exists an integer N such
that the following holds : For any non-expansive map f : G�N → X with
dist(f) ≤ D, there exists a copy G′ of G in G�N such that f is ε-efficient
on all s-t shortest paths in G′.

Proof. Let M denote the length of the shortest s-t path in G. Let P(G) denote
the family of s-t shortest paths in G. Fix δ = 1

|P(G)| , α = 1
2 and N = � 8Dεδ �.

Let P denote the family of all s-t shortest paths in G�N . Each path in P is
of length MN . For each path P ∈ P , define fP : LN = {jM−N}MN

j=0 → X by
fP (jM−N ) = f(vj) where vj is the jth vertex along the path P . Let F denote
the family of maps {fP |P ∈ P}. From the choice of parameters, observe that
1
2εαδN > D = dist(f). Applying Theorem 4 on the family F , F is (ε, δ)-efficient
at an α = 1

2 -fraction of levels j = 1, 2, . . .N . Specifically, there exists a level
k < N such that F is (ε, δ)-efficient at level k.

Let Gk denote the set of all level k copies of G in G�N . If for at least one
of the level k copies, all the s-t shortest paths are ε-efficient then the proof is
complete.

On the contrary, suppose each level k copy has an s-t path that is not ε-
efficient. Then in each level k copy at least a δ = 1

|P(G)| fraction of the s-t
paths are ε-inefficient. Thus for a random choice of a path P ∈ P and 0 ≤ j <
Mk the subpath {vjMN−k , v(j+1)MN−k , . . . v(j+M)MN−k} of P is ε-inefficient with
probability at least δ. Equivalently, for a random choice of function fP ∈ F and
a level k pair [a, b], fP is ε-inefficient on [a, b] with probability at least δ. This is
a contradiction, since the family F = {fP |P ∈ P} is (ε, δ)-efficient at level k.

Lemma 3. For ε < 1
2 and any function f : K2,n → L1 that is ε/n-efficient with

respect to each of the paths from {s,mi, t}, 1 ≤ i ≤ n, the distortion dist(f) ≥
2− 2

n − 16ε.

Proof. Without loss of generality, we assume that in the embedding f , the prob-
ability of trivial cuts (V (K2,n), φ) is 0. Suppose for the function f , there is a
nonzero probability of trivial cuts (V (K2,n), φ), then we can create a function f̃
with the same distortion as f , by just discarding the trivial cuts.

Using lemma 1, each of the paths {s,mi, t} is monotone with respect to all
but ε/n fraction of the cuts. By a union bound, we conclude that for all but
ε-fraction of the cuts all the paths {s,mi, t} are monotone.

Consider a cut (S, S) that is monotone with respect to all the paths {s,mi, t}.
Let us refer to these cuts as good cuts. For a good cut (S, S), we will now show
that

∑

i,j∈n
|1S(mi)− 1S(mj)| ≤

n2

4
|1S(s)− 1S(t)|
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Without loss of generality, let us assume s ∈ S. There are two cases:

Case I: (t ∈ S) For each i, at most one of the edges (s,mi), (mi, t) are cut by
(S, S). From this, we conclude that each vertex mi is also in S. Hence S = φ, or
in other words the cut (S, S) is trivial. By assumption about f , this case does
not arise.

Case II: (t /∈ S) Suppose |S| = r + 1, then r of the vertices {mi}ni=1 are in S.
Thus we can write

|1S(s)− 1S(t)| = 1
∑

i,j∈n
|1S(mi)− 1S(mj)| = r(n − r)

In particular, the above equations imply

∑

i,j∈n
|1S(mi)− 1S(mj)| ≤

n2

4
|1S(s)− 1S(t)|

For a random cut, let E denote the event that it is good. As already observed,
the probability Pr[E ] is less than ε.

∑

i,j∈[n]

‖f(mi)− f(mj)‖1 = E
[ ∑

i,j∈[n]

|1S(mi)− 1S(mj)|
∣
∣
∣E
]
Pr[E ]

+E
[ ∑

i,j∈[n]

|1S(mi)− 1S(mj)|
∣
∣
∣E
]
Pr[E ]

≤ n2

4
E
[
|1S(s)− 1S(t)|

∣
∣
∣E
]
Pr[E ] + εn2 (1)

From the two cases above, clearly for every non trivial good cut (S, S) we have
|1S(s)− 1S(t)| = 1. Consequently we have

‖f(s)− f(t)‖1 ≥ E
[
|1S(s)− 1S(t)|

∣
∣
∣E
]
Pr[E ] ≥ (1− ε) > 1/2

Using this in equation 1 we get,

∑

i,j∈[n]

‖f(mi)− f(mj)‖1 ≤
n2

4
‖f(s)− f(t)‖1 + 2εn2‖f(s)− f(t)‖1

≤ (1 + 8ε)n2

4
‖f(s)− f(t)‖1 (2)

In the metric d on K2,n, d(mi,mj) = d(s, t) = 2. Hence we have

∑

i,j∈[n]

d(mi,mj) =
(
n

2

)

d(s, t)

Along with the inequality 2, this implies

dist(f) ≥
(
n
2

)

(1+8ε)n2

4

=
1

1 + 8ε

(

2− 2
n

)

≥
(

2− 2
n

)

− 16ε
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Theorem 5. For any n ≥ 2, limk→∞ c1(K�k
2,n) ≥ 2− 2

n .

Proof. For any ε′ > 0, let N be the integer obtained by applying Lemma 2 with
ε = ε′/n,D = 2 and G = K2,n. We will show that for any map f : K�N

2,n → L1,
dist(f) ≥ 2 − 2

n − 16ε′. Without loss of generality, we can assume that f is
non-expansive, otherwise just rescale the map f . Suppose dist(f) ≤ 2, then from
Lemma 2 there exists a copy of K2,n in which all the s-t paths are ε′

n efficient.
Using Lemma 3, on this copy of K2,n we get dist(f) ≥ 2− 2

n − 16ε′.
Hence for any ε′ > 0, there exists large enough N such that c1(K�N

2,n ) ≥
2− 2

n−16ε′. The required result follows, since c1(K�k
2,n) is monotonically increasing

with k.

5 Embeddings of K�k
2,n

In this section, we show that for every fixed n, k ∈ N, we have c1(K�k
2,n) < 2. In

particular, the lower bound of Theorem 5 has to be asymptotic in nature. More
precisely, we will show that in order to achieve c1(K�k

2,n) = 2 − o(1), we must
take both k, n→∞.

A Next-Embedding Operator. Let T be a random variable ranging over
subsets of V (K�k

2,n), and let S be a random variable ranging over subsets of
V (K2,n). We define a random subset PS(T ) ⊆ V (K�k+1

2,n ) as follows. One moves
from K�k

2,n to K�k+1
2,n by replacing every edge (x, y) ∈ E(K�k

2,n) with a copy

of K2,n which we will call K(x,y)
2,n . For every edge (x, y) ∈ K�k

2,n, let S(x,y) be
an independent copy of the cut S (which ranges over subsets of V (K2,n)). We
form the cut PS(T ) ⊆ V (K�k+1

2,n ) as follows. If (x, y) ∈ E(K�k
2,n), then for v ∈

V (K(x,y)
2,n ), we put

1PS(T )(v) =

⎧
⎨

⎩

1PS(T )

(
s(K(x,y)

2,n )
)

if 1S(x,y)(v) = 1S(x,y)

(
s(K(x,y)

2,n )
)

1PS(T )

(
t(K(x,y)

2,n )
)

otherwise

We note that, strictly speaking, the operator PS depends on n and k, but we
allow these to be implicit parameters.

5.1 Embeddings for Small n

Our first embedding gives an optimal upper bound on limk→∞ c1(K�k
2,n) for

every n ≥ 1. Consider the graph K2,n with vertex set V = {s, t} ∪ M . An
embedding in the style of [18] would define a random subset S ⊆ V by selecting
M ′ ⊆M to contain each vertex from M independently with probability 1

2 , and
then setting S = {s} ∪M ′. The resulting embedding has distortion 2 since, for
every pair x, y ∈ M , we have Pr[1S(x) �= 1S(y)] = 1

2 . To do slightly better, we
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choose a uniformly random subset M ′ ⊆M of size �n2 � and set S = {s}∪M ′ or
S = {s} ∪ (M \M ′) each with probability half. In this case, we have

Pr[1S(x) �= 1S(y)] =
�n2 � · �

n+1
2 �(

n
2

) >
1
2
,

resulting in a distortion slightly better than 2. A recursive application of these
ideas results in limk→∞ c1(K�k

2,n) < 2 for every n ≥ 1, though the calculation is
complicated by the fact that the worst distortion is incurred for a pair {x, y}
with x ∈ M(H) and y ∈ M(G) where H is a copy of K�k1

2,n and G is a copy
of K�k2

2,n , and the relationship between k1 and k2 depends on n. (For instance,
c1(K2,2) = 1 while limk→∞(K�k

2,2 ) = 4
3 .)

Theorem 6. For any n, k ∈ N, we have c1(K�k
2,n) ≤ 2− 2

2�n
2 �+1 .

Proof. For simplicity, we prove the bound for K�k
2,2n. A similar analysis holds for

K�k
2,2n+1. We define a random cut Sk ⊆ V (K�k

2,2n) inductively. For k = 1, choose
a uniformly random partition M(K�1

2,2n) = Ms ∪Mt with |Ms| = |Mt| = n, and
let S1 = {s(K�1

2,2n)} ∪ {Ms}. The key fact which causes the distortion to be less
than 2 is the following: For any x, y ∈M(K�1

2,2n), we have

Pr[1S1(x) �= 1S1(y)] =
n2

(
2n
2

) =
n

2n− 1
>

1
2
. (3)

This follows because there are
(
2n
2

)
pairs {x, y} ∈M(K�1

2,2n) and n2 are separated
by S1.

Assume now that we have a random subset Sk ⊆ V (K�k
2,2n). We set Sk+1 =

PS1(Sk) where PS1 is the operator defined above, which maps random subsets
of V (K�k

2,2n) to random subsets of V (K�k+1
2,2n ). In other words Sk = P k−1

S1
(S1).

Let s0 = s(K�k
2,2n) and t0 = t(K�k

2,2n). It is easy to see that the cut S = Sk
defined above is always monotone with respect to every s0-t0 shortest path in
K�k

2,2n, thus every such path has exactly one edge cut by Sk, and furthermore the
cut edge is uniformly chosen from along the path, i.e. Pr[1S(x) �= 1S(y)] = 2−k

for every (x, y) ∈ E(K�k
2,2n). In particular, it follows that if u, v ∈ V (K�k

2,2n) lie
along the same simple s0-t0, then Pr[1S(u) �= 1S(v)] = 2−kd(u, v).

Now consider any u, v ∈ V (K�k
2,2n). Fix some shortest path P from u to v. By

symmetry, we may assume that P goes left (toward s0) and then right (toward
t0). Let s be the left-most point of P . In this case, s = s(H) for some subgraph
H which is a copy of K�k′

2,2n with k′ ≤ k, and such that u, v ∈ V (H); we let
t = t(H). We also have d(u, v) = d(u, s) + d(s, v). Let M = M(H), and fix
x, y ∈ M which lie along the s-u-t and s-v-t shortest-paths, respectively. With-
out loss of generality, we may assume that d(s, v) ≤ d(s, y). We need to consider
two cases (see Figure 5.1).
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s t

x

y

u

v

(a) Case I

s t

x

y

u

v

(b) Case II

Fig. 1. The two cases of Theorem 6

Case I: d(u, s) ≤ d(x, s).
For any pair a, b ∈ V (K�k

2,2n), we let Ea,b be the event {1S(a) �= 1S(b)}. In
this case, we have Pr[Eu,v] = Pr[Es,t] · Pr[Eu,v | Es,t]. Since s, t clearly lie on
a shortest s0-t0 path, we have Pr[Es,t] = 2−kd(s, t). For any event E , we let
μ[E ] = Pr[E | Es,t]. Now we calculate using (3),

μ[Eu,v] ≥ μ[Ex,y] (μ[Ex,s | Ex,y]μ[Eu,s | Ex,s, Ex,y] + μ[Ex,t | Ex,y]μ[Ev,s | Ex,t, Ex,y])

=
n

2n− 1

(
1
2
· d(u, s)
d(x, s)

+
1
2
· d(v, s)
d(y, s)

)

=
n

2n− 1
d(u, v)
d(s, t)

.

Hence in this case, Pr[1S(u) �= 1S(v)] ≥ n
2n−1 · 2−kd(u, v).

Case II: d(u, s) ≥ d(x, s).
Here, we need to be more careful about bounding μ[Eu,v]. It will be helpful to
introduce the notation a #→ b to represent the event {1S(a) = 1S(b)}. We have,

μ[Eu,v] = μ[x �→ t, y �→ s] + μ[x �→ t, y �→ t, v �→ s] + μ[x �→ s, y �→ s, u �→ t]

+ μ[x �→ s, y �→ t, u �→ t, v �→ s] + μ[x �→ s, y �→ t, u �→ s, v �→ t]

=
1
2

n

2n − 1
+

n − 1
2n − 1

d(v, y) + d(u, x)
d(s, t)

+
1
2

n

2n − 1

(
d(u, x)d(v, y) + d(u, t)d(v, s)

d(x, t)d(y, s)

)

If we set A = d(v,s)
d(s,t) and B = d(u,x)

d(s,t) , then d(u,v)
d(s,t) = 1

2 +A+B and simplifying the
expression above, we have

μ[Eu,v] =
1
2

+B +
A

2n− 1
− 4n

2n− 1
AB

Since the shortest path from u to v goes through s by assumption, we must have
A+B ≤ 1

2 . Thus we are interested in the minimum of μ[Eu,v]/(1
2 +A+B) subject

to the constraint A+ B ≤ 1
2 . It is easy to see that the minimum is achieved at

A+B = 1
2 , thus setting B = 1

2 −A, we are left to find

min
0≤A≤ 1

2

{

1− 2A+
4nA2

2n− 1

}

=
2n+ 1

4n
.
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(The minimum occurs at A = 1
2 −

1
4n .) So in this case, Pr[1S(u) �= 1S(v)] ≥

2n+1
4n 2−kd(u, v).
Combining the above two cases, we conclude that the distribution S = Sk

induces an L1 embedding of K�k
2,2n with distortion at most max{ 2n−1

n , 4n
2n+1} =

2− 2
2n+1 . A similar calculation yields

c1(K�k
2,2n+1) ≤

(

min
0≤A≤ 1

2

{

1− 2A+
4(n+ 1)A2

2n+ 1

})−1

= 2− 2
2n+ 3

.

Embeddings for small k are deferred to the full version of the paper.
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Abstract. Let (X, dX) be an n-point metric space. We show that there
exists a distribution D over non-contractive embeddings into trees f :
X → T such that for every x ∈ X,

ED

[

max
y∈X\{x}

dT (f(x), f(y))

dX(x, y)

]

≤ C(log n)2,

where C is a universal constant. Conversely we show that the above
quadratic dependence on log n cannot be improved in general. Such
embeddings, which we call maximum gradient embeddings, yield a frame-
work for the design of approximation algorithms for a wide range of clus-
tering problems with monotone costs, including fault-tolerant versions of
k-median and facility location.

1 Introduction

We introduce a new notion of embedding, called maximum gradient embeddings,
which is “just right” for approximating a wide range of clustering problems.
We then provide optimal maximum gradient embeddings of general finite metric
spaces, and use them to design approximation algorithms for several natural
clustering problems. Rather than being encyclopedic, the main emphasis of
the present paper is that these embeddings yield a generic approach to many
problems.

Due to their special structure, it is natural to try to embed metric spaces
into trees. This is especially important for algorithmic purposes, as many hard
problems are tractable on trees. Unfortunately, this is too much to hope for in the
bi-Lipschitz category: As shown by Rabinovich and Raz [22] the n-cycle incurs
distortion Ω(n) in any embedding into a tree. However, one can relax this idea
and look for a random embedding into a tree which is faithful on average. Such an
approach has been developed in recent years by mathematicians and computer
scientists. In the mathematical literature this is referred to as embeddings into
products of trees, and it is an invaluable tool in the study of negatively curved
spaces (see for example [7, 10, 20]).

� Full version appears in [19].
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Probabilistic embeddings into dominating trees became an important algo-
rithmic paradigm due to the work of Bartal [3, 4] (see also [1, 11] for the related
problem of embedding graphs into distributions over spanning trees). This work
led to the design of many approximation algorithms for a wide range of NP
hard problems. In some cases the best known approximation factors are due to
the “probabilistic tree” approach, while in other cases improved algorithms have
been subsequently found after the original application of probabilistic embed-
dings was discovered. But, in both cases it is clear that the strength of Bartal’s
approach is that it is generic: For a certain type of problem one can quickly
get a polylogarithmic approximation using probabilistic embedding into trees,
and then proceed to analyze certain particular cases if one desires to find bet-
ter approximation guarantees. However, probabilistic embeddings into trees do
not always work. In [5] Bartal and Mendel introduced the weaker notion of
multi-embeddings, and used it to design improved algorithms for special classes
of metric spaces. Here we strengthen this notion to maximum gradient embed-
dings, and use it to design approximation algorithms for harder problems to
which regular probabilistic embeddings do not apply.

Let (X, dX) and (Y, dY ) be metric spaces, and fix a mapping f : X → Y .
The mapping f is called non-contractive if for every x, y ∈ X , dY (f(x), f(y)) ≥
dX(x, y). The maximum gradient of f at a point x ∈ X is defined as

|∇f(x)|∞ = sup
y∈X\{x}

dY (f(x), f(y))
dX(x, y)

. (1)

Thus the Lipschitz constant of f is given by ‖f‖Lip = supx∈X |∇f(x)|∞.
In what follows when we refer to a tree metric we mean the shortest-path

metric on a graph-theoretical tree with weighted edges. Recall that (U, dU ) is an
ultrametric if for every u, v, w ∈ U we have dU (u, v) ≤ max{dU (u,w), dU (w, v)}.
It is well known that ultrametrics embed isometrically into tree metrics. The
following result is due to Fakcharoenphol, Rao and Talwar [12], and is a slight
improvement over an earlier theorem of Bartal [4]. For every n-point metric
space (X, dX) there is a distribution D over non-contractive embeddings into
ultrametrics f : X → U such that

max
x,y∈X
x �=y

ED
dU (f(x), f(y)
dX(x, y)

= O(log n). (2)

The logarithmic upper bound in (2) cannot be improved in general.
Inequality (2) is extremely useful for optimization problems whose objective

function is linear in the distances, since by linearity of expectation it reduces
such tasks to trees, with only a logarithmic loss in the approximation guarantee.
When it comes to non-linear problems, the use of (2) is very limited. We will
show that this issue can be addressed using the following theorem, which is our
main result.

Theorem 1. Let (X, dX) be an n-point metric space. Then there exists a dis-
tribution D over non-contractive embeddings into ultrametrics f : X → U (thus
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both the ultrametric (U, dU ) and the mapping f are random) such that for every
x ∈ X, ED |∇f(x)|∞ ≤ C(log n)2, where C is a universal constant.

On the other hand, there exists a universal constant c > 0 and arbitrarily
large n-point metric spaces Yn such that for any distribution over non-contractive
embeddings into trees f : Yn → T there is necessarily some x ∈ Yn for which
ED |∇f(x)|∞ ≥ c(logn)2.

We call embeddings as in Theorem 1, i.e. embeddings with small expected max-
imum gradient, maximum gradient embeddings into distributions over trees (in
what follows we will only deal with distributions over trees, so we will drop the
last part of this title when referring to the embedding, without creating any
ambiguity). The proof of the upper bound in Theorem 1 is a modification of
an argument of Fakcharoenphol, Rao and Talwar [12], which is based on ideas
from [3, 8]. Alternative proofs of the main technical step of the proof of the
upper bound in Theorem 1 can be also deduced from the results of [18] or an
argument in the proof of Lemma 2.1 in [13].

The heart of this paper is the lower bound in Theorem 1. The metrics Yn
in Theorem 1 are the diamond graphs of Newman and Rabinovich [14], which
have been previously used as counter-examples in several embedding problems—
see [6, 14, 17, 21].

1.1 A Framework for Clustering Problems with Monotone Costs

We now turn to some algorithmic applications of Theorem 1. The general reduc-
tion in Theorem 2 below should also be viewed as an explanation why maximum
gradient embeddings are so natural— they are precisely the notion of embedding
which allows such reductions to go through. . In the full version of this paper we
also analyze in detail two concrete optimization problems which belong to this
framework.

A very general setting of the clustering problem is as follows. Let X be an
n-point set, and denote by MET(X) the set of all metrics on X . A possible
clustering solution consists of sets of the form {(x1, C1), . . . , (xk, Ck)} where
x1, . . . , xk ∈ X and C1, . . . , Ck ⊆ X . We think of C1, . . . , Ck as the clusters,
and xi as the “center” of Ci. In this general framework we do not require that
the clusters cover X , or that they are pairwise disjoint, or that they contain
their centers. Thus the space of possible clustering solutions is P = 2X×2X

(though the exact structure of P does not play a significant role in the proof of
Theorem 2). Assume that for every point x ∈ X , every metric d ∈ MET(X),
and every possible clustering solution P ∈ P , we are given Γ (x, d, P ) ∈ [0,∞],
which we think of as a measure of the dissatisfaction of x with respect to P
and d. Our goal is to minimize the average dissatisfaction of the points of X .
Formally, given a measure of dissatisfaction (which we also call in what follows
a clustering cost function) Γ : X ×MET(X)×P → [0,∞], we wish to compute
for a given metric d ∈MET(X) the value

OptΓ (X, d) def= min

{
∑

x∈X
Γ (x, d, P ) : P ∈ P

}
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(Since we are mainly concerned with the algorithmic aspect of this problem, we
assume from now on that Γ can be computed efficiently.)

We make two natural assumptions on the cost function Γ . First of all, we will
assume that it scales homogeneously with respect to the metric, i.e. for every
λ > 0, x ∈ X , d ∈ MET(X) and P ∈ P we have Γ (x, λd, P ) = λΓ (x, d, P ).
Secondly we will assume that Γ is monotone with respecting to the metric, i.e.
if d, d ∈ MET(X) and x ∈ X satisfy d(x, y) ≤ d(x, y) for every y ∈ X then
Γ (x, d, P ) ≤ Γ (x, d, P ). In other words, if all the points in X are further with
respect to d from x then they are with respect to d, then x is more dissatisfied.
This is a very natural assumption to make, as most clustering problems look for
clusters which are small in various (metric) senses. We call clustering problems
with Γ satisfying these assumptions monotone clustering problems. A large part
of the clustering problems that have been considered in the literature fall into
this framework.

The following theorem is a simple application of Theorem 1. It shows that it
is enough to solve monotone clustering problems on ultrametrics, with only a
polylogarithmic loss in the approximation factor.

Theorem 2 (Reduction to ultrametrics). Let X be an n-point set and fix a
homogeneous monotone clustering cost function Γ : X×MET(X)×P → [0,∞].
Assume that there is a randomized polynomial time algorithm which approxi-
mates OptΓ (X, ρ) to within a factor α(n) on any ultrametric ρ ∈MET(X). Then
there is a polynomial time randomized algorithm which approximates OptΓ (X, d)
on any metric d ∈ MET(X) to within a factor of O

(
α(n)(log n)2

)
.

Proof. Let (X, d) be an n-point metric space and let D be the distribution
over random ultrametrics ρ on X from Theorem 1 (which is computable in
polynomial time, as follows directly from our proof of Theorem 1). In other
words, ρ(x, y) ≥ d(x, y) for all x, y ∈ X and

max
x∈X

ED max
y∈X\{x}

ρ(x, y)
d(x, y)

≤ C(log n)2.

Let P ∈ P be a clustering solution for which OptΓ (X, d) =
∑

x∈X Γ (x, d, P ).
Using the monotonicity and homogeneity of Γ we see that

EDOptΓ (X, ρ) ≤ ED

∑

x∈X
Γ (x, ρ, P ) (P is sub-optimal in ρ)

≤ ED
∑

x∈X
Γ

(

x,

[

max
y∈X\{x}

ρ(x, y)
d(x, y)

]

· d, P
)

(Monotonicity of Γ )

= ED

∑

x∈X

[

max
y∈X\{x}

ρ(x, y)
d(x, y)

]

· Γ (x, d, P ) (Homogeneity of Γ )

=
∑

x∈X

(

ED

[

max
y∈X\{x}

ρ(x, y)
d(x, y)

])

· Γ (x, d, P )

≤ C(log n)2 ·OptΓ (X, d) (Theorem 1).
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Hence, with probability at least 1
2 , OptΓ (X, ρ) ≤ 2C(logn)2 · OptΓ (X, d).

For such ρ compute a clustering solution Q ∈ P satisfying
∑

x∈X
Γ (x, ρ,Q) ≤ α(n)OptΓ (X, ρ) ≤ 2Cα(n)(log n)2 ·OptΓ (X, d).

Since ρ ≥ d it remains to use the monotonicity of Γ once more to deduce that
∑

x∈X
Γ (x, ρ,Q) ≥

∑

x∈X
Γ (x, d,Q) ≥ OptΓ (X, d).

Thus Q is a O
(
α(n)(log n)2

)
approximate solution to the clustering problem on

X with cost Γ . ��

Due to Theorem 2 we see that the main difficulty in monotone clustering prob-
lems lies in the design of good approximation algorithms for them on ultramet-
rics. This is a generic reduction, and in many particular cases it might be possible
use a case-specific analysis to improve the O

(
(log n)2

)
loss in the approxima-

tion factor. However, as a general reduction paradigm for clustering problems,
Theorem 2 makes it clear why maximum gradient embeddings are so natural.

We next demonstrate the applicability of the monotone clustering framework
to a concrete example called fault-tolerant k-median. In the full version of the
paper, we analyze another clustering problem, called Σ�p clustering.

Fault-tolerant k-median. Fix k ∈ N. The k-median problem is as follows. Given
an n-point metric space (X, dX), find x1, . . . , xk ∈ X that minimize the objective
function

∑

x∈X
min

j∈{x1,...,xk}
dX(x, xj). (3)

This very natural and well studied problem can be easily cast as monotone
clustering problem by defining Γ (x, d, {(x1, C1), . . . , (xm, Cm)}) to be ∞ if m �=
k, and otherwise Γ (x, d, {(x1, C1), . . . , (xm, Cm)}) = minj∈{x1,...,xk} d(x, xj).

The linear structure of (3) makes it a prime example of a problem which
can be approximated using Bartal’s probabilistic embeddings. Indeed, the first
non-trivial approximation algorithm for k-median clustering was obtained by
Bartal in [4]. Since then this problem has been investigated extensively: The
first constant factor approximation for it was obtained in [9] using LP rounding,
and the first combinatorial (primal-dual) constant-factor algorithm was obtained
in [15]. In [2] an analysis of a natural local search heuristic yields the best known
approximation factor for k-median clustering.

Here we study the following fault-tolerant version of the k-median problem.
Let (X, d) be an n-point metric space and fix k ∈ N. Assume that for every x ∈ X
we are given an integer j(x) ∈ X (which we call the fault-tolerant parameter
of x). Given x1, . . . , xk and x ∈ X let x∗j (x; d) be the j-th closest point to x

in {x1, . . . , xk}. In other words, {x∗j (x; d)}kj=1 is a re-ordering of {xj}kj=1 such
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that d(x, x∗1(x; d)) ≤ · · · ≤ d(x, x∗k(x; d)). Our goal is to minimize the objective
function

∑

x∈X
d
(
x, x∗j(x)(x; d)

)
. (4)

To understand (4) assume for the sake of simplicity that j(x) = j for all x ∈ X .
If {xj}kj=1 minimizes (4) and j−1 of them are corrupted (due to possible noise),
then the optimum value of (4) does not change. In this sense the clustering
problem in (4) is fault-tolerant. In other words, the optimum solution of (4)
is insensitive to (controlled) noise. Observe that for j = 1 we return to the
k-median clustering problem.

We remark that another fault-tolerant version of k-median clustering was
introduced in [16]. In this problem we connect each point x in the metric space
X to j(x) centers, but the objective function is the sum over x ∈ X of the sum
of the distances from x to all the j(x) centers. Once again, the linearity of the
objective function seems to make the problem easier, and in [23] a constant factor
approximation is achieved (this immediately implies that our version of fault-
tolerant k-median clustering, i.e. the minimization of (4), has a O (maxx∈X j(x))
approximation algorithm). In particular, the LP that was previously used for k-
median clustering naturally generalizes to this setting. This is not the case for
our fault-tolerant version in (4). Moreover, the local search techniques for k-
median clustering (see for example [2]) do not seem to be easily generalizable
to the case j > 1, and in any case seem to require nΩ(j) time, which is not
polynomial even for moderate values of j.

Arguing as above in the case of k-median clustering we see that the fault-
tolerant k-median clustering problem in (4) is a monotone clustering problem.
In the full version of this paper we show that it can be solved exactly in poly-
nomial time on ultrametrics. Thus, in combination with Theorem 2, we obtain
a O

(
(logn)2

)
approximation algorithm for the minimization of (4) on general

metrics.

2 Proof of Theorem 1

We begin by sketching the proof of the upper bound in Theorem 1. The full
version of this paper has a complete self-contained proof of it.

By the arguments appearing in [13, 18], for every N -point metric spacemetric
space (X, dX) there exist a distribution D of non-contractive embeddings f :
X → U such that for every x ∈ X , and t ≥ 1,

Pr
D

[

∃y ∈ X, dU (f(x), f(y))
dX(x, y)

≥ t
]

≤ 128 log2 n

t
.

By using a known trick one can modify the construction of D to also satisfy for
every x ∈ X ,

Pr
D

[

∃y ∈ X, dU (f(x), f(y))
dX(x, y)

≥ 4n
]

= 0.
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Hence for every x ∈ X ,

ED |∇f |∞ = ED sup
y �=x

dU (f(x), f(y))
dX(x, y)

≤
∞∑

i=0

2i+1 · Pr
[

∃y ∈ X, dU (f(x), f(y))
dX(x, y)

≥ 2i
]

≤
2+log2 n∑

i=0

2i · 128 log2 n

2i
= O

(
(logn)2

)
.

We next prove a matching lower bound. As mentioned in the introduction,
the metrics Yn in Theorem 1 are the diamond graphs of Newman and Rabi-
novich [14], which will be defined presently. Before passing to this more compli-
cated lower bound, we will analyze the simpler example of cycles.

Let Cn, n > 3, be the unweighted path on n-vertices. We will identify Cn with
the group Zn of integers modulo n. We first observe that in this special case the
upper bound in Theorem 1 can be improved to O(log n). This is achieved by
using Karp’s embedding of the cycle into spanning paths— we simply choose an
edge of Cn uniformly at random and delete it. Let f : Cn → Z be the randomized
embedding thus obtained, which is clearly non-contractive.

Karp noted that it is easy to see that as a probabilistic embedding into trees
f has distortion at most 2. We will now show that as a maximum gradient
embedding, f has distortion Θ(log n). Indeed, fix x ∈ Cn, and denote the deleted
edge by {a, a+1}. Assume that dCn(x, a) = t ≤ n/2−1. Then the distance from
a+ 1 to x changed from t+ 1 in Cn to n− t − 1 in the path. It is also easy to
see that this is where the maximum gradient is attained. Thus

E|∇f(x)|∞ ≈
2
n

∑

0≤t≤n/2

n− t− 1
t+ 1

= Θ(log n).

We will now show that any maximum gradient embedding of Cn into a distri-
bution over trees incurs distortion Ω(logn). For this purpose we will use the
following lemma from [22].

Lemma 1. For any tree metric T , and any non-contractive embedding g : Cn →
T , there exists an edge (x, x+ 1) of Cn such that dT (g(x), g(x+ 1)) ≥ n

3 − 1.

Now, let D be a distribution over non-contractive embeddings of Cn into trees f :
Cn → T . By Lemma 1 we know that there exists x ∈ Cn such that dT (f(x), f(x+
1)) ≥ n−3

3 . Thus for every y ∈ Cn we have that

max{dT (f(y), f(x)), dT (f(y), f(x+ 1))} ≥ n− 3
6

.

On the other hand max{dCn(y, x), dCn(y, x+1)} ≤ dCn(x, y)+1. It follows that,

|∇f(y)|∞ ≥
n− 3

6dCn(x, y) + 6
.
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Summing this inequality over y ∈ Cn we see that

∑

y∈Cn

|∇f(y)|∞ ≥
∑

0≤k≤n/2

n− 3
6k + 6

= Ω(n log n).

Thus

max
y∈Cn

ED |∇f(y)|∞ ≥
1
n

∑

y∈Cn

ED |∇f(y)|∞ = Ω(logn),

as required.
We now pass to the proof of the lower bound in Theorem 1. We start by

describing the diamond graphs {Gk}∞k=1, and a special labelling of them that
we will use throughout the ensuing arguments. The first diamond graph G1 is
a cycle of length 4, and Gk+1 is obtained from Gk by replacing each edge by a
quadrilateral. Thus Gk has 4k edges and 2·4k+4

3 vertices. As we have done before,
the required lower bound on maximum gradient embeddings of Gk into trees will
be proved if we show that for every tree T and every non-contractive embedding
f : Gk → T we have

1
4k

∑

e∈E(Gk)

∑

x∈e
|∇f(x)|∞ = Ω

(
k2
)
. (5)

Note that the inequality (5) is different from the inequality that we proved
in the case of the cycle in that the weighting on the vertices of Gk that it
induces is not uniform— high degree vertices get more weight in the average in
the left-hand side of (5).

We will prove (5) by induction on k. In order to facilitate such an induc-
tion, we will first strengthen the inductive hypothesis. To this end we need to
introduce a useful labelling of Gk. For 1 ≤ i ≤ k the graph Gk contains 4k−i

canonical copies of Gi, which we index by elements of {1, 2, 3, 4}k−i, and denote{
G

(k)
[α]

}

α∈{1,2,3,4}k−i
. These graphs are defined as follows. For k = 2 they are

shown in Figure 1.
For k = 3 these canonical subgraphs are shown in Figure 2.
Formally, we set G

(k)
[∅] = Gk, and assume inductively that the canonical

subgraphs of Gk−1 have been defined. Let H1, H2, H3, H4 be the top-right,
top-left, bottom-right and bottom-left copies of Gk−1 in Gk, respectively. For
α ∈ {1, 2, 3, 4}k−1−i and j ∈ {1, 2, 3, 4} we denote the copy of Gi in Hj corre-
sponding to G(k−1)

[α] by G(k)
[jα].

For every 1 ≤ i ≤ k and α ∈ {1, 2, 3, 4}k−i let T (k)
[α] , B

(k)
[α] , L

(k)
[α] , R

(k)
[α] be the

topmost, bottom-most, left-most, and right-most vertices of G(k)
[α] , respectively.

Fixing an embedding f : Gk → T , we will construct inductively a set of simple
cycles C[α] in G

(k)
[α] and for each C ∈ C[α] an edge εC ∈ E

(
C[α]

)
, with the

following properties.
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)2(
]1[G

)2(
]3[G)2(

]4[G

)2(
]2[G

Fig. 1. The graph G2 and the labelling of the canonical copies of G1 contained in it

)3(
]11[G

)3(
]12[G

)3(
]14[G

)3(
]13[G

)3(
]1[G

)3(
]2[G

)3(
]4[G )3(

]3[G

)3(
]21[G

)3(
]22[G

)3(
]23[G

)3(
]24[G

)3(
]31[G

)3(
]32[G

)3(
]33[G

)3(
]34[G

)3(
]42[G

)3(
]41[G

)3(
]44[G

)3(
]43[G

Fig. 2. The graph G3 and the induced labeling of canonical copies of G1 and G2

1. The cycles in C[α] are edge-disjoint, and they all pass through the vertices
T

(k)
[α] , B

(k)
[α] , L

(k)
[α] , R

(k)
[α] . There are 2i−1 cycles in C[α], and each of them contains

2i+1 edges. Thus in particular the cycles in C[α] form a disjoint cover of the
edges in G(k)

[α] .

2. If C ∈ C[α] and εC = {x, y} then dT (f(x), f(y)) ≥ 2i+1

3 − 1.
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3. Denote E[α] = {εC : C ∈ C[α]} and Δi =
⋃
α∈{1,2,3,4}k−i E[α]. The edges

in Δi will be called the designated edges of level i. For α ∈ {1, 2, 3, 4}k−i,
C ∈ C[α] and j < i let Δj(C) = Δj ∩ E(C) be the designated edges of level
j on C. Then we require that each of the two paths T (k)

[α] − L
(k)
[α] − B

(k)
[α] and

T
(k)
[α] −R

(k)
[α] −B

(k)
[α] in C contain exactly 2i−j−1 edges from Δj(C).

The construction is done by induction on i. For i = 1 and α ∈ {1, 2, 3, 4}k−1

we let C[α] contain only the 4-cycle G(k)
[α] itself. Moreover by Lemma 1 there is

and edge ε
G

(k)
[α]
∈ E

(
G

(k)
[α]

)
such that if ε

G
(k)
[α]

= {x, y} then dT (f(x), f(y)) ≥ 1
3 .

This completes the construction for i = 1. Assuming we have completed the
construction for i− 1 we construct the cycles at level i as follows. Fix arbitrary
cycles C1 ∈ C[1α], C2 ∈ C[2α], C3 ∈ C[3α], C4 ∈ C[4α]. We will use these four
cycles to construct two cycles in C[α]. The first one consists of the T (k)

[α] − R
(k)
[α]

path in C1 which contains the edge εC1 , the R(k)
[α]−B

(k)
[α] path in C3 which does not

contain the edge εC3, the B(k)
[α] −L

(k)
[α] path in C4 which contains the edge εC4 , and

the L(k)
[α] − T

(k)
[α] path in C2 which does not contain the edge εC2. The remaining

edges in E(C1) ∪ E(C2) ∪ E(C3) ∪ E(C4) constitute the second cycle that we
extract from C1, C2, C3, C4. Continuing in this manner by choosing cycles from
C[1α] \{C1}, C[2α] \{C2}, C[3α] \{C3}, C[4α] \{C4} and repeating this procedure,
and then continuing until we exhaust the cycles in C[1α] ∪ C[2α] ∪ C[3α] ∪ C[4α],
we obtain the set of cycles C[α]. For every C ∈ C[alpha] we then apply Lemma 1
to obtain an edge εC with the required property.

For each edge e ∈ E(Gk) let α ∈ {1, 2, 3, 4}k−i be the unique multi-index such
that e ∈ E

(
G

(k)
[α]

)
. We denote by Ci(e) the unique cycle in C[α] containing e.

We will also denote êi(e) = εCi(e). Finally we let ai(e) ∈ e and bi(e) ∈ êi(e) be
vertices such that

dT (f(ai(e)), f(bi(e))) = max
a∈e

b∈êi(e)

dT (f(a), f(b)).

Note that by the definition of êi(e) and the triangle inequality we are assured that

dT (f(ai(e)), f(bi(e))) ≥
1
2

(
2i+1

3
− 1
)

≥ 2i

12
. (6)

Recall that we plan to prove (5) by induction on k. Having done all of the
above preparation, we are now in position to strengthen (5) so as to make the
inductive argument easier. Given two edges e, h ∈ Gk we write e�ih if both e, h
are on the same canonical copy of Gi in Gk, Ci(e) = Ci(h) = C, and furthermore
e and h on the same side of C. In other words, e �i h if there is α ∈ {1, 2, 3, 4}k−i
and C ∈ C[α] such that if we partition the edges of C into two disjoint T (k)

[α] −B
(k)
[α]

paths, then e and h are on the same path.
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Let m ∈ N be a universal constant that will be specified later. For every
integer � ≤ k/m and any α ∈ {1, 2, 3, 4}k−m� define

L�(α) =
1

4m�
∑

e∈E
(
G

(k)
[α]

)
max

i∈{1,...,�}
e�im êim(e)

dT (f(aim(e)), f(bim(e))) ∧ 2im

dGk
(e, êim(e)) + 1

.

We also write L� = minα∈{1,2,3,4}k−m� L�(α). We will prove that L� ≥ L�−1 + c�,
where c > 0 is a universal constant. This will imply that for � = �k/m� we have
L� = Ω(k2) (since m is a universal constant). By simple arithmetic (5) follows.

Observe that for every α ∈ {1, 2, 3, 4}k−m� we have

L�(α) = 4−m
∑

β∈{1,2,3,4}m

4−m(�−1)
∑

e∈E
(
G

(k)
[βα]

)
max

i∈{1,...,�}
e�im êim(e)

dT (f(aim(e)), f(bim(e))) ∧ 2im

dGk
(e, êim(e)) + 1

= 4−m
∑

β∈{1,2,3,4}m

4−m(�−1)
∑

e∈E
(
G

(k)
[βα]

)
max

i∈{1,...,�−1}
e�im êim(e)

dT (f(aim(e)), f(bim(e))) ∧ 2im

dGk
(e, êim(e)) + 1

+
1

4m�
∑

e∈E
(
G

(k)
[α]

)
max

⎧
⎪⎨

⎪⎩
0,
dT (f(a�m(e)), f(b�m(e))) ∧ 2�m

dGk
(e, ê�m(e)) + 1

· 1{e��mê�m(e)}

− max
i∈{1,...,�−1}
e�im êim(e)

dT (f(aim(e)), f(bim(e))) ∧ 2im

dGk
(e, êim(e)) + 1

⎫
⎪⎬

⎪⎭

=
1

4m
∑

β∈{1,2,3,4}m

L�−1(βα)

+
1

4m�
∑

e∈E
(
G

(k)
[α]

)
max

⎧
⎪⎨

⎪⎩
0,
dT (f(a�m(e)), f(b�m(e))) ∧ 2�m

dGk
(e, ê�m(e)) + 1

· 1{e��mê�m(e)}

− max
i∈{1,...,�−1}
e�im êim(e)

dT (f(aim(e)), f(bim(e))) ∧ 2im

dGk
(e, êim(e)) + 1

⎫
⎪⎬

⎪⎭

≥ L�−1

+
1

4m�
∑

e∈E
(
G

(k)
[α]

)
max

⎧
⎪⎨

⎪⎩
0,
dT (f(a�m(e)), f(b�m(e))) ∧ 2�m

dGk
(e, ê�m(e)) + 1

· 1{e��mê�m(e)}

− max
i∈{1,...,�−1}
e�im êim(e)

dT (f(aim(e)), f(bim(e))) ∧ 2im

dGk
(e, êim(e)) + 1

⎫
⎪⎬

⎪⎭
.
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Thus it is enough to show that

A
def= 4−m�

∑

e∈E
(
G

(k)
[α]

)
max

{

0,
dT (f(a�m(e)), f(b�m(e))) ∧ 2�m

dGk
(e, ê�m(e)) + 1

·1{e��m ê�m(e)}

− max
i∈{1,...,�−1}
e�im êim(e)

dT (f(aim(e)), f(bim(e))) ∧ 2im

dGk
(e, êim(e)) + 1

}

= Ω(�). (7)

To prove (7), denote for C ∈ C[α]

SC =
{

e ∈ E(C) : εC ��m e and

max
i∈{1,...,�−1}
e�im êim(e)

dT (f(aim(e)), f(bim(e))) ∧ 2im

dGk
(e, êim(e)) + 1

≥ 1
2
· dT (f(a�m(e)), f(b�m(e))) ∧ 2�m

dGk
(e, ê�m(e)) + 1

}

.

Then using (6) we see that

A ≥ 1
2 · 4m�

∑

C∈C[α]

∑

e∈E(C)\SC
εC��me

dT (f(a�m(e)), f(b�m(e))) ∧ 2�m

dGk
(e, ê�m(e)) + 1

≥ 1
2 · 4m�

∑

C∈C[α]

∑

e∈E(C)
εC��me

dT (f(a�m(e)), f(b�m(e))) ∧ 2�m

dGk
(e, ê�m(e)) + 1

− 1
2 · 4m�

∑

C∈C[α]

∑

e∈SC

dT (f(a�m(e)), f(b�m(e))) ∧ 2�m

dGk
(e, ê�m(e)) + 1

≥ 1
2 · 4m�

∑

C∈C[α]

2m�−1
∑

i=1

2m�

12i
− 1

2 · 4m�
∑

C∈C[α]

∑

e∈SC

dT (f(a�m(e)), f(b�m(e))) ∧ 2�m

dGk
(e, ê�m(e)) + 1

= Ω

(
1

4m�
· |C[α]| · 2m� ·m�

)

− 1
2 · 4m�

∑

C∈C[α]

∑

e∈SC

dT (f(a�m(e)), f(b�m(e))) ∧ 2�m

dGk
(e, ê�m(e)) + 1

= Ω(m�)− 1
2 · 4m�

∑

C∈C[α]

∑

e∈SC

dT (f(a�m(e)), f(b�m(e))) ∧ 2�m

dGk
(e, ê�m(e)) + 1

. (8)

To estimate the negative term in (8) fix C ∈ C[α]. For every edge e ∈ SC
(which implies in particular that ê�m(e) = εC) we fix an integer i < � such that
e �im êim(e) and
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2im

dGk
(e, êim(e)) + 1

≥ dT (f(aim(e)), f(bim(e))) ∧ 2im

dGk
(e, êim(e)) + 1

≥ 1
2
· dT (f(a�m(e)), f(b�m(e))) ∧ 2�m

dGk
(e, ê�m(e)) + 1

≥ 1
12
· 2�m

dGk
(e, εC) + 1

,

or

dGk
(e, êim(e)) + 1 ≤ 2(i−�)m+4 [dGk

(e, εC) + 1] . (9)

We shall call the edge êim(e) the designated edge that inserted e into SC . For a
designated edge ε ∈ E(C) of level im (i.e. ε ∈ Δim(C)) we shall denote by EC(ε)
the set of edges of C which ε inserted to SC . Denoting Dε = dGk

(ε, εC) + 1 we
see that (9) implies that for e ∈ EC(ε) we have

∣
∣Dε − [dGk

(e, εC) + 1]
∣
∣ ≤ 2(i−�)m+4 [dGk

(e, εC) + 1] . (10)

Assuming that m ≥ 5 we are assured that 2(i−�)m+4 ≤ 1
2 . Thus (10) implies that

Dε

1 + 2(i−�)m+4
≤ dGk

(e, εC) + 1 ≤ Dε

1− 2(i−�)m+4
.

Hence

∑

e∈SC

dT (f(a�m(e)), f(b�m(e))) ∧ 2�m

dGk
(e, ê�m(e)) + 1

≤
�−1∑

i=1

∑

ε∈Δim(C)

∑

e∈EC(ε)

2�m

dGk
(e, εC) + 1

≤ 2
�−1∑

i=1

∑

ε∈Δim(C)

∑

j∈N
Dε

1+2(i−�)m+4 ≤j≤ Dε

1−2(i−�)m+4

2�m

j

= O(1) · 2�m
�−1∑

i=1

|Δim(C)| · log
(

1 + 2(i−�)m+4

1− 2(i−�)m+4

)

= O(1) · 2�m� · 2(�−i)m · 2(i−�)m = O(1) · 2�m�.

Thus, using (8) we see that

A = Ω(m�)−O(1) · 1
4�m
·
∣
∣C[α]

∣
∣ 2m�� = Ω(m�)−O(1)� = Ω(�),

provided that m is a large enough absolute constant. This completes the proof
of the lower bound in Theorem 1. ��



Maximum Gradient Embeddings and Monotone Clustering 255

References

[1] Alon, N., Karp, R., Peleg, D., West, D.: A graph-theoretic game and its application
to the k-server problem. SIAM J. Comput. 24(1) (1995)

[2] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Lo-
cal search heuristics for k-median and facility location problems. SIAM J. Com-
put. 33(3), 544–562 (2004)

[3] Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic ap-
plications. In: 37th Annual Symposium on Foundations of Computer Science, pp.
184–193. IEEE Comput. Soc. Press, Los Alamitos (1996)

[4] Bartal, Y.: On approximating arbitrary metrics by tree metrics. In: Proceedings of
the 30th Annual ACM Symposium on Theory of Computing, pp. 161–168. ACM,
New York (1998)

[5] Bartal, Y., Mendel, M.: Multi-embedding of metric spaces. SIAM J. Com-
put. 34(1), 248–259 (2004)

[6] Brinkman, B., Charikar, M.: On the impossibility of dimension reduction in l1. J.
ACM 52(5), 766–788 (2005)

[7] Buyalo, S., Schroeder, V.: Embedding of hyperbolic spaces in the product of trees.
Geom. Dedicata 113, 75–93 (2005)

[8] Calinescu, G., Karloff, H., Rabani, Y.: Approximation algorithms for the 0- ex-
tension problem. SIAM J. Comput. 34(2), 358–372 (2004/2005)
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Abstract. This paper studies vehicle routing problems on asymmet-
ric metrics. Our starting point is the directed k-TSP problem: given an
asymmetric metric (V, d), a root r ∈ V and a target k ≤ |V |, compute
the minimum length tour that contains r and at least k other vertices.
We present a polynomial time O(log2 n · log k)-approximation algorithm
for this problem. We use this algorithm for directed k-TSP to obtain an
O(log2 n)-approximation algorithm for the directed orienteering problem.
This answers positively, the question of poly-logarithmic approximability
of directed orienteering, an open problem from Blum et al. [2]. The pre-
viously best known results were quasi-polynomial time algorithms with
approximation guarantees of O(log2 k) for directed k-TSP, and O(log n)
for directed orienteering (Chekuri & Pal [4]). Using the algorithm for
directed orienteering within the framework of Blum et al. [2] and Bansal
et al. [1], we also obtain poly-logarithmic approximation algorithms for
the directed versions of discounted-reward TSP and the vehicle routing
problem with time-windows.

1 Introduction

Vehicle routing problems (VRPs) form a large set of variants of the basic Trav-
eling Salesman Problem, that are also encountered in practice. Some of the
problems in this class are the capacitated VRP [10], the distance constrained
VRP [15], the Dial-a-Ride problem [19], and the orienteering problem [9]. Many
different objectives are encountered in VRPs: for example, minimizing cost of
a tour (capacitated VRP & the Dial-a-Ride problem), minimizing number of
vehicles (distance constrained VRP), and maximizing profit (the orienteering
problem).

The Operations Research literature contains several papers dealing with exact
or heuristic approaches for VRPs (ex. [18,20,13,14,5]). The techniques used in
these papers include dynamic programming, local search, simulated annealing,
genetic algorithms, branch and bound, and cutting plane algorithms. There has
also been some interesting work in approximation algorithms for VRPs. The
undirected orienteering problem involves finding a bounded length path starting

� Authors supported in part by NSF grants CCF-0430751 and ITR grant CCR-0122581
(The ALADDIN project).

M. Charikar et al. (Eds.): APPROX and RANDOM 2007, LNCS 4627, pp. 257–270, 2007.
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at a fixed vertex that covers the maximum number of vertices; Blum et al. [2] ob-
tained the first constant factor approximation algorithm for this problem, which
was improved to a factor of 3 in Bansal et al. [1]. Blum et al. also obtained a
constant factor approximation algorithm for discounted-reward TSP, a problem
motivated by robot navigation. Bansal et al. [1] used orienteering as a subroutine
to also obtain poly-logarithmic approximation algorithms for some generaliza-
tions of orienteering, namely deadline TSP and vehicle routing problem with time
windows.

Most of the work on VRPs focuses on symmetric metric spaces. In asymmet-
ric metrics, the best known approximation guarantee for even the basic trav-
eling salesman problem is O(log n) [7]; improving this bound is an important
open question. Obtaining good approximation algorithms for the directed ori-
enteering problem was stated as an open problem in Blum et al. [2]. Recently,
Chekuri & Pal [4] obtained a general approximation algorithm for a class of
VRPs on asymmetric metrics, that runs in quasi-polynomial time. In particular,
their result implies an O(log n)-approximation algorithm for the orienteering
problem on directed graphs (in quasi-polynomial time). We are not aware of
any non-trivial polynomial-time approximation algorithms for this problem. In
this paper, we study polynomial time approximation algorithms for some vehicle
routing problems on asymmetric metrics.

1.1 Problem Definition

All the problems that we consider are defined over an asymmetric metric space
(V, d) on |V | = n vertices. In the directed k-TSP problem, we are given a root
r ∈ V & a target k ≤ n, and the goal is to compute a minimum length tour that
contains r and at least k other vertices. Any tour containing the root r is called an
r-tour. Directed k-TSP is a generalization of the asymmetric traveling salesman
problem (ATSP). A related problem is the minimum ratio ATSP problem, which
involves finding a tour containing the root r that minimizes the ratio of the
length of the tour to the number of vertices in it. If the requirement that the
tour contain the root is dropped, the ratio problem becomes the minimum mean
weight cycle problem, which is solvable in polynomial time. However, the rooted
version which we are interested in is NP-complete.

In the orienteering problem, we are given a metric space, a specified origin
s and a length bound D, and the goal is to find a path of length at most
D, that starts at s and visits the maximum number of vertices. We actually
consider a more general version of this problem, which is the directed version
of point-to-point orienteering [1]. In the directed orienteering problem, we are
given specified origin s & destination t vertices, and a length bound D, and
the goal is to compute a path from s to t of length at most D, that visits the
maximum number of vertices. The orienteering problem can also be extended to
the setting where there is some profit at each vertex, and the goal is to maximize
total profit.



Poly-logarithmic Approximation Algorithms 259

Many problems we deal with in this paper have the following form, where S is
a feasible set, C : S → R+ is a cost function, N : S → N is a coverage function,
and k is the target:

min{C(x) : x ∈ S, N(x) ≥ k}

For example, in the k-TSP problem, S is the set of all tours containing r, and for
any x ∈ S, C(x) is the length of tour x and N(x) is the number of vertices (other
than r) covered in the tour. For any problem of the above form, a polynomial
time algorithm A is said to be an (α, β) bi-criteria approximation if on each
problem instance, A obtains a solution y ∈ S satisfying C(y) ≤ α · OPT and
N(y) ≥ k

β , where OPT = min{C(x) : x ∈ S, N(x) ≥ k} is the optimal value of
this instance.

1.2 Results and Paper Outline

We present a polynomial time O(log2 n · log k)-approximation algorithm for the
directed k-TSP problem. This is based on an O(log2 n)-approximation algorithm
for the minimum ratio ATSP problem. To the best of our knowledge, this prob-
lem has not been studied earlier. An important ingredient in this algorithm is
a splitting-off theorem on directed Eulerian graphs due to Frank [6] and Jack-
son [12]. This algorithm is described in Section 2. Our proof also implies a �logn�
upper bound on the integrality gap of a natural LP relaxation for ATSP.

We then use the approximation algorithm for minimum ratio ATSP, to obtain
a bi-criteria approximation algorithm for the directed k-path problem (Section 3).
We also observe that the reductions in Blum et al. [2] & Bansal et al. [1] (in
undirected metrics) from the k-path problem to the orienteering problem, can be
easily adapted to the directed case. Together with the approximation algorithm
for the directed k-path problem, we obtain anO(log2 n) approximation guarantee
for directed orienteering. This answers in the affirmative, the question of poly-
logarithmic approximability of directed orienteering [2].

Finally, we note that the techniques used for discounted-reward TSP [2],
and vehicle routing with time-windows [1], also work in the directed setting.
Since these algorithms use the orienteering (or minimum excess) problem in a
black-box fashion, our results imply approximation algorithms with guarantees:
O(log2 n) for discounted-reward TSP, andO(log4 n) for VRP with time-windows.

In independent work, Chekuri et al. [3] also obtain many of the results re-
ported in this paper, although via different techniques. Their approximation
guarantees are slightly better than what we obtain for these prblems. They
obtain an O(log3 k)-approximation algorithm for the directed k-TSP problem,
and an O(log2OPT )-approximation algorithm for directed orienteering (where
OPT ≤ n is the optimal value of the orienteering instance).

2 The Directed k-TSP Problem

The directed k-TSP problem is a generalization of the asymmetric traveling
salesman problem (ATSP), for which the best known approximation guarantee



260 V. Nagarajan and R. Ravi

is O(log n). In this section, we obtain an O(log2 n · log k)-approximation algo-
rithm for this problem. We first obtain an O(log2 n)-approximation algorithm
for minimum ratio ATSP (Theorem 5), and then show how this implies the re-
sult for directed k-TSP (Theorem 6). Our algorithm for minimum ratio ATSP is
based on the integrality gap (Theorem 2) of a suitable LP relaxation for ATSP,
which we study next.

2.1 A Linear Relaxation for ATSP

In this section, we consider the following LP relaxation for ATSP, where (V, d)
is the input metric.

min
∑
e de · ze

s.t.
z(δ+(v)) = z(δ−(v)) ∀v ∈ V

(ALP ) z(δ+(S)) ≥ 1 ∀φ �= S �= V
ze ≥ 0 ∀ arcs e

This relaxation was also studied in Vempala & Yannakakis [21], where the au-
thors proved a structural property about basic solutions to (ALP ). We show
that the integrality gap of (ALP ) is at most �logn�. The following stronger
LP relaxation (with additional degree = 1 constraints) was shown to have an
integrality gap of at most �logn� in Williamson [22].

min
∑
e de · ze

s.t.
z(δ+(v)) = 1 ∀v ∈ V

(ALP ′) z(δ−(v)) = 1 ∀v ∈ V
z(δ+(S)) ≥ 1 ∀φ �= S �= V

ze ≥ 0 ∀ arcs e

However, we are not aware of any previously known upper bound on the inte-
grality gap of (ALP ). We first give an independent proof that upper bounds
the integrality gap of (ALP ) (Theorem 2), and then show that for any asym-
metric metric (V, d), the optimal values of (ALP ) and (ALP ′) coincide (Theo-
rem 3). Our proof makes use of the following directed splitting-off theorem due
to Mader [16].

Theorem 1 (Mader [16]). Let D = (U + x,A) be a directed graph such that
indegree equal to outdegree at x, and the directed connectivity between any pair
of vertices in U is at least k. Then for every arc (x, v) ∈ A there exists an arc
(u, x) ∈ A so that after replacing the two arcs (u, x) & (x, v) by an arc (u, v),
the directed connectivity between every pair of vertices in U remains at least k.

This operation of replacing two arcs (u, x) & (x, v) by the single arc (u, v) is
called splitting-off.

Theorem 2. The integrality gap of (ALP ) is at most �logn�.
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Proof: This proof has the same outline as the proof for the stronger LP relax-
ation (ALP ′) in Williamson [22]. We use the �logn� approximation algorithm for
ATSP due to Frieze et al. [7], which works by computing cycle covers repeatedly
(in at most �logn� iterations). In this algorithm, if U ⊆ V is the set of rep-
resentative vertices in some iteration, the cost incurred in this iteration equals
the minimum cycle cover on U . Let ALP (U) denote the LP relaxation ALP
restricted to a subset U of the original vertices, and opt(ALP (U)) its optimal
value. Then we have:

Claim 1. For any subset U ⊆ V , the minimum cycle cover on U has cost at
most opt(ALP (U)).

Proof: Consider the following linear relaxation for cycle cover.

min
∑
e de · xe

s.t.
x(δ+(v)) − x(δ−(v)) = 0 ∀v ∈ U

(CLP ) x(δ+(v)) ≥ 1 ∀v ∈ U
xe ≥ 0 ∀ arcs e

These constraints are equivalent to a circulation problem on network N which
contains two vertices vin & vout for each vertex v ∈ U . The arcs in N are:
{(uout, vin) : ∀ u, v ∈ U, u �= v}, and {(vin, vout) : ∀v ∈ U}. The cost of each
(uout, vin) arc is d(u, v), and each (vin, vout) arc costs 0. It is easy to see that
the minimum cost circulation on N that places at least one unit of flow on each
arc in {(vin, vout) : ∀v ∈ U} is exactly the optimal solution to (CLP ). But the
linear program for minimum cost circulation is integral (network matrices are
totally unimodular, c.f. [17]), and so is (CLP ).

Any integral solution to (CLP ) defines an Eulerian subgraph H with each
vertex in U having degree at least 1. Each connected component C of H is
Eulerian and can be shortcut to get a cycle on the vertices of C. Since triangle
inequality holds, the cost of each such cycle is at most that of the original
component. So this gives a cycle cover of U of cost at most opt(CLP (U)), the
optimal value of (CLP ). But the linear program ALP (U) is more constrained
than CLP (U); so the minimum cycle cover on U costs at most opt(ALP (U)). �
We now establish the monotonicity property of ALP , namely:

opt(ALP (U)) ≤ opt(ALP (V )) ∀U ⊆ V

Consider any subset U ⊆ V , vertex v ∈ U , and U ′ = U − v; we will show that
opt(ALP (U ′)) ≤ opt(ALP (U)). Let z be any fractional solution to ALP (U) so
that L · z is integral for some large enough L ∈ N. Define a multigraph H on
vertex set U with L · zw1,w2 arcs going from w1 to w2 (for all w1, w2 ∈ U). From
the feasibility of z in ALP (U), H is Eulerian and has arc-connectivity at least L.
Now applying Theorem 1 repeatedly on vertex v ∈ U (until its degree is zero),
we obtain a multigraph H ′ on U ′ = U−v such that the arc-connectivity of H ′ is
still at least L. Further, due to the triangle inequality, the total cost of H ′ is at
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most that of H . Finally, scaling down H ′ by L we obtain a fractional solution to
ALP (U ′) of cost at most d · z. Thus, opt(ALP (U ′)) ≤ opt(ALP (U)), and using
this inductively we have monotonicity for ALP .

This suffices to prove the theorem, as the cost incurred in each iteration of
the Frieze et al. [7] algorithm can be bounded by opt(ALP (V )), and there are
at most �logn� iterations. �
We note that in order to prove the monotonicity property for the linear program
(ALP ′), Williamson [22] used the equivalence of (ALP ′) and the Held-Karp
bound [11], and showed that the Held-Karp lower bound is monotone. Using
splitting-off, we obtain a more direct proof of monotonicity. In fact, we can
prove a stronger statement than Theorem 2, which relates the optimal values of
(ALP ) and (ALP ′). It was shown in [22] that the optimal value of (ALP ′) equals
the Held-Karp lower bound [11]; so the next theorem shows that for any ATSP
instance, the values of the Help-Karp bound, (ALP ′) and (ALP ) are all equal.
A similar result for the symmetric case was proved in Goemans & Bertsimas [8],
which was also based on splitting-off (for undirected graphs).

Theorem 3. The optimal values of (ALP ) and (ALP ′) are equal.

Proof: Clearly the optimal value of (ALP ′) is at most that of (ALP ). We will
show that any fractional solution z to (ALP ) can be modified to a fractional
solution z′ to (ALP ′), such that

∑
e de · z′e ≤

∑
e de · ze, which would prove the

theorem. As in the proof of Theorem 2, let L ∈ N be large enough so that L · z
is integral, and let H denote a multi di-graph with L · zu,v arcs from u to v, for
all u, v ∈ V . From the feasibility of z in (ALP ), we know that H is Eulerian and
has arc-connectivity at least L.

If some v ∈ V has degree strictly greater than L, we reduce its degree by one
as follows. Let v′ be any vertex in V \ v, and Pv,v′ denote a minimal set of arcs
that constitutes exactly L arc-disjoint paths from v to v′. Due to minimality, the
number of arcs in Pv,v′ incident to v is exactly L and they are all arcs leaving
v. Since the degree of v is at least L + 1, there is an arc (v, w) ∈ H \ Pv,v′ .
Applying Theorem 1 to arc (v, w), we obtain arc (u, v) ∈ H \Pv,v′ such that the
arc-connectivity of vertices V \ v in H ′ = (H \ {(u, v), (v, w)}) ∪ (u,w) remains
at least L. Further, by the choice of (v, w), Pv,v′ ⊆ H ′; so the arc-connectivity
from v to v′ in H ′ is at least L. Since H ′ is Eulerian, it now follows that the arc-
connectivity of vertices V in H ′ is also at least L. Thus we obtain a multigraph
H ′ from H which maintains connectivity and decreases the degree of vertex v
by 1. Repeating this procedure for all vertices in V having degree greater than
L, we obtain (an Eulerian) multigraph G having arc-connectivity L such that
the degree of each vertex equals L.

Note that in the degree reducing procedure above, the only operation we used
was splitting-off. Since d satisfies triangle inequality, the total cost of arcs in G
(under length d) is at most that of H . Finally, scaling down G by L, we obtain
the claimed fractional solution z′ to (ALP ′). �
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2.2 Minimum Ratio ATSP

We now describe the O(log2 n)-approximation algorithm for minimum ratio
ATSP, which uses Theorem 2. In addition, we require the following strength-
ening of Mader’s splitting-off Theorem, in the case of Eulerian digraphs.

Theorem 4 (Frank [6] (Theorem 4.3) and Jackson [12]). Let D = (U +
x,A) be a directed Eulerian graph. For each arc f = (x, v) ∈ A there exists an
arc e = (u, x) ∈ A so that after replacing arcs e & f by arc (u, v), the directed
connectivity between every pair of vertices in U is preserved.

Theorem 5. There is a polynomial time O(log2 n)-approximation algorithm for
the minimum ratio ATSP problem.

Proof: The approximation algorithm for minimum ratio ATSP is based on the
following LP relaxation for this problem.

min
∑

e de · xe
s.t.

x(δ+(v)) = x(δ−(v)) ∀v ∈ V
x(δ+(S)) ≥ yv ∀S ⊆ V − {r} ∀v ∈ S

(RLP )
∑

v �=r yv ≥ 1
xe ≥ 0 ∀ arcs e

0 ≤ yv ≤ 1 ∀v ∈ V − {r}

To see that this is indeed a relaxation, consider the optimal integral r-tour C∗

that covers l vertices (excluding r). We construct a solution to (RLP ) by setting
yv = 1

l for all vertices v ∈ C∗, and xe = 1
l for all arcs e ∈ C∗. It is easy to

see that this solution is feasible and has cost d(C∗)
l which is the optimal ratio.

The linear program (RLP ) can be solved in polynomial time using the Ellipsoid
algorithm. The algorithm is as follows:

1. Let (x, y) denote an optimal solution to (RLP ).
2. Discard all vertices v ∈ V \ r with yv ≤ 1

2n ; all remaining vertices have
y-values in the interval [ 1

2n , 1].
3. Define g = �log2 n+ 1� groups of vertices where group Gi (for i = 1, · · · , g)

consists of all vertices v having yv ∈ ( 1
2i ,

1
2i−1 ].

4. Run the Frieze et al. [7] algorithm on each of Gi∪{r} and output the r-tour
with the smallest ratio.

Note that the total y-value of vertices remaining after step 2 is at least 1/2.
Consider any group Gi; let Li ∈ N be large enough so that Li · 2i · x is integral.
Define a multigraph Hi with Li ·2i ·xu,v arcs from u to v for all u, v ∈ V . Below,
for a directed graph D and vertices u, v ∈ D the directed arc-connectivity from u
to v is denoted λ(u, v;D). From the feasibility of x in RLP , it is clear that Hi is
Eulerian. Further, for all v ∈ Gi, λ(r, v;Hi) = λ(v, r;Hi) ≥ Li · 2i · yv ≥ Li. Now
we split-off vertices in V \(Gi∪{r}) one by one, using Theorem 4, which preserves
the arc-connectivity of Gi ∪ {r}. This results in an Eulerian multigraph H ′

i on
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vertices Gi ∪ r satisfying λ(r, v;H ′
i), λ(v, r;H ′

i) ≥ Li for all v ∈ Gi. Further, due
to triangle inequality the total weight of arcs in H ′

i is at most that in Hi. Now,
scaling down H ′

i by Li, we obtain a fractional solution zi to ALP (Gi ∪ {r}) of
cost d · zi ≤ 2i(d · x). Now Theorem 2 implies that there exists an r-tour on Gi
of cost at most β = �logn� times d · zi. In fact, the Frieze et al. [7] algorithm
applied on Gi + r produces such a tour. We now claim that one of the r-tours
found in step 4 (over all i = 1, · · · g) has a small ratio:

g

min
i=1

β(d · zi)
|Gi|

≤
g

min
i=1

2iβ(d · x)
|Gi|

≤ β
∑g

i=1 d · x∑g
i=1 |Gi|/2i

≤ 4gβ · (d · x)

The last inequality follows from the fact that after step 2, 1
2 ≤

∑
v �=r yv ≤

∑g
i=1

1
2i−1 |Gi| = 2

∑g
i=1

|Gi|
2i , since there is a total y-weight of at least 1/2 even

after step 2. Thus we have a 4gβ = O(log2 n) approximation algorithm for min-
imum ratio ATSP. �

We note that for this proof of Theorem 5 to work, just a bound on the integrality
gap of (ALP ′) [22] is insufficient. The Eulerian multigraph H ′

i that gives rise to
the fractional ATSP solution zi on Gi ∪ {r} may not have degree Li at all
vertices; so zi may be infeasible for ALP ′(Gi ∪ {r}). This is the reason we need
to consider the LP relaxation (ALP ).

2.3 Directed k-TSP

We now describe how minimum ratio ATSP can be used to obtain an approxi-
mation algorithm for the directed k-TSP problem.

Theorem 6. There is a polynomial time O(log2 n · log k) approximation algo-
rithm for the directed k-TSP problem.

Proof: We use the α = O(log2 n)-approximation algorithm for the related min-
imum ratio ATSP problem. Let OPT denote the optimal value of the directed
k-TSP instance. By performing binary search, we may assume that we know
the value of OPT within a factor 2. We only consider vertices v ∈ V satisfying
d(r, v), d(v, r) ≤ OPT ; this does not affect the optimal solution. Then we invoke
the minimum ratio ATSP algorithm repeatedly (each time restricted to the cur-
rently uncovered vertices) until the total number of covered vertices t ≥ k

2 . Note
that for every instance of the ratio problem that we solve, there is a feasible
solution of ratio ≤ 2·OPT

k (namely, the optimal k-TSP tour covering at least
k/2 residual vertices). Thus we obtain an r-tour on t ≥ k

2 vertices having ratio
≤ 2α·OPT

k ; so the length of this r-tour is at most 2αt·OPT
k . Now, we split this

r-tour into l = � 2tk � di-paths, each containing at least t
l ≥

k
4 vertices (this can

be done in a greedy fashion). By averaging, the minimum length di-path in this
collection has length at most 2αtOPT/k

l ≤ α · OPT . Joining the first and last
vertices in this di-path to r, we obtain an r-tour containing at least k

4 vertices,
of length at most (α+2) ·OPT . So we get an (O(α), 4) bi-criteria approximation
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for directed k-TSP. This algorithm can now be used as follows: until k vertices
are covered, repeat: if k′ denotes the number of vertices covered so far, run the
bi-criteria approximation algorithm with a target of k−k′, restricted to currently
uncovered vertices. A standard set cover based analysis implies that this is an
O(α · log k)-approximation algorithm for directed k-TSP. �

3 The Directed Orienteering Problem

In this section, we consider the orienteering problem in asymmetric metrics.
As mentioned before, this is in fact the directed counterpart of the point-to-
point orienteering problem [1]. We adapt the framework of Blum et al. [2] (for
undirected orienteering) to the directed case. The algorithm for directed ori-
enteering is based on the following sequence of reductions: directed k-path to
minimum ratio ATSP (Theorem 7), directed minimum excess to directed k-path
(Theorem 8), and directed orienteering to directed minimum excess (Theorem 9).
The last two reductions are identical to the corresponding reductions for undi-
rected orienteering in Blum et al. [2] and Bansal et al. [1]. The directed k-path
problem is the following: given an asymmetric metric (V, d), origin (s) & desti-
nation (t) vertices, and a target k, find an s-t di-path of minimum length that
visits at least k other vertices. We prove the following bi-criteria approximation
guarantee for this problem.

Theorem 7. A ρ-approximation algorithm for minimum ratio ATSP implies a
(3, 4ρ) bi-criteria approximation algorithm for the directed k-path problem.

Proof: We assume (by performing a binary search) that we know the optimal
value OPT of the directed k-path instance within a constant factor, and let G
denote the directed graph corresponding to metric (V, d) (which has an arc of
length d(u, v) from u to v for every pair of vertices u, v ∈ V ). We modify graph G
to obtain graph H as follows: (a) discard all vertices v such that d(s, v) > OPT
or d(v, t) > OPT ; and (b) add an extra arc from t to s of length OPT . In the
rest of this proof, we refer to the shortest path metric induced by H as (V, l).
Note that each tour in metric l corresponds to a tour in graph H (using shortest
paths in H for each metric arc); below, any tour in metric l will refer to the
corresponding tour in graph H . Since there is an s-t path of length OPT (in
metric d) covering k vertices, appending the (t, s) arc, we have an s-tour σ∗ of
length at most 2 ·OPT (in metric l) covering k + 1 vertices.

Now, we run the minimum ratio ATSP algorithm with root s in metric l
repeatedly until either (1) k

2 vertices are covered and the extra (t, s) arc is never
used in the current tour in graph H ; or (2) the extra (t, s) arc is used for the
first time in the current tour in H . Let σ be the s-tour obtained (in graph H)
at the end of this iteration, and h the number of vertices covered. Note that
each s-tour added in a single call to minimum ratio ATSP, may use the extra
(t, s) arc at most once (by an averaging argument). So in case (1), the (t, s) arc
is absent in σ, and in case (2), the (t, s) arc is used exactly once & it is the
last arc in σ. Note also that during each call of minimum ratio ATSP, there is
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a feasible solution of ratio 2OPT
k (σ∗ restricted to the remaining vertices); so

the ratio of the s-tour σ, l(σ)
h ≤ ρ · 2OPT

k . From σ we now obtain a feasible s-t
path τ in metric d as follows. In case (1), add a direct (s, t) arc: τ = σ · (s, t);
in case (2), remove the only copy of the extra (t, s) arc (occurring at the end of
σ): τ = σ \ {(t, s)}. In either case, s-t path τ contains h vertices and has length
d(τ) ≤ 2ρh

k OPT +OPT . Note that in case (1), h ≥ k
2 ; and in case (2), since the

extra (t, s) arc is used, OPTh ≤ l(σ)
h ≤ 2ρOPTk , so h ≥ k

2ρ . Hence d(τ) ≤ 4ρh
k OPT .

We now greedily split τ into maximal paths, each of which has length at most
OPT ; the number of subpaths obtained is at most d(τ)

OPT ≤
4ρh
k . So one of these

paths contains at least h/(4ρh
k ) = k

4ρ vertices. Adding direct arcs from s to the
first vertex on this path and from the last vertex on this path to t, we obtain an
s-t path of length at most 3 ·OPT containing at least k

4ρ vertices. �

As in Blum et al. [2], we define the excess of an s-t di-path as the difference of the
path length and the shortest path distance from s to t. The directed min-excess
problem is then: given an asymmetric metric (V, d), origin (s) & destination (t)
vertices, and a target k, find an s-t di-path of minimum excess that visits at
least k other vertices. The next theorem reduces the directed minimum excess
problem to the k-path problem, for which we just obtained an approximation
algorithm.

Theorem 8. An (α, β) bi-criteria approximation algorithm for the directed
k-path problem implies a (2α− 1, β) bi-criteria approximation algorithm for the
directed minimum excess problem.

Proof: This algorithm is essentially identical to the one in Blum et al. [2] for
undirected metrics; we outline the analysis here for the sake of completeness. We
first show that the optimal s-t path π can be divided into segments that have a
certain structure. Then we show how to approximate solutions of this structure
using a dynamic program.

Breaking ties arbitrarily, we assume there is an ordering s = v1, · · · , vn on
the vertex set V such that 0 = d(s, v1) < d(s, v2) < d(s, v3) < · · · < d(s, vn).
For any real number l ≥ 0, define f(l) to be the number of arcs (x, y) in the
optimal path π with d(s, x) < l ≤ d(s, y). For values of l ≥ d(s, t) such that
f(l) = 1, we redefine f(l) = 2.1 Clearly f(l) ≥ 1 for all 0 ≤ l ≤ d(s, t). We break
the real line into two types of intervals: type 1 intervals are maximal intervals
where f(l) = 1, and type 2 intervals are maximal intervals where f(l) ≥ 2.
Let the interval boundaries be labeled 0 = b1 < b2 < · · · < bm; note that
bm−1 < d(s, t) ≤ bm. Then the i-th interval is (bi, bi+1), and the interval types

1 This modification is done for ease in defining the intervals as types 1 & 2. Without
the modification, values of l ≥ d(s, t) with f(l) = 1 would be placed in a type 1
interval; but the subpath of π covering vertices in such an interval is not monotone.
By ensuring that they are placed in a type 2 interval, we allow these vertices to be
covered using the minimum excess algorithm. Also, the entire length of the subpath
in such an interval contributes to the excess of path π; so our algorithm is allowed
to approximate the length of this subpath.
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alternate between 1 & 2. Let Vi = {v ∈ V : bi < d(s, v) ≤ bi+1} be the vertices
in the i-th interval; since one of any two consecutive intervals is of type 1, the
optimal path π is monotone across vertex sets V1, · · · , Vm−1. In other words, the
vertices Vi form a contiguous subpath Si = π∩Vi on π. To simplify what follows,
we place vertices at interval boundaries, so every arc of π can be assumed to be
in some Vi (as mentioned in Blum et al. [2], the analysis holds even without this
assumption). So the length of π can be written as d(π) =

∑
i li where li = d(Si)

is the length of π in Vi. Similar to Lemma 3.1 in Blum et al. [2], we have the
following.

Claim 2. If Vi is a type 1 interval, then li ≥ bi+1− bi. If Vi is a type 2 interval
not containing t, then li ≥ 2(bi+1 − bi). If Vi is a type 2 interval containing t,
then li ≥ 2(d(s, t)− bi).
If ε denotes the optimal value of the min-excess problem, we have d(s, t) + ε =
d(π) =

∑
i li. Now from Claim 2, d(s, t) = (d(s, t)− bm−1) +

∑m−2
i=1 (bi+1− bi) ≤∑

i:type1 li + 1
2

∑
i:type2 li. In other words,

∑
i:type1 li + 1

2

∑
i:type2 li ≥ d(s, t) =

d(π)− ε =
∑
i li − ε. Thus

∑
i:type2 li ≤ 2 · ε.

Based on this structure of the optimal solution, we write a dynamic program
that stitches together intervals & paths within them to obtain a single s-t di-path.
The subproblems in this dynamic program are defined by tuples (a, b, u, v, p, i)
where a, b ∈ V define the interval boundaries (a is closest to s & b is farthest
from s), u, v ∈ V are the start & end vertices of the path within this interval, p
is the number of vertices to be covered in this interval, and i ∈ {1, 2} is the type
of the interval.

Solving type 1 intervals: This can be done exactly in polynomial time by a simple
dynamic program.

Solving type 2 intervals: This uses the directed k-path algorithm assumed in the
theorem, to find an α-approximately minimum length u-v di-path covering at
least p/β vertices.

Combining intervals: The dynamic program for combining intervals will con-
sider the segmentation of the optimal path π in one of its guesses. The length
of the solution resulting from this is at most

∑
i:type 1 li +

∑
i:type 2 α · li =∑

i li + (α− 1)
∑
i:type 2 li ≤ d(π) + 2(α− 1)ε = d(s, t) + (2α− 1)ε; so the excess

of this path is at most (2α− 1)ε. Further, the number of vertices covered by any
feasible solution generated by this dynamic program is at least k

β . Thus we get
the desired bi-criteria approximation guarantee. �

We now give the final reduction used in approximating directed orienteering.

Theorem 9. An (α, β) bi-criteria approximation algorithm for the directed min-
imum excess problem implies an �α� ·β approximation algorithm for the directed
orienteering problem.

Proof: This algorithm is identical to Theorem 1 in Bansal et al. [1]. Again, we
outline the proof only for the sake of completeness. Consider splitting the opti-
mal s-t orienteering path π into l = �α� pieces, each having at least k/l vertices
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(where k is the optimal value of the orienteering problem). Let the boundary ver-
tices of these pieces be s = u0, u1, · · · , ul = t in the order in which they appear on
π. For vertices ui & uj (with i < j), π(ui, uj) denotes the subpath in π from ui to
uj, and we define ε′(ui, uj) = d(π(ui, uj))−d(ui, uj) to be the excess along path
π. It was proved in Bansal et al. [1] (and it also holds in the directed case) that
ε′ is sub-additive: for any 0 ≤ h < i < j ≤ l, ε′(uh, ui) + ε′(ui, uj) ≤ ε′(uh, uj).
Among the l pieces of π, consider the one π(ui, ui+1) with minimum value
of ε′(ui, ui+1). Consider the s-t path σ = s, ui, π(ui, ui+1), ui+1, t; note that
d(π) − d(σ) = ε′(u0, ui) + ε′(ui+1, ul) ≥ (l − 1) · ε′(ui, ui+1), since the excess
function ε′ is sub-additive and the i-th piece has minimum ε′. The algorithm
guesses the optimal value k, vertices ui and ui+1 and runs the min-excess algo-
rithm with source ui, destination ui+1, and target of k/l vertices. For the correct
guess, π(ui, ui+1) is a feasible solution, and the min-excess approximation algo-
rithm finds a ui − ui+1 path covering at least k

βl vertices, of length at most
d(ui, ui+1) + α · ε′(ui, ui+1) = d(π(ui, ui+1)) + (α− 1)ε′(ui, ui+1). So the result-
ing s-t di-path (obtained by appending arcs (s, ui) and (ui+1, t)) covers at least
k
β·l vertices, and has length at most d(s, ui) + d(π(ui, ui+1)) + d(ui+1, t) + (α−
1)ε′(ui, ui+1) = d(σ)+(α−1)ε′(ui, ui+1) ≤ d(σ)+(l−1)ε′(ui, ui+1) ≤ d(π) ≤ D
the length bound. �

We now obtain our main result, that relates the directed orienteering problem
and minimum ratio ATSP.

Corollary 1. A ρ-approximation algorithm for the minimum ratio ATSP prob-
lem implies an O(ρ)-approximation algorithm for the directed orienteering prob-
lem. Conversely, a ρ-approximation algorithm for directed orienteering implies
an O(ρ)-approximation algorithm for minimum ratio ATSP.

Proof: The first direction follows directly from Theorems 7,8 & 9. For the other
direction, we are given a ρ-approximation algorithm for directed orienteering. Let
D denote the length of some minimum ratio tour σ∗, t the last vertex visited by
σ∗ (before returning to the root r), and h the number of vertices it covers; so the
optimal ratio is D

h . The algorithm for minimum ratio ATSP first guesses a value
D′ such that D′ ≤ D ≤ 2 · D′, and the last vertex t. Note that we can guess
powers of 2 for the value of D′, which gives O(log2(n ·dmax)) possibilities for D′

(where dmax is the length of the longest arc). Also, the number of possibilities
for t is at most n; so the algorithm only makes a polynomial number of guesses.
The algorithm then runs the directed orienteering algorithm with r & t as the
start/end vertices and a length bound of 2D′ − d(t, r) ≥ D − d(t, r). Note that
removing the last (t, r) arc from σ∗ gives a feasible solution to this orienteering
instance that covers h vertices. Hence the ρ-approximation algorithm is guaran-
teed to find an r-t di-path covering at least h

ρ vertices, having length at most
2D′ − d(t, r). Now, adding the (t, r) arc to this path gives an r-tour of ratio at
most 2D′/(hρ ) ≤ 2ρDh . �

Corollary 1 and Theorem 5 imply an O(log2 n)-approximation algorithm for the
directed orienteering problem. Further, any improvement in the approximation
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guarantee of minimum ratio ATSP implies a corresponding improvement for
directed orienteering.

3.1 Extensions

Discounted reward TSP: In this problem [2], we are given a metric space with
rewards on vertices, and a discount factor γ < 1; the goal is to find a path that
maximizes the total discounted reward (where the reward for a vertex visited at
time t is discounted by a factor γt). The approximation algorithm for the undi-
rected version of this problem (Blum et al. [2]) uses the minimum excess problem
as a subroutine within a dynamic program. It can be verified directly that this
reduction also works in the directed case, and so the (O(1), O(log2 n)) bi-criteria
approximation for directed minimum excess implies an O(log2 n)-approximation
algorithm for directed discounted reward TSP.

Vehicle routing problem with time windows: In this VRP, we are given a
metric space with a specified depot vertex and all other vertices having a time
window (that specifies a release time and a deadline), and the goal is to find a
path starting at the depot that maximizes the number of vertices visited in their
time window. Note that orienteering is a special case when all vertices have the
same time window. Bansal et al. [1] use the point-to-point orienteering problem
as a subroutine, and show that an α-approximation algorithm for orienteering
implies an O(α · log2 n)-approximation for vehicle routing with time-windows.
In fact, all the steps used in these reductions can be adapted to the case of
directed metrics as well. So there is an O(log4 n)-approximation algorithm for
VRP with time-windows on asymmetric metrics. A special case of the VRP with
time-windows occurs when each vertex has the same release time, and only the
deadline is vertex dependent; this problem is deadline TSP. The results of Bansal
et al. [1] for this problem, along with the directed orienteering algorithm imply
an O(log3 n)-approximation algorithm for directed deadline TSP.
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Abstract. We study the computational complexity and algorithmic as-
pects of computing the least core value of supermodular cost cooperative
games, and uncover some structural properties of the least core of these
games. We provide motivation for studying these games by showing that
a particular class of optimization problems has supermodular optimal
costs. This class includes a variety of problems in combinatorial opti-
mization, especially in machine scheduling. We show that computing the
least core value of supermodular cost cooperative games is NP-hard, and
design approximation algorithms based on oracles that approximately
determine maximally violated constraints. We apply our results to sched-
ule planning games, or cooperative games where the costs arise from the
minimum sum of weighted completion times on a single machine. By
improving upon some of the results for general supermodular cost coop-
erative games, we are able to give an explicit formula for an element of
the least core of schedule planning games, and design a fully polynomial
time approximation scheme for computing the least core value of these
games.

1 Introduction

Consider a situation where a set of agents agree to share the cost of their joint
actions, and need to determine how to distribute the costs amongst themselves
in a fair manner. For example, a set of agents may agree to process their jobs
together on a machine, and share the cost of optimally scheduling their jobs. This
kind of situation can be modeled naturally as a cooperative game. A cooperative
game is a pair (N, v) where N = {1, . . . , n} represents a set of agents, and v(S)
represents the cost to agents in S.

In this work, we are concerned with cooperative games (N, v) where v is
nonnegative, supermodular, and v(∅) = 0. We call such games supermodular cost
cooperative games. A set function v : 2N #→ IR is supermodular if

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ) for all S ⊆ T ⊆ N \ {i}. (1)
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In words, supermodularity captures the notion of increasing marginal costs.
Our primary motivation behind studying these games is that many problems
from combinatorial optimization—especially in machine scheduling—have opti-
mal costs that are supermodular. Cooperative games whose costs are determined
by combinatorial optimization problems have been considered previously: these
include assignment games [28], minimum-cost spanning tree games [13], travel-
ing salesman games [21], facility location games [10], scheduling-related games
[2,17,19], and many others.

The central concern in cooperative game theory is the fair allocation of costs
amongst agents. The prominent solution concept for cooperative games is the
core [8]. The core of a cooperative game (N, v) consists of all cost allocations x
that distribute v(N)—the cost incurred when all agents cooperate—in a way
such that no subset of agents has incentive to forsake the rest of the agents and
act on its own behalf. Formally,

core(N, v) =
{
x ∈ IRN : x(N) = v(N), x(S) ≤ v(S) for all S ⊆ N

}
.

(For notational convenience, for any vector x we define x(S) =
∑

i∈S xi for
any S ⊆ N .) It is well known that cooperative games with submodular1 costs
always have nonempty cores [26]. This result is quite intuitive. As a coalition
grows, the cost of adding a particular agent to the coalition decreases, making
the idea of sharing costs more appealing. On the other hand, a supermodular
cost cooperative game (N, v) has an empty core (as long as v is not modular2).
Similar intuition still holds: the cost of adding a particular agent to a coalition
increases as the coalition grows, diminishing the appeal of sharing costs.

When a cooperative game has an empty core, one might wonder if it is possible
to allocate costs so that no subset of agents has incentive to deviate, and a
fraction α of the total cost v(N) can be recovered. This notion is captured in
the α-core solution concept. Formally, for any α ∈ (0, 1],

α-core(N, v) =
{
x ∈ IRN : x(N) ≥ αv(N), x(S) ≤ v(S) for all S ⊆ N

}
.

The α-core has been studied for a variety of games [3,4,15,20]. Unfortunately, in
supermodular cost cooperative games, the largest fraction α one could hope to
recover under a fair allocation is

∑
i∈N v({i})/v(N), which may be arbitrarily

small.
Since the prospect for cooperation in sharing supermodular costs is bleak, we

are led to ask: how much do we need to penalize a coalition for defecting in
order to encourage cooperation amongst all agents? This notion is captured in
the least core value of a cooperative game. The least core of a cooperative game
(N, v) is the set of cost allocations x that are optimal solutions to the least core
optimization problem

z∗ = minimize z
subject to x(N) = v(N)

x(S) ≤ v(S) + z for all S ⊆ N, S �= ∅, N.
(2)

1 A set function v : 2N �→ IR is submodular if −v is supermodular.
2 A set function is modular if it is submodular and supermodular.
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The optimal value z∗ of (2) is the least core value3 of the game (N, v). By
computing the least core value, we gain insight into the value a coalition of agents
places on the ability to act on their own. The least core solution concept was
introduced by Shapley and Shubik [27], and later named by Maschler, Peleg and
Shapley [18]. Computing an element in the least core has been studied in several
contexts. Faigle, Kern and Paulusma [5] showed that computing an element
in the least core of minimum-cost spanning tree games is NP-hard. Kern and
Paulusma [16] presented a polynomial description of the least core optimization
problem for cardinality matching games. Properties of the least core value, on
the other hand, seem to have been largely ignored.

In this work, we consider various theoretical aspects of computing the least core
value of supermodular cost cooperative games, and its applications to sharing op-
timal scheduling costs. In Section 2, we motivate the interest in supermodular cost
cooperative games by providing a class of optimization problems whose optimal
costs are supermodular. This class of optimization problems includes a variety
of classical scheduling problems and other combinatorial optimization problems.
Then, in Section 3, we show that finding the least core value of supermodular cost
cooperative games is NP-hard, and design approximation algorithms based on
oracles that approximately determine maximally violated constraints. Finally, in
Section 4, we apply our results to schedule planning games, or cooperative games
where the costs arise from the minimum sum of weighted completion times on
a single machine. By improving on some of the results for general supermodular
cost cooperative games, we are able to give an explicit formula for an element
of the least core of schedule planning games, and design a fully polynomial time
approximation scheme for computing the least core value of these games.

Due to space limitations, we have omitted several proofs in this extended
abstract. We refer the reader to the full version of the paper for those proofs.

2 A Class of Optimization Problems with Supermodular
Optimal Costs

We begin by providing some motivation for looking at cooperative games with su-
permodular costs. The problem of minimizing a linear function over a supermodu-
lar polyhedron—a polyhedron of the form {x ∈ IRN : x(S) ≥ v(S) for all S ⊆ N}
where v : 2N #→ IR is supermodular—arises in many areas of combinatorial op-
timization, especially in scheduling. For example, Queyranne [22] showed that
the convex hull of feasible completion time vectors on a single machine is a
supermodular polyhedron. Queyranne and Schulz [23] showed that the convex
hull of feasible completion time vectors for unit jobs on parallel machines with
nonstationary speeds is a supermodular polyhedron. The scheduling problem
they considered includes various classical scheduling problems as special cases.
Goemans et al. [9] showed that the convex hull of mean busy time vectors of all
3 Adding the inequalities xi ≤ v({i}) + z for all i ∈ N and using the equality x(N) =

v(N), we can bound z∗ below by (v(N) −
∑

i∈N v({i}))/|N |. So as long as costs are
finite, the least core value is well defined.
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preemptive schedules of jobs with release dates on a single machine is a super-
modular polyhedron.

In this section, we show that the optimal cost of minimizing a nonnegative
linear function over a supermodular polyhedron is a supermodular function.
As a result, by studying supermodular cost cooperative games, we are able to
gain insight into the sharing of optimal costs for a wide class of combinatorial
optimization problems.

Theorem 1. Let N be a finite set, and let u : 2N #→ IR be a supermodular
function such that u(∅) = 0. If dj ≥ 0 for all j ∈ N , then the function v : 2N #→
IR defined by

v(S) = min
{∑

j∈S
djxj : x(A) ≥ u(A) for all A ⊆ S

}
for all S ⊆ N

is supermodular on N .

Using identical techniques, we can also show that maximizing a nonnegative
linear function over a submodular polyhedron—a polyhedron of the form {x ∈
IRN : x(S) ≤ v(S) for all S ⊆ N} where v : 2N #→ IR is submodular—has
submodular optimal values. Some combinatorial optimization problems that can
be formulated as maximizing a linear function over a submodular polyhedron
include the maximum weighted forest problem, and more generally, finding the
maximum weight basis of a matroid.

As mentioned above, by the work of Queyranne [22], Queyranne and Schulz
[23], and Goemans et al. [9], we immediately have the following corollary of
Theorem 1.

Corollary 1. If for all S ⊆ N , v(S) is the objective value of optimally schedul-
ing jobs in S for the problem4 (a) 1 | |

∑
wjCj , (b) Q | pj=1 |

∑
wjCj, (c) P | pj =

1, rj integral |
∑
wjCj, (d) P | |

∑
Cj , or (e) 1 | rj, pmtn |

∑
wjMj, then v is su-

permodular.

Unfortunately, Corollary 1(d) does not extend to the case with arbitrary weights
and processing times. In addition, one can show that the scheduling problems
1 | rj |

∑
Cj and 1 | prec |

∑
Cj do not have supermodular optimal costs.

3 Complexity and Approximation

Now that we have some notion of what kind of combinatorial optimization prob-
lems have supermodular optimal costs, we turn our attention to the compu-
tational complexity and approximability of computing the least core value of
supermodular cost cooperative games. Note that an arbitrary supermodular
function v may not be compactly encoded. Therefore, for the remainder of this
section we assume that values of v are given by an oracle. In addition, for the
remainder of the paper, we assume that there are at least two agents (n ≥ 2).
4 We describe these problems using the notation of Graham et al. [12].
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3.1 Computational Complexity

Theorem 2. Computing the least core value of supermodular cost cooperative
games is strongly NP-hard.

Proof. We show that any instance of the strongly NP-hard maximum cut prob-
lem on an undirected graph [7] can be reduced to an instance of computing the
least core value of a supermodular cost cooperative game. Consider an arbitrary
undirected graph G = (N,E). Let κ : 2N #→ IR be the cut function of G; that
is, κ(S) = |{{i, j} ∈ E : i ∈ S, j ∈ N \ S}|. Also, let the function η : 2N #→ IR
be defined as η(S) = |{{i, j} ∈ E : i ∈ S, j ∈ S}|. Clearly, η is nonnegative.
Using the increasing marginal cost characterization of supermodularity (1), it is
straightforward to see that η is supermodular. Using counting arguments, it is
also straightforward to show that η(S)+η(N \S)+κ(S) = η(N) for any S ⊆ N .

Now consider the supermodular cost cooperative game (N, v), where v(S) =
2η(S) for all S ⊆ N . For each agent i ∈ N , we define the cost allocation xi =
deg(i), where deg(i) denotes the degree of node i in G. In addition,
let z = maxS⊆N,S �=∅,N κ(S). First, we show that (x, z) is feasible in (2). Note
that x(N) =

∑
i∈N deg(i) = v(N). In addition, we have that for any S ⊆ N ,

S �= ∅, N ,

z ≥ κ(S) = (2η(S) + κ(S))− 2η(S) = x(S)− v(S).

Suppose (x∗, z∗) is optimal in (2). Adding the inequalities x∗(S) ≤ v(S) + z∗

and x∗(N \ S) ≤ v(N \ S) + z∗ for any S ⊆ N , S �= ∅, N , and using the equality
x∗(N) = v(N), we have that

2z∗ ≥ v(N)− v(S)− v(N \ S) for all S ⊆ N,S �= ∅, N.

Therefore, z∗ ≥ κ(S) for all S ⊆ N,S �= ∅, N . Since (x, z) is feasible in (2),
it follows that z∗ = z = maxS⊆N,S �=∅,N κ(S). In other words, finding the least
core value of (N, v) is equivalent to finding the value of a maximum cut on
G = (N,E). ��

In our proof of the above theorem, we show that for any instance of the maximum
cut problem on an undirected graph, there exists a supermodular cost coopera-
tive game whose least core value is exactly equal to the value of the maximum
cut. Since the maximum cut problem is not approximable within a factor of
1.0624 [14], we immediately obtain the following inapproximability result:

Corollary 2. There is no ρ-approximation algorithm5 for computing the least
core value of supermodular cost cooperative games, where ρ < 1.0624, unless
P=NP.

5 A ρ-approximation algorithm (ρ ≥ 1) is an algorithm that always finds a solution
whose objective value is within a factor ρ of the optimal value, and whose running
time is polynomial in the input size.
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3.2 Approximation by Fixing a Cost Allocation

The above negative results indicate that it is rather unlikely that we will be able
to compute the least core value of supermodular cost cooperative games exactly
in polynomial time. This leads us to design methods with polynomial running
time that approximate the least core value of these games.

Suppose (N, v) is a cooperative game, with v supermodular. As a first attempt
at approximation, we fix a cost allocation x such that x(N) = v(N), and then
try to determine the minimum value of z such that (x, z) is feasible in the least
core optimization problem (2). Since we are looking for the smallest value z such
that z ≥ x(S) − v(S) for all S ⊆ N , S �= ∅, N , we can determine z by solving
the maximization problem

z = max
S⊆N,S �=∅,N

{
x(S) − v(S)

}
.

This motivates defining for any cooperative game (N, v) and cost allocation x
such that x(N) = v(N), the function fx : 2N #→ IR as fx(S) = x(S)− v(S), and
the following problem:

x-maximally violated constraint problem for (N, v) (x-MVC).
For a cost allocation x such that x(N) = v(N), find a subset S∗ such that

fx(S∗) = max
S⊆N,S �=∅,N

fx(S) = max
S⊆N,S �=∅,N

{
x(S)− v(S)

}
.

Note that the x-maximally violated constraint problem for a supermodular cost
cooperative game is an instance of submodular function maximization. For any
value of z, if z ≥ fx(S∗), then (x, z) is feasible in (2). If z < fx(S∗), then
x(S∗) ≤ v(S∗)+z is a constraint that is maximally violated by (x, z). Intuitively,
we want to find a value z that is as close to fx(S∗) as possible, but larger than
fx(S∗), since (x, z) is feasible if and only if z ≥ fx(S∗).

How should we fix x? Consider the base polytope of the set function v :
2N #→ IR,

B(v) =
{
x ∈ IRN : x(N) = v(N), x(S) ≥ v(S) for all S ⊆ N

}
.

For arbitrary set functions v, computing an element of the base polytope B(v)
of v may indeed be hard. Fortunately, when v is supermodular, the vertices of
B(v) are polynomial-time computable, and even have explicit formulas (see [6]
for details). It turns out that for any cost allocation x in B(v), we can show
that the optimal value of the x-maximally violated constraint problem is always
within a factor of 2 of the least core value of (N, v).

Theorem 3. Suppose (N, v) is a supermodular cost cooperative game, and x is
a cost allocation in the base polytope B(v) of v. Let fx(S∗) be the optimal value
of the x-maximally violated constraint problem for (N, v), and let z∗ be the least
core value of (N, v). Then fx(S∗) ≤ 2z∗.
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Proof. Let (x∗, z∗) be an optimal solution to (2). As in the proof of Theorem 2,
we have that

2z∗ ≥ v(N)− v(S)− v(N \ S) for all S ⊆ N, S �= ∅, N.

Since x ∈ B(v), we can deduce that for any S ⊆ N , S �= ∅, N ,

2z∗ ≥ v(N)− v(S)− v(N \ S) = x(S)− v(S) + x(N \ S)− v(N \ S) ≥ fx(S).

Since the above lower bound on 2z∗ holds for any S ⊆ N , S �= ∅, N , it follows
that 2z∗ ≥ fx(S∗). ��

In some sense, Theorem 3 tells us that any cost allocation x in the base polytope
B(v) of v is “almost” an element of the least core of (N, v). We use this obser-
vation, in conjunction with a polynomial-time-computable cost allocation x in
B(v) and a ρ-approximation algorithm for the x-maximally violated constraint
problem for (N, v), to approximate the least core value of (N, v).

Theorem 4. Suppose (N, v) is a supermodular cost cooperative game, and x is
a polynomial-time-computable cost allocation in the base polytope B(v) of v. If
there exists a ρ-approximation algorithm for the x-maximally violated constraint
problem for (N, v), then there exists a 2ρ-approximation algorithm for computing
the least core value of (N, v).

Proof. Consider the following algorithm for approximating the least core value
of (N, v):

Input: supermodular cost cooperative game (N, v)
Output: an approximation z to the least core value of (N, v)

1. Compute a cost allocation x in the base polytope B(v) of v.
2. Run the ρ-approximation algorithm for the x-maximally violated

constraint problem for (N, v). Let S̄ be the output of this approxi-
mation algorithm.

3. Output z = ρfx(S̄).

Since x ∈ B(v), we have that x(N) = v(N). Since S̄ is output from
a ρ-approximation algorithm for the x-maximally violated constraint prob-
lem for (N, v), it follows that z = ρfx(S̄) ≥ fx(S∗) ≥ x(S) − v(S) for all
S ⊆ N, S �= ∅, N . So (x, z) is a feasible solution. By Theorem 3, it follows that
z = ρfx(S̄) ≤ ρfx(S∗) ≤ 2ρz∗. ��

3.3 Approximation Without Fixing a Cost Allocation

Until now, we have considered approximating the least core value of a super-
modular cost cooperative game (N, v) by fixing a cost allocation x and then
finding z such that (x, z) is feasible in the least core optimization problem (2).
Suppose that, instead of fixing a cost allocation in advance, we compute a cost
allocation along with an approximation to the least core value. Let us assume
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that we have a ρ-approximation algorithm for the x-maximally violated con-
straint problem for (N, v), for every x such that x(N) = v(N). Note that since
v is supermodular and v(∅) = 0, for any x such that x(N) = v(N), we have
maxS⊆N,S �=∅,N f

x(S) ≥ 0. This ensures that the notion of a ρ-approximation
algorithm for the x-maximally violated constraint problem is sensible. By using
the ellipsoid method and binary search, we can establish one of the main results
of this work:

Theorem 5. Suppose (N, v) is a supermodular cost cooperative game, and there
exists a ρ-approximation algorithm for the x-maximally violated constraint prob-
lem for (N, v), for every cost allocation x such that x(N) = v(N). Then there
exists a ρ-approximation algorithm for computing the least core value of (N, v).

4 A Special Case from Single-Machine Scheduling

In this section, we study a particular supermodular cost cooperative game. Con-
sider a situation where agents each have a job that needs to be processed on a
machine, and any coalition of agents can potentially open their own machine.
Suppose each agent i ∈ N has a job whose processing time is pi > 0 and weight
is wi ≥ 0. Jobs are independent, and are scheduled non-preemptively on a sin-
gle machine, which can process at most one job at a time. A schedule planning
game is a cooperative game (N, v) where v(S) is the minimum sum of weighted
completion times of jobs in S. The least core value of schedule planning games
has a natural interpretation: it is the amount we need to charge any coalition
for opening a new machine in order to achieve cooperation.

Various cooperative games that arise from scheduling situations have been
studied previously. In sequencing games [2], agents—each with a job that needs
to be processed—start with a feasible solution on a fixed number of machines,
and the profit assigned to a coalition of agents is the maximal cost savings the
coalition can achieve by rearranging themselves. Schedule planning games have
received somewhat limited attention in the past; several authors have developed
axiomatic characterizations of various cost sharing rules for these games [17,19].

From Corollary 1, it follows that schedule planning games are indeed super-
modular cost cooperative games, and the results from Section 3 apply. We will
apply the results of Section 3.2, in which approximation is based on fixing a
cost allocation, to finding the least core value of schedule planning games. Be-
fore doing so, however, we establish some useful and interesting properties of
the least core of schedule planning games. These properties will in turn help
us determine the computational complexity of this special case, and choose a
specific cost allocation x̄ in the base polytope B(v) of v with especially nice
features. In particular, we will be able to design approximation algorithms for
the x̄-maximally violated constraint problem for schedule planning games, as
well as show a stronger translation in approximability between the x̄-maximally
violated constraint problem and the approximability of the least core value of
these games.
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4.1 Key Properties of the Least Core of Schedule Planning Games

The structure of the cost function for schedule planning games allows us to
explicitly express an element of the least core of schedule planning games and
recast the least core optimization problem as the maximization of a set function
defined solely in terms of the cost function v.

Smith [29] showed that scheduling jobs in nonincreasing order of wj/pj min-
imizes the sum of weighted completion times on one machine. To simplify the
analysis, for the remainder of this section we assume without loss of generality
that w1/p1 ≥ · · · ≥ wn/pn.

We consider the cost allocation x̄ defined as follows:

x̄i =
1
2
(
v(Si)− v(Si−1)

)
+

1
2
(
v(N \ Si−1)− v(N \ Si)

)
(3)

=
1
2
wi

i∑

j=1

pj +
1
2
pi

n∑

j=i

wj (4)

for i = 1, . . . , n, where Si = {1, . . . , i} and S0 = ∅. It is straightforward to
show that x̄ ∈ B(v); in fact, it is a convex combination of two vertices of B(v).
Since x̄ ∈ B(v), we have that x̄(S) ≥ v(S). As it turns out, for schedule plan-
ning games, we are able to show a more precise relationship between the cost
allocation x̄(S) of a coalition S and its cost v(S).

Lemma 1. Suppose (N, v) is a schedule planning game. Then, the cost alloca-
tion x̄ as defined in (4) satisfies x̄(S) − v(S) = 1

2 (v(N) − v(S) − v(N \ S)) for
all S ⊆ N .

With this lemma in hand, we can show the following key properties of the least
core of schedule planning games.

Theorem 6. Suppose (N, v) is a schedule planning game.

1. The cost allocation x̄ as defined in (4) is an element of the least core of
(N, v).

2. The least core value of (N, v) is

z∗ =
1
2

max
S⊆N,S �=∅,N

{
v(N)− v(S)− v(N \ S)

}
.

Proof. Let h = maxS⊆N,S �=∅,N{v(N) − v(S) − v(N \ S)}. First, we show that
(x̄, h/2) is a feasible solution to (2). By Lemma 1, we have that x̄(N) = v(N),
and for any S ⊆ N , S �= ∅, N ,

h

2
≥ 1

2
(
v(N)− v(S)− v(N \ S)

)
= x̄(S)− v(S).

Suppose (x∗, z∗) is an optimal solution in (2). As in the proof of Theorem 2, we
obtain the following lower bound on 2z∗:

2z∗ ≥ v(N)− v(S)− v(N \ S) for all S ⊆ N,S �= ∅, N.

Therefore, z∗ ≥ h/2. It follows that x̄ is an element of the least core of (N, v),
and the least core value of (N, v) is h/2. ��
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In addition to being an element of the least core, it happens that the cost allo-
cation x̄ as defined in (4) is the Shapley value of schedule planning games [19].
This is quite special: we can show that when v is nonnegative and supermodular,
the Shapley value is not necessarily an element of the least core of (N, v).

One might wonder if the cost allocation x̄ as defined in (3) is an element of
the least core for general supermodular cost cooperative games. We can show
that when v is nonnegative and supermodular, the cost allocation x̄ as defined
in (3) is not necessarily a least core element of (N, v), for any ordering of N .
We can also show that when (N, v) is a schedule planning game, not every cost
allocation in B(v) is necessarily an element of the least core of (N, v).

4.2 Computational Complexity

Although computing the least core value of supermodular cost cooperative games
is strongly NP-hard, it is still unclear if this remains the case for schedule plan-
ning games. In the previous subsection, we showed that we can efficiently com-
pute an element of the least core of schedule planning games. In fact, we have
an explicit formula for a least core element. Computing the least core value of
schedule planning games, however, remains NP-hard.

Theorem 7. Computing the least core value of scheduling planning games is
NP-hard, even when wj = pj for all j ∈ N .

Proof. By Theorem 6, the least core value of schedule planning games is

z∗ =
1
2
v(N)− 1

2
min

S⊆N,S �=∅,N

{
v(S) + v(N \ S)

}
.

Note that the minimization problem above is equivalent to the problem of min-
imizing the sum of weighted completion times of jobs in N , with weight wj and
processing time pj for each job j ∈ N , on two identical parallel machines. Bruno
et al. [1] showed that this two-machine problem is NP-hard, even when wj = pj
for all jobs j ∈ N . ��

The above result is in stark contrast to the underlying problem defining the
costs in schedule planning games—minimizing the sum of weighted completion
times on a single machine—for which any order is optimal when each job has
its weight equal to its processing time.

4.3 Tighter Bounds on Approximation Based on Fixing a Cost
Allocation

In Section 3.2, we showed that for any supermodular cost cooperative game
(N, v) and a cost allocation x in the base polytope B(v) of v, a ρ-approxima-
tion algorithm for the x-maximally violated constraint problem implies a
2ρ-approximation algorithm for computing the least core value of (N, v). It is
reasonable to believe, though, that for schedule planning games, we may be in
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a position to do better, since the cost allocation x̄ as defined in (4) is in fact an
element of the least core. This is indeed the case: from Lemma 1 and Theorem 6,
it follows that

z∗ = max
S⊆N,S �=∅,N

{
x̄(S)− v(S)

}
= max

S⊆N,S �=∅,N
f x̄(S). (5)

This is exactly the x̄-maximally violated constraint problem for schedule plan-
ning games! Therefore, we obtain the following strengthening of Theorem 4.

Theorem 8. Suppose there exists a ρ-approximation algorithm for the x̄-
maximally violated constraint problem for schedule planning games, where the
cost allocation x̄ is as defined in (4). Then there exists a ρ-approximation algo-
rithm for computing the least core value of schedule planning games.

4.4 Approximately Solving x̄-MVC for Schedule Planning Games

The proofs from some of the previous subsections give us some insight into how to
design oracles that approximately solve x̄-MVC for schedule planning games. By
carefully looking at the proof of Lemma 1, we can show that x̄-MVC for schedule
planning games is actually a special case of finding a maximum weighted cut in
a complete undirected graph. In the proof of Theorem 7, we see that x̄-MVC for
schedule planning games is actually equivalent (with respect to optimization) to
the scheduling problem P2 | |

∑
wjCj , implying that we might be able to use or

modify existing algorithms to approximately solve x̄-MVC.

A maximum-cut based approximate oracle. From the proof of Lemma 1,
we can show that

f x̄(S∗) =
1
2

max
S⊆N,S �=∅,N

{∑

j∈S

∑

i∈N\S
μij

}

where

μij =
{
wjpi if i < j
wipj if i > j

for all i �= j.

Observe that μij = μji. So f x̄(S∗) is proportional to the value of a maximum cut
on a complete undirected graph with node set N and capacity μij for arc {i, j}.
Therefore, if we have a ρ-approximation algorithm for the maximum cut problem,
then by Theorem 8, we have a ρ-approximation algorithm for finding the least
core value of schedule planning games. For example, using the approximation
algorithm of Goemans and Williamson [11] based on a semidefinite relaxation of
the maximum cut problem yields a 1.1382-approximation algorithm for finding
the least core value of schedule planning games. However, using the algorithm of
Goemans and Williamson does not exploit the special structure of this particular
maximum cut problem, since their method applies for maximum cut problems
on general undirected graphs.
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A fully polynomial-time approximation scheme based on two-machine
scheduling. In this subsection, we provide a fully polynomial time approxi-
mation scheme6 (FPTAS) for the x̄-maximally violated constraint problem for
schedule planning games. By Theorem 6, we know that x̄-MVC is in fact

max
S⊆N,S �=∅,N

f x̄(S) =
1
2

max
S⊆N,S �=∅,N

{
v(N)− v(S)− v(N \ S)

}
.

For simplicity of exposition, we consider maximizing g(S) = 2f x̄(S) for the
remainder of this subsection.

As mentioned earlier, maximizing g(S) = v(N)−v(S)−v(N \S) is equivalent
to minimizing v(S) + v(N \ S), which is the scheduling problem P2 | |

∑
wjCj .

P2 | |
∑
wjCj is NP-complete [1], and has an FPTAS [24]. Although the two

problems are equivalent from the optimization perspective, because of the con-
stant v(N), it is not immediately obvious if they are equivalent in terms of
approximability. We present a dynamic program that solves x̄-MVC exactly for
schedule planning games in psuedopolynomial time, and then convert this dy-
namic program into an FPTAS. This development is inspired by the FPTAS for
P2 | |

∑
wjCj in [24]. The analysis is similar to the analysis of the FPTAS for

P2 | |Cmax in [25].
We think of determining the maximizer S∗ by scheduling the jobs in N on two

machines: the jobs scheduled on machine 1 will form S∗, and the jobs scheduled
on machine 2 will form N \ S∗. As usual, we consider the jobs in order of non-
increasing weight-to-processing-time ratios (i.e. 1, . . . , n). We can partition the
jobs into S∗ and N \ S∗ sequentially using the following dynamic program. The
state space E is partitioned into n disjoint sets, E1, . . . , En. A schedule σ for jobs
{1, . . . , k} on two machines corresponds to a state (a, b, c) ∈ Ek. The first coordi-
nate a is the sum of processing times of all jobs scheduled by σ on machine 1. The
second coordinate b is the sum of processing times of all jobs scheduled by σ on
machine 2. The third coordinate c is the running objective value: v({1, . . . , k})
minus the sum of weighted completion times on two machines for σ.

Suppose jobs 1, . . . , k − 1 have already been scheduled, and job k is under
consideration. If job k is scheduled on machine 1, then the running objective
value increases by wk(a + b + pk) − wk(a + pk) = wkb. If job k is scheduled on
machine 2, then the running objective value increases by wk(a+ b+pk)−wk(b+
pk) = wka. This suggests the following dynamic programming algorithm.

Algorithm 1 (Exact dynamic program)

Input: weights wi, processing times pi for all i ∈ N
Output: the optimal value of x̄-MVC for schedule planning games,

f x̄(S∗)

E1 = {(p1, 0, 0), (0, p1, 0)}
6 A fully polynomial time approximation scheme is an algorithm that finds a solution

whose objective function value is within a factor (1+ ε) of the optimal value for any
ε > 0, and whose running time is polynomial in the input size and 1/ε.



Encouraging Cooperation in Sharing Supermodular Costs 283

For k = 2, . . . , n
For every vector (a, b, c) ∈ Ek−1

Put (a+ pk, b, c+ wkb) and (a, b+ pk, c+ wka) in Ek
Find (a, b, c) ∈ En with maximum c value, c∗

Return f x̄(S∗) = 1
2g(S

∗) = 1
2 c

∗

Let P =
∑n

i=1 pi and W =
∑n
i=1 wi. Each state corresponds to a point in

{(a, b, c) ∈ ZZ3 : 0 ≤ a ≤ P, 0 ≤ b ≤ P, 0 ≤ c ≤ WP}. Therefore, the running
time of this dynamic program is O(nWP 3).

Let δ = (1 + ε
2n )−1 for some 0 < ε < 1. Note that δ ∈ (0, 1). In addition,

define L = �log1/δ P � and M = �log1/δWP �. Observe that we can bound L and
M from above as follows:

L =
⌈

logP
log 1/δ

⌉

≤
⌈(

1 +
2n
ε

)

logP
⌉

, M =
⌈

logWP

log 1/δ

⌉

≤
⌈(

1 +
2n
ε

)

logWP

⌉

(The inequalities follow since log z ≥ (z − 1)/z for any z ∈ (0, 1]). Consider
the grid formed by the points (δ−r, δ−s, δ−t), r = 1, . . . , L, s = 1, . . . , L, t =
1, . . . ,M . We divide each of the state sets Ek, k = 1, . . . , n, into the boxes
formed by the grid:

B(r, s, t) = {(a, b, c) ∈ IR3 : a ∈ [δ−r+1, δ−r], b ∈ [δ−s+1, δ−s], c ∈ [δ−t+1, δ−t]}
r = 1, . . . , L, s = 1, . . . , L, t = 1, . . . ,M.

Observe that if (a1, b1, c1) and (a2, b2, c2) are in the same box,

δa1 ≤ a2 ≤
a1

δ
, δb1 ≤ b2 ≤

b1
δ
, δc1 ≤ c2 ≤

c1
δ
. (6)

We simplify the state sets Ek by using a single point in each box as a represen-
tative for all vectors in the same box. We denote these simplified state sets by
Eδk. The “trimmed” dynamic program is as follows.

Algorithm 2 (Dynamic program with “trimmed” state space)

Input: weights wi, processing times pi for all i ∈ N
Output: an approximation to the optimal value of x̄-MVC for schedule

planning games, f x̄(S̄)

Pick ε ∈ (0, 1), calculate δ
Eδ1 = {(p1, 0, 0), (0, p1, 0)}
For k = 2, . . . , n

For every vector (a, b, c) ∈ Eδk−1

Put corresponding representatives of (a+ pk, b, c+ wkb) and
(a, b+ pk, c+ wka) in Eδk

Find (a, b, c) ∈ Eδn with maximum c value, c̄
Return f x̄(S̄) = 1

2g(S̄) = 1
2 c̄

The key property of the “trimmed” state space used in Algorithm 2 is that every
element in the original state space has an element in the “trimmed” state space
that is relatively close. More specifically,
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Lemma 2. For every (a, b, c) ∈ Ek, there exists a vector (a′, b′, c′) ∈ Eδk such
that a′ ≥ δka, b′ ≥ δkb, and c′ ≥ δkc.

Using this lemma, we can analyze the performance and running time of the
trimmed dynamic programming algorithm.

Theorem 9. Algorithm 2 is a fully polynomial time approximation scheme for
the x̄-maximally violated constraint problem for schedule planning games.

Combining Theorem 8 and Theorem 9 gives us the following result.

Theorem 10. There exists a fully polynomial time approximation scheme for
computing the least core value of schedule planning games.
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Abstract. In the exact matching problem we are given a graph G, some
of whose edges are colored red, and a positive integer k. The goal is to
determine if G has a perfect matching, exactly k edges of which are red.
More generally if the matching number of G is m = m(G), the goal is
to find a matching with m edges, exactly k edges of which are red, or
determine that no such matching exists. This problem is one of the few
remaining problems that have efficient randomized algorithms (in fact,
this problem is in RNC), but for which no polynomial time deterministic
algorithm is known.

Our first result shows that, in a sense, this problem is as close to being
in P as one can get. We give a polynomial time deterministic algorithm
that either correctly decides that no maximum matching has exactly k
red edges, or exhibits a matching with m(G) − 1 edges having exactly k
red edges. Hence, the additive error is one.

We also present an efficient algorithm for the exact matching problem
in families of graphs for which this problem is known to be tractable. We
show how to count the number of exact perfect matchings in K3,3-minor
free graphs (these include all planar graphs as well as many others) in
O(n3.19) worst case time. Our algorithm can also count the number of
perfect matchings in K3,3-minor free graphs in O(n2.19) time.

1 Introduction

The exact matching problem, which is a generalization of the maximum matching
problem, is defined as follows. Given a graph G with some edges colored red, and
an integer k, determine if G has a maximum matching that consists of exactly
k red edges. A special case is to determine whether there is a perfect matching
with exactly k red edges. This problem was first introduced by Papadimitriou
and Yannakakis in [14].

The exact matching problem is one of the few remaining natural problems
that are not known to be in P, but for which there exists a polynomial time
randomized algorithm, namely it is in the complexity class RP. In fact, following
Karp, Upfal, and Wigderson [7] who proved that a maximum matching can be
found in RNC, it has been shown by Mulmuley, Vazirani, and Vazirani that the
exact matching problem is in RNC [13].

Our first result is a deterministic polynomial time algorithm that solves the
exact matching problem with an additive error of 1. More formally, let m(G)
denote the cardinality of a maximum matching of G.

M. Charikar et al. (Eds.): APPROX and RANDOM 2007, LNCS 4627, pp. 286–295, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Theorem 1. There is a polynomial time algorithm that given a graph G with
some edges colored red, and an integer k, either correctly asserts that no matching
of size m(G) contains exactly k red edges, or exhibits a matching of size at least
m(G)− 1 with exactly k red edges.

Thus, in a sense, exact matching is an example of a problem that is as close as
one can get to P, without showing membership in P. As far a we know, the exact
matching problem is now the only example of a natural problem in RP (and in
RNC) with such an additive approximation error of 1. The proof of Theorem 1
is given is Section 2.

A large class of graphs for which the exact matching problem can be solved
in polynomial time is the class of K3,3-minor free graphs (this class includes
all planar graphs and many others). This follows, with certain additional effort,
from a result of Little [11] showing that K3,3-minor free graphs have a Pfaffian
orientation (see Section 3 for a definition). In fact, Vazirani has given in [16]
an NC algorithm for deciding whether a K3,3-minor free graph has a perfect
exact matching. Although these results yield polynomial time algorithms, their
sequential running times are far from optimal. Our next result is an efficient
deterministic algorithm for computing the number of perfect matchings, and
perfect exact matchings, in K3,3-minor free graphs. In the following theorem,
ω < 2.376 denotes the exponent of fast matrix multiplication [2].

Theorem 2. Given a K3,3-minor free n-vertex graph G with some edges colored
red, and an integer k, there is an algorithm whose running time is Õ(n2+ω/2) <
O(n3.19), that computes the number of perfect matchings with exactly k red edges.
If k = 0 the running time is only Õ(n1+ω/2) < O(n2.19).

The algorithm is based upon several recent (and also not so recent) results
concerning the computation of determinants of adjacency matrices of powers of
fixed minor free graphs. Note that the case k = 0 implies that the number of
perfect matchings in K3,3-minor free graphs can be computed in O(n2.19) time.

2 Proof of Theorem 1

For convenience, we shall assume that the non-red edges of G are blue. A max-
imum matching M is called red-maximum if every other maximum matching
contains at most as many red edges as M .

Finding a red-maximum matching can be done in polynomial time via general
weighted matching algorithms, such as the algorithm of Gabow and Tarjan [3].
Assign to each blue edge the weight m and to each red edge the weight m+ 1,
where m = m(G). Notice that every maximum weighted matching must contain
m edges. Indeed, if not, then its weight is at most (m+1)(m−1) = m2−1, while
every maximum matching in the unweighted graph has weight at least m2 in the
weighted graph. Now, since the weight of red edges is larger that the weight of
blue edges, every maximum weighted matching maximizes the number of red
edges in it.
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Let, therefore, MR and MB be red-maximum and blue-maximum matchings,
respectively. If MR contains less than k red edges, we are done. We correctly
assert that no maximum matching contains k red edges. Similarly, ifMB contains
less than m− k blue edges, we are done.

Consider the union of MR and MB. It is a spanning subgraph U of G (con-
sidered as a multigraph with edge multiplicity 2) having maximum degree 2.
Each component of U is either a path (possibly a singleton vertex which is not
matched in neither MR nor MB) or an even cycle. Cycles of length 2 in U are
multiple edges having the same color (they are formed by edges that appear in
both MR and MB).

We first claim that U has no odd length paths. Suppose that U has t odd
length paths. Denote the sum of the lengths of the even cycles and the even
paths by x, and the sum of the lengths of the odd paths by y. This means that
U has 2m = x+ y edges and hence m = (x + y)/2. On the other hand, in each
even cycle or even path we can find a set of independent edges whose size is half
the length of the cycle (resp. path), and hence x/2 independent edges in all even
cycles and even paths. We can also find, in each odd path of length z, a set of
(z + 1)/2 independent edges. Overall we can find in G a set of x/2 + y/2 + t/2
independent edges, but this is more than m if t > 0. Since G has no matching
of size greater than m, we must have t = 0.

If S is an even cycle or even path, we say that S is of type (x, y, z) for x ≤ y ≤ z
if the length of S is 2z, and one of the maximum matchings with z edges (that
does not contain both end-edges in case S is an even path) in S has x red
edges and the complimentary maximum matching has y red edges. See Figure
1 for an example. We let min(S) = x, max(S) = y and length(S) = 2z. We
enumerate the connected components of U by S1, . . . , St, and let xi = min(Si),
yi = max(Si) and length(Si) = 2zi for i = 1, . . . , t.

Since the number of edges of U is 2m (an edge forming a cycle of length 2 is
counted twice) we have that

∑t
i=1 zi = m. Also notice that in each component

Si, one of the matchings is a subset of MR and the complimentary matching is
a subset of MB, and hence

t∑

i=1

xi ≤ k ≤
t∑

i=1

yi.

Our goal is to find m− 1 independent edges, exactly k of which are red.
For i = 0, . . . , t, let fi =

∑i
j=1 yj +

∑t
j=i+1 xj . In particular, notice that

f0 ≤ k and ft ≥ k, and that f is monotone non-decreasing.
If some fi = k then we are done. From the first i components S1, . . . , Si we

will take the maximum matching with max(Sj) = yj red edges, and from the
remaining components we will take the maximum matching with min(Sj) = xj
red edges. Altogether we obtain a matching of size m consisting of exactly k red
edges.

Otherwise, let i be the unique index for which fi−1 < k and fi > k. This
means that there is a unique integer pi so that xi < pi < yi and so that

y1 + · · ·+ yi−1 + pi + xi+1 + . . .+ xt = k.
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Fig. 1. An even path and an even cycle of type (2, 3, 4)

From each Sj for j=1, . . . , i−1 we take the maximum matching with max(Sj) =
yj red edges. From each Sj for j = i+ 1, . . . , t we take the maximum matching
with min(Sj) = xj red edges. It remains to show that in Si we can select zi − 1
independent edges, exactly pi of which are red.

More generally, we show that if S is an even cycle or even path of type
(x, y, z) and x < p < y, we can find in S a set of z − 1 independent edges,
exactly p of which are red. In fact, if S is an even path we can actually find a
matching of size z with exactly p red edges. Indeed, suppose the vertices of S are
v0, . . . , v2z, and assume, without loss of generality, that the matching (v2i, v2i+1)
for i = 0, . . . , z−1 is the one with x red edges and the complementary matching
is the one with y red edges. For q = 0, . . . , z, consider the matching Pq obtained
by taking the edges (v2i−2, v2i−1) for i = 1, . . . , q and taking the the edges
(v2i−1, v2i) for i = q + 1, . . . , z. Clearly, P0 has y red edges and Pz has x red
edges. The crucial point to observe is that the difference in the number of red
edges between Pq and Pq+1 is at most one, since they differ in at most one edge.
Thus, there must be a q for which Pq has exactly p red edges. The proof for even
cycles is similar. Since x �= y, the cycle is not completely red nor completely blue.
Thus, there is a vertex incident with a red and a blue edge. Deleting this vertex,
we obtain a path of even length of type (x−1, y, z−1) or of type (x, y−1, z−1).
If p = y − 1 we are done. Otherwise we can use the proof for the path case, this
time, however, we only find a matching with z − 1 edges, exactly p of which are
red. ��

Two additional heuristics can be added to the algorithm of Theorem 1. In the
proof we order the connected components S1, . . . , St of U arbitrarily. Every or-
dering yields different values for the fi’s. There may be a specific order for which
fi = k for some i, in which case we can actually find a maximum matching with
k red edges. We can determine, in polynomial time, if such an order exists, as
this is just a subset-sum problem on the set of values max(Si) − min(Si) for
i = 1, . . . , t where we wish to find a subset sum of value k−

∑t
i=1min(Si). This

subset sum problem can be easily solved using dynamic programming. Another
thing to notice is that, in case the algorithm finds a matching with m− 1 edges,
k of which are red, then the blue subgraph induced by the vertices not incident
with these k red edges already contains a matching with m− 1− k blue edges,
and, since m = m(G) it cannot contain a matching with more than m− k blue
edges. We therefore need to find just one additional augmenting path in this sub-
graph, using any maximum matching algorithm (we may fail, however, since it
may be the case that this blue subgraph has maximum matching size m−1−k).



290 R. Yuster

3 Exact Matching in K3,3-Minor Free Graphs

Let G = (V,E) be an undirected graph with V = {1, . . . , n}, and suppose
that F ⊂ E. With each edge e ∈ E we associate a variable xe. Define the
F -distinguishing Tutte matrix of G, denoted AF (G), by:

aij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

+xij , if ij ∈ E \ F and i < j;
−xji, if ij ∈ E \ F and i > j;
+yxij , if ij ∈ F and i < j;
−yxji, if ij ∈ F and i > j;
0, otherwise.

Notice that if F = ∅ then the indeterminate y is not needed and A∅(G) is just the
usual Tutte matrix of G. Notice also that AF (G) is skew-symmetric, and hence
its determinant det(AF (G)) is always a square of a polynomial in the matrix
entries. This polynomial (determined uniquely up to a sign) is the Pfaffian of
AF (G), denoted Pf(AF (G)).

For M ⊂ E, let x(M) =
∏
e∈M xe. Tutte proved [15] that there is a bijection

between the terms in Pf(A∅(G)) and the perfect matchings of G. Namely each
term in Pf(A∅(G)) (no matter what its sign is) equals some x(M) where M
is a perfect matching. In particular, Pf(A∅(G)) �= 0 if and only if G has a
perfect matching. Tutte’s argument immediately generalizes to show that there
is a bijection between the perfect matchings of G containing exactly k edges from
F , and the terms of the form ykx(M) in Pf(AF (G)). Although Tutte’s result is
an important combinatorial insight, it is not computationally attractive, as we
cannot compute the determinant of a symbolic matrix (with |E|+ 1 symbols, in
fact) efficiently.

The theory of Pfaffian orientations was introduced by Kasteleyn [8] to solve
some enumeration problems arising from statistical physics. These orientations
can be used in order to replace the variables xe in the Tutte matrix with +1
and −1 so that each term in the Pfaffian of the resulting matrix is positive, if its
sign is positive, and negative, if its sign is negative. Thus, perfect matchings can
be efficiently counted in Pfaffian orientable graphs. Kasteleyn [8] proved that
all planar graphs are Pfaffian orientable. This result was extended by Little [11]
who proved that all K3,3-minor free graphs (these include all planar graphs, by
Kuratowski’s and Wagner’s Theorems) are Pfaffian orientable.

Let G = (V,E) be an undirected graph, C an even cycle in G, and G an
orientation of G. We say that C is oddly oriented by G if, when traversing C in
either direction, the number of co-oriented edges (i.e., edges whose orientation
in G and in the traversal is the same) is odd.

Definition 1. An orientation G of G is Pfaffian if the the following condition
holds: for any two perfect matchings M,M ′ in G, every cycle in M ∪M ′ is oddly
oriented by G.

Note that all cycles in the union of two perfect matchings are even. Not all
graphs have a Pfaffian orientation. For example, K3,3 does not have one.
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Given a Pfaffian orientation G of a Pfaffian orientable graph G, replace each
variable xij where i < j with +1 if (i, j) ∈ E(G) and with −1 if (j, i) ∈ E(G).
Denote the resulting F -distinguishing matrix by AF (G). Kasteleyn proved the
following result [8]:

Lemma 1. For any Pfaffian orientation G of G, |Pf(A∅(G))| is the number
of perfect matchings of G (or, stated otherwise, det(A∅(G)) is the square of the
number of perfect matchings.

Kasteleyn’s result immediately generalizes to the F -distinguishing Tutte matrix.

Corollary 1. For any Pfaffian orientation G of G, the coefficient of yk in
Pf(AF (G)) is the number of perfect matchings with exactly k edges from F .

In order to prove Theorem 2 we need to show that, given an input graph G, we
can first efficiently find a Pfaffian orientation ofG (or else determine that G is not
K3,3-minor free). Once we do that, we can use Corollary 1 to compute the deter-
minant of AF (G), where F is the set of red edges. Although this can be done in
polynomial time (the matrix has only one symbol, y), this will not be so efficient
(the fastest deterministic algorithm for this problem runs in O(nω+1) time even if
k = 0 and the matrix is symbol-free). Thus, we need to use a different approach.

We say that a graphG = (V,E) has a (k, α)-separation, if V can be partitioned
into three parts, A,B,C so that A ∩ B = ∅, |A ∪ C| ≤ α|V |, |B ∪ C| ≤ α|V |,
|C| ≤ k, and if uv ∈ E and u ∈ A then v /∈ B. We say that A and B are
separated by C, that C is a separator, and that the partition (A,B,C) exhibits
a (k, α)-separation.

By the seminal result of Lipton and Tarjan [10], n-vertex planar graphs have
an (O(n1/2), 2n/3)-separation. In fact, they also show how to compute such a sep-
aration in linear time. Subsequently, Alon, Seymour, and Thomas [1] extended
the result of Lipton and Tarjan to H-minor free graphs. The running time of
their algorithm is O(n1.5) for every fixed H . Both algorithms do not assume
that the input graph satisfies the conditions. Namely, if the algorithms fail to
obtain the desired separator, they conclude that the graph is non-planar (in the
Lipton-Tarjan algorithm) or contains anH-minor (in the Alon-Seymour-Thomas
algorithm).

When the existence of an (f(n), α)-separation can be proved for each n-vertex
graph belonging to a hereditary family (closed under taking subgraphs), one can
recursively continue separating each of the separated parts A and B until the
separated pieces are small enough. This obviously yields a separator tree. Notice
that planarity, as well as being H-minor free, is a hereditary property. More for-
mally, we say that a graph G = (V,E) with n vertices has an (f(n), α)-separator
tree if there exists a full rooted binary tree T so that the following holds:
(i) Each t ∈ V (T ) is associated with some Vt ⊂ V .
(ii) The root of T is associated with V .
(iii) If t1, t2 ∈ V (T ) are the two children of t ∈ V (T ) then Vt1 ⊂ Vt and Vt2 ⊂ Vt.
Furthermore, if A = Vt1 , B = Vt2 and C = Vt \(Vt1 ∪Vt2 ) then (A,B,C) exhibits
an (f(|Vt|), α)-separation of G[Vt] (the subgraph induced by Gt).
(iv) If t is a leaf then |Vt| = O(1).
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By using divide and conquer, the result of Alon, Seymour, and Thomas men-
tioned above can be stated as follows.

Lemma 2. For a fixed graph H, an H-minor free graph with n vertices has an
(O(n1/2), 2/3)-separator tree and such a tree can be found in Õ(n1.5) time.

Let A be an n×n matrix. The representing graph of A, denoted G(A), is defined
by the vertex set {1, . . . , n} where, for i �= j we have an edge ij if and only if
aij �= 0 or aji �= 0.

Generalizing the nested dissection method of George [4], Lipton, Rose, and
Tarjan [9] and Gilbert and Tarjan [5] proved the following.

Lemma 3. Let B be a symmetric positive definite n × n matrix. If, for some
positive constant α < 1, and for some constant β ≥ 1/2, G(B) has bounded
degree and an (O(n1/2), α)-separator tree, and such a tree is given, then Gaussian
elimination on B can be performed with O(nω/2) arithmetic operations. The
resulting LU factorization of B is given by matrices L and D, B = LDLT , where
L is unit lower-triangular and has Õ(n) non-zero entries, and D is diagonal.

The requirement that B should be positive definite is needed in the algorithm
of Lemma 3 only in order to guarantee that no zero diagonal entries are encoun-
tered, and hence no row or column pivoting is needed during the elimination pro-
cess. This was also observed in [12]. We can easily modify Lemma 3 as follows.

Lemma 4. Let A be an n×n integer matrix where each entry has absolute value
at most N , and each row and column of A contain only a bounded number of
nonzero entries. Let B = AAT . If, for some positive constant α < 1, and for
some constant β ≥ 1/2, G(B) has an (O(n1/2), α)-separator tree, and such a
tree is given, then det(B) can be computed in Õ(nω/2+1 logN) time.

Proof: Clearly, B has only has a bounded number of non-zero entries in each
row or column, and hence G(B) has bounded degree. Notice also that B = AAT

and hence is a symmetric positive semi-definite matrix, and, in fact, if A is non-
singular then B is positive definite. Thus we can apply Lemma 3 to B with the
additional observation that if we encounter a zero on the diagonal during the
elimination process we conclude that det(B) = 0. Notice that Lemma 3 imme-
diately yields the determinant, as this is just the product of the diagonal entries
of D. The number of arithmetic operations in Lemma 3 is O(nω/2), but this
is not the actual time complexity. Notice that each element of B has absolute
value at most Θ(N), and therefore, when performing the Gaussian elimination,
each rational number encountered has its numerator and denominator no larger
in absolute value than n!Θ(N)n (in fact, much smaller), and hence the num-
ber of bits of the numerator and denominator is Õ(n logN). Consequently, each
arithmetic operation requires Õ(n logN) time. Thus, the bit complexity of the
algorithm is Õ(nω/2+1 logN). ��

The requirement that G(A) have bounded degree in Lemma 4 is very limiting.
Our input graphs are K3,3-minor free, but may have vertices with very high
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degree. There is a general technique that transforms every graph G to another
graph G′ so that the latter has maximum degree at most r, where r ≥ 3, and so
that the number of perfect exact matchings ofG andG′ is the same. Furthermore,
there is an easy translation of maximum exact matchings in G to maximum exact
matchings in G′ and vice versa.

Suppose G has a vertex u of degree at least r + 1. Pick two neighbors of u,
say v, w. Add two new vertices u′ and u′′, add the edges uu′, u′u′′, u′′v, u′′w and
delete the original edges uv, uw. Clearly, this vertex-splitting operation does not
change the number of perfect matchings (and increases the size of the maximum
matching by 1). Another thing to notice is that if we do not color the new edges
uu′ and u′u′′ and let the color of u′′v be the same as the color of uv and let
the color of u′′w be the same as the color of uw then also the number of perfect
matchings with exactly k red edges does not change. Finally, another pleasing
property is that if G has a Pfaffian orientation before the splitting, it also has one
after the splitting; just orient uu′ and u′u′′ in the same direction as a directed
path of length 2, orient u′′v the same as uv, and orient u′′w the same as uw.
By repeatedly performing vertex splitting until there are no vertices with degree
greater than r, we obtain a desired vertex split graph G′. Clearly, if G has n
vertices and O(n) edges (as do, say, all fixed-minor-free graphs), then G′ has
O(n) vertices and O(n) edges as well.

Unfortunately, vertex splitting does not preserve H-minor freeness. We could
have that G is H-minor free, but G′, its vertex splitted counterpart, contains
an H-minor. Luckily, however, a result of [17] (Lemma 2.1 there) shows that G′

still has an (O(n1/2), α)-separator tree, and one can still use the algorithm of
Lemma 2 to produce it, in the same running time. We restate Lemma 2.1 from
[17] for the special case of K3,3 which is what we need here:

Lemma 5. Given a K3,3-minor free graph G with n vertices, there is a vertex-
split graph G′ of G of bounded maximum degree so that G′ has an (O(n1/2), α)-
separator tree where α < 1 is an absolute constant. Furthermore, such a separator
tree for G′ can be constructed in O(n1.5) time.

Proof of Theorem 2: Given the input graph G (assumed to be K3,3-minor
free) with F being its set of red edges, we first apply Lemma 5 and obtain a
vertex split graph G′ of G and a separator tree T for G′. The time to produce
G′ and T is Õ(n1.5) (notice that if the input graph is not K3,3-minor free the
algorithm of Lemma 5 may still succeed, but if it fails we are certain that our
input graph is not K3,3-minor free, so we halt). Let n′ denote the number of
vertices of G′ and notice that n′ = O(n).

Next, we find a Pfaffian orientation for G. This can be done in linear time
using the algorithm of Vazirani [16]. We note that Vazirani’s algorithm for con-
structing a Pfaffian orientation of a K3,3-minor free graph is an NC algorithm,
and is a bit wasteful w.r.t. its sequential work; its main bottleneck is the need to
compute triconnected components, and these can be done in linear time using
the result of Hopcroft and Tarjan [6]. (Notice that we could have settled for an
even slower algorithm, as our overall claimed running time in Theorem 2 is more
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than quadratic. Also notice that if G is not K3,3-minor free then the algorithm
may fail to produce a Pfaffian orientation and we halt.).

From the Pfaffian orientation G of G we directly construct, in linear time,
a Pfaffian orientation G′ of G′, as shown in the above description of vertex
splitting. Let, therefore, A′ = AF (G′) be the resulting F -distinguishing matrix.
Notice that if F = ∅ then A′ is just a matrix with entries in {−1, 0, 1}. Otherwise,
we shall replace each occurrence of the indeterminate y with N = (n′)n

′
and

denote the resulting matrix by A. If F = ∅ then we simply define A = A′ and
N = 1. In either case, A is an integer matrix with absolute value of each entry
at most N , and with each row and column having a bounded number of nonzero
entries.

Clearly, T is a separator tree for G(A), the representing graph of A. Now,
let B = AAT . In order to apply Lemma 4 we need to show that G(B) also has
a separator tree, and we must construct such a tree. Notice, however, that the
graph G(B) is just the square of the graph G(A) (whose underlying graph is
G′). It was observed in [12] that if we take any separator S of G′ (that is, S
corresponds to a vertex of T ), and replace it with the thick separator S′ consisting
of S and all of its neighbors, we obtain a separator for the square of G′. Since G′

has bounded degree, we have that |S′| = Θ(|S|) and hence we can immediately
construct from T an (O(n1/2, α))-separator tree for G(B). We can now apply
Lemma 4 and compute det(B) in Õ(nω/2+1 logN) time, which is Õ(nω/2+1) if
F = ∅ and Õ(nω/2+2) if F �= ∅.

It remains to show how the number of perfect exact matchings can be retrieved
from det(B). First notice that det(B) = det(AAT ) = det(A)2 and hence we
have det(A). Next notice that A is skew-symmetric and hence we also have
Pf(A) =

√
det(A). Now, if F = ∅ then, by Lemma 1, Pf(A) is just the number

of perfect matchings of G′, which, in turn, is the same as the number of perfect
matchings of G. If on the other hand, F �= ∅, then our choice of replacing y
with (n′)n

′
enables us to construct Pf(A′) from Pf(A) by considering Pf(A)

as a number written in base (n′)n
′

and noticing that there is no “carry” since
the number of perfect matchings is less than n! < (n′)n

′
. Thus, by Lemma 1

the coefficient of yk in Pf(A′) (or, in turn, the k + 1’th least significant digit
of Pf(A) written in base (n′)n

′
) is the number of perfect matchings of G′ with

exactly k red edges. This is identical to the number of perfect matchings of G
with exactly k red edges. ��
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On Approximating the Average Distance

Between Points

Kfir Barhum, Oded Goldreich, and Adi Shraibman
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Abstract. We consider the problem of approximating the average dis-
tance between pairs of points in a high-dimensional Euclidean space,
and more generally in any metric space. We consider two algorithmic
approaches:

1. Referring only to Euclidean Spaces, we randomly reduce the high-
dimensional problem to a one-dimensional problem, which can be
solved in time that is almost-linear in the number of points. The re-
sulting algorithm is somewhat better than a related algorithm that
can be obtained by using the known randomized embedding of Eu-
clidean Spaces into �1-metric.

2. An alternative approach consists of selecting a random sample of
pairs of points and outputting the average distance between these
pairs. It turns out that, for any metric space, it suffices to use a sam-
ple of size that is linear in the number of points. Our analysis of this
method is somewhat simpler and better than the known analysis of
Indyk (STOC, 1999). We also study the existence of corresponding
deterministic algorithms, presenting both positive and negative re-
sults. In particular, in the Euclidean case, this approach outperforms
the first approach.

In general, the second approach seems superior to the first approach.

Introduction

As observed by Feige [3], natural objects give rise to functions for which ap-
proximating the average value of a function is easier than approximating the
average value of a general function with a corresponding domain and range. For
example, the average degree of a connected n-vertex graph can be approximated
upto some constant factor (i.e., 2) based on

√
n samples, whereas the average

value of a general function from [n] to [n− 1] cannot be approximated to within
any constant factor based on o(n) samples. Indeed, the discrepancy is due to the
restrictions imposed on functions that represent quantities that correspond to
the type of object considered (i.e., degrees of a graph).

Goldreich and Ron initiated a general study of approximating average param-
eters of graphs [4]. In particular, they considered the problems of approximating
the average degree of a vertex in a graph as well as approximating the average
distance between pairs of vertices. They considered both queries to the quantity
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of interest (e.g., the degree of a vertex) and natural queries to the corresponding
object (e.g., neighborhood queries in a graph). (Barhum [1, Chap. 2] extended
their average-degree approximation algorithm to k-uniform hypergraphs).

In the present paper, we consider the problem of approximating the average
distance between points in a (high-dimensional) Euclidean space, and more gen-
erally for points in any metric space. Although this study may be viewed as an
imitation of [4], the specific context (i.e., geometry rather than graph theory) is
different and indeed different techniques are employed.

Our aim is beating the obvious algorithm that computes the exact value of the
aforementioned average (by considering all pairs of points). But, unlike in the
graph theoretic setting (cf. [4]), we cannot hope for approximation algorithms
that run in time that is sub-linear in the number of points (because a single
“exceptional” point may dominate the value of the average of all pairwise dis-
tances). Thus, we seek approximation algorithms that run in time that is almost
linear in the number of points. We consider two algorithmic approaches.

1. Manipulating the object itself. This algorithmic approach (presented in Sec-
tion 1) applies only to the case of Euclidean Spaces. The algorithm operates
by randomly reducing the high-dimensional problem to a one-dimensional
problem. This approach is closely related to the known randomized embed-
ding of Euclidean Spaces into �1-metric; see discussion in Section 1.6.

2. Sampling and averaging. The straightforward approach (presented in Sec-
tion 2) consists of selecting a random sample of pairs of points and outputting
the average distance between these pairs. Our analysis of this method is
somewhat simpler and better than the known analysis of Indyk [5]. We also
study the existence of corresponding deterministic algorithms, presenting
both positive and negative results.

It turns out that the second algorithmic approach is superior to the first ap-
proach. Furthermore, we believe that Sections 2.2 and 2.3 may be of indepen-
dent interest. In particular, they yield a simple proof to the fact that the graph
metric of every constant-degree expander cannot be embedded in a Euclidean
space without incurring logarithmic distortion (cf. [7, Prop. 4.2]). We note that,
in general, Sections 2.2 and 2.3 touch on themes that are implicit in [7].

1 Euclidean Spaces and the Random Projection
Algorithm

In this section, we present an almost linear time algorithm for approximating the
sum of the distances between points in a high-dimensional Euclidean space; that
is, givenP1, ..., Pn ∈ Rd, the algorithm outputs an approximation of

∑
i,j∈[n] ‖Pi−

Pj‖. The algorithm is based on randomly reducing the high-dimensional case to
the one-dimensional case, where the problem is easily solvable. Specifically, the d-
dimensional algorithm repeatedly selects a uniformly distributed direction,
projects all points to the corresponding line, and computes the sum of the corre-
sponding distances (on this line). Each such experiment yields an expected value
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that is a ρ(d) fraction of the sum that we seek, where ρ(d) denotes the expected
length of the projection of a uniformly distributed unit vector on a fixed direction.
Furthermore, as we shall see,O(ε−2) repetitions suffice for obtaining a 1±ε factor
approximation (with error probability at most 1/3).

1.1 The One-Dimensional Case

Our starting point is the fact that an almost linear-time algorithm that com-
putes the exact value (of the sum of all pairwise distances) is known in the
one-dimensional case. This algorithm proceeds by first sorting the input points
p1, ..., pn ∈ R such that p1 ≤ p2 ≤ · · · ≤ pn, then computing

∑n
j=1 |p1− pj| (in a

straightforward manner), and finally for i = 1, ..., n− 1 computing in constant-
time the value

∑n
j=1 |pi+1 − pj | based on

∑n
j=1 |pi− pj |. Specifically, we use the

fact that

n∑

j=1

|pi+1 − pj | =
i∑

j=1

(pi+1 − pj) +
n∑

j=i+1

(pj − pi+1)

= (i− (n− i)) · (pi+1 − pi) +
i∑

j=1

(pi − pj) +
n∑

j=i+1

(pj − pi)

= (2i− n) · (pi+1 − pi) +
n∑

j=1

|pi − pj | .

1.2 A Simple Deterministic Approximation for the d-Dimensional
Case

Combining the foregoing algorithm with the basic inequalities regarding norms
(i.e., the relation of Norm2 to Norm1), we immediately obtain a (deterministic)√
d-factor approximation algorithm for the d-dimensional case. Specifically, con-

sider the points P1, ..., Pn ∈ Rd, where Pi = (pi,1, ..., pi,d), and let ‖Pi − Pj‖ de-
note the Euclidean (i.e., Norm2) distance between Pi and Pj . Then it holds that

1√
d
·
∑

i,j∈[n]

d∑

k=1

|pi,k − pj,k| ≤
∑

i,j∈[n]

‖Pi − Pj‖ ≤
∑

i,j∈[n]

d∑

k=1

|pi,k − pj,k| . (1)

Thus,
∑

i,j∈[n] ‖Pi−Pj‖ can be approximated by
∑

i,j∈[n]

∑d
k=1 |pi,k−pj,k|, which

is merely the sum of d one-dimensional problems (i.e.,
∑d

k=1

∑
i,j∈[n] |pi,k−pj,k|).

1.3 The Main Algorithm

However, we seek a better approximation than the
√
d-approximation just de-

scribed. Indeed, the main contribution of this section is an almost linear-time
(randomized) approximation scheme for the value of

∑
i,j∈[n] ‖Pi − Pj‖. The

key conceptual observation is that the rough bounds provided by Eq. (1) reflect
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(extremely different) worst-case situations, whereas “on the average” there is a
tight relation between the Norm2 and the Norm1 values. Recall that while the
Norm2 value is invariant of the system of coordinates, Norm1 is defined based on
such a system and is very dependent on it. This suggests that, rather than com-
puting the Norm1 value according to an arbitrary system of coordinates (which
leaves some slackness w.r.t the Norm2 value that we seek), we should compute
the Norm1 value according to a random system of coordinates (i.e., a system
that is selected uniformly at random).

To see what will happen when we use a random system of coordinates (i.e.,
orthonormal basis of Rd), we need some notation. Let 〈u, v〉 denote the inner-
product of the (d-dimensional) vectors u and v. Then, the Norm1 value of the
vector v according to the system of coordinates (i.e., orthonormal basis) b1, ..., bd
equals

∑d
k=1 |〈v, bk〉|. The key technical observation is that, for an orthonormal

basis b1, ..., bd that is chosen uniformly at random, it holds that

Eb1,...,bd

[
d∑

k=1

|〈v, bk〉|
]

= d ·Eb1 [|〈v, b1〉|] = d · ‖v‖ ·Eb1 [|〈v, b1〉|] , (2)

where v = v/‖v‖ is a unit vector in the direction of v. Furthermore, for any
unit vector u ∈ Rd, the value Eb1 [|〈u, b1〉|] is independent of the specific vector
u, while b1 is merely a uniformly distributed unit vector (in Rd). Thus, letting
r denote a uniformly distributed unit vector, we define ρ(d) def= Er [|〈u, r〉|] and
observe that

Eb1 [|〈v, b1〉|] = ‖v‖ · ρ(d) . (3)

Moreover, a closed form expression for ρ(d), which is linearly related to 1/
√
d,

is well-known (see Appendix).
Turning back to Eq. (3), we have ‖v‖ = Er [|〈v, r〉|] /ρ(d), where r is a random

unit vector. It follows that

∑

i,j∈[n]

‖Pi − Pj‖ =
1
ρ(d)

·Er

⎡

⎣
∑

i,j∈[n]

|〈Pi − Pj , r〉|

⎤

⎦

.

(4)

Noting that |〈Pi − Pj , r〉| = |〈Pi, r〉 − 〈Pj , r〉|, this completes the randomized
reduction of the d-dimensional case to the one-directional case; that is, the re-
duction selects a random unit vector r, and computes

∑
i,j∈[n] |〈Pi, r〉 − 〈Pj , r〉|.

Note that we have obtained an unbiased estimator1 for
∑
i,j∈[n] ‖Pi − Pj‖. Fur-

thermore, as shown in the Appendix, this estimator is strongly concentrated
around its expected value; in particular, the square root of the variance of this
estimator is linearly related to its expectation. We thus obtain:

Theorem 1. There exists a randomized algorithm that, given an approximation
parameter ε > 0 and points P1, ..., Pn ∈ Rd, runs for Õ(ε−2 ·|P1, ..., Pn|)-time and

1 A random variable X (e.g., the output of a randomized algorithm) is called an
unbiased estimator of a value v if E[X] = v.
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with probability at least 2/3 outputs a value in the interval [(1− ε) ·A, (1+ ε) ·A],
where A =

∑
i,j∈[n] ‖Pi − Pj‖/n2.

Let us spell-out the algorithm asserted in Theorem 1 and complete its analysis.
This algorithm consists of repeating the following procedure O(ε−2) times:

1. Uniformly select a unit vector r ∈ Rd.
2. For i = 1, ..., n, compute the projection pi = 〈Pi, r〉.
3. Compute 1

ρ(d)·n2

∑
i,j∈[n] |pi − pj |, by invoking the procedure described in

Section 1.1 and using the value ρ(d) computed as in the Appendix.

The algorithm outputs the average of the values obtained in the various itera-
tions. Step 2 can be implemented using n · d real (addition and multiplication)
operations, whereas the complexity of Step 3 is dominated by sorting n real
values.

The issues addressed next include the exact implementation of a single itera-
tion (i.e., approximating real-value computations), and providing an analysis of
a single iteration (thus proving that O(ε−2) iterations suffice). Let us start with
the latter.

1.4 Probabilistic Analysis of a Single Iteration

Let us denote by X the random value computed by a single iteration, and let
Z = (ρ(d) · n2) · X . Recall that Z =

∑
i,j∈[n] |〈Pi, r〉 − 〈Pj , r〉|, which equals

∑
i,j∈[n] |〈Pi − Pj , r〉|, where r is a uniformly distributed unit vector. Note that

E[Z] = Er

⎡

⎣
∑

i,j∈[n]

|〈Pi − Pj , r〉|

⎤

⎦

= ρ(d) ·
∑

i,j∈[n]

‖Pi − Pj‖ ,

where the second equality is due to Eq. (4). This establishes the claim that each
iteration provides an unbiased estimator of

∑
i,j∈[n] ‖Pi −Pj‖/n2. As usual, the

usefulness of a single iteration is determined by the variance of the estimator. A
simple upper-bound on the variance of Z may be obtained as follows

V[Z] = Vr

⎡

⎣
∑

i,j∈[n]

|〈Pi − Pj , r〉|

⎤

⎦

≤ Er

⎡

⎢
⎣

⎛

⎝
∑

i,j∈[n]

|〈Pi − Pj , r〉|

⎞

⎠

2
⎤

⎥
⎦

≤

⎛

⎝
∑

i,j∈[n]

‖Pi − Pj‖

⎞

⎠

2
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where the second inequality uses the fact that |〈Pi − Pj , r〉| ≤ ‖Pi − Pj‖ holds
(for any unit vector r). This implies that V[Z] ≤ ρ(d)−2 ·E[Z]2 = O(d ·E[Z]2).
In the Appendix, we will show that it actually holds that V[Z] = O(E[Z]2).

Applying Chebyshev’s Inequality, it follows that the average value of t itera-
tions (of the procedure) yields an (1± ε)-factor approximation with probability
at least 1− V[Z]

(ε·E[Z])2·t . Thus, for V[Z] = O(E[Z]2), setting t = O(ε−2) will do.

1.5 Implementation Details (i.e., The Required Precision)

By inspecting the various operations of our algorithm, one may verify that it
suffices to conduct all calculations with O(log(1/ε)) bits of precision (see [1] for
details); that is, such implementation also yields a (1± ε)-factor approximation
of the desired value. In particular, this holds with respect to the selection of
r ∈ Rd, which is the only randomization that occurs in a single iteration. It
follows that each iteration can be implemented using m def= O(d · log(1/ε)) coin
tosses (i.e., O(log(1/ε)) bits of precision per each coordinate of r).

Note that the foregoing implementation of a single iteration yields a
random value having an expectation of (1 ± ε) ·

∑
i,j∈[n] ‖Pi − Pj‖/n2. A

full-derandomization of this implementation yields a deterministic (1 ± ε)-
approximation algorithm of running-time 2m · Õ(|P1, ..., Pn|). However, this is
inferior to the result presented in Section 2.3.

1.6 Reflection

In retrospect, the foregoing algorithm is an incarnation of the “embedding
paradigm” (i.e., the fact that the Euclidean metric can be embedded with little
distortion in the �1-metric). Specifically, our algorithm may be described as a
two-step process in which the Euclidean problem is first randomly reduced (by a
random projection) to a problem regarding the �1-metric in d′ = O(ε−2) dimen-
sions, and next the latter problem is reduced to d′ one-dimensional problems.
As shown above, with probability at least 2/3, the sum of the distances in the
Euclidean problem is approximated upto a factor of 1 ± ε by the sum of the
distances in the d′-dimensional �1-metric.

It is well-known (cf. [6]) that a random projection of n points in Euclidean
space into a �1-metric in d′′ = O(ε−2 logn) dimensions preserves each of the(
n
2

)
distances upto a factor of 1 ± ε. This yields a reduction of the Euclidean

problem to d′′ ( d′ one-dimensional problems. Thus, we gained a factor of
d′′/d′ = Θ(log n) by taking advantage of the fact that, for our application, we do
not require a good (i.e., small distortion) embedding of all pairwise distances,
but rather a good (i.e., small distortion) embedding of the average pairwise
distances.

2 General Metric and the Sampling Algorithm

The straightforward algorithm for approximating the average pairwise dis-
tances consists of selecting a random sample of m pairs of points and out-
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putting the average distance between these pairs. This algorithm works for
any metric space. The question is how large should its sample be; that is, how
should m relate to the number of points, denoted n. Indeed, m should be pro-
portional to V[Z]/E[Z]2, where Z represents the result of a single “distance
measurement” (i.e., the distance between a uniformly selected pair of points).
Specifically, to obtain an (1± ε)-approximation of the average of all pairwise
distances, it suffices to take m = O(V[Z]/(ε · E[Z])2). Thus, we first upper-
bound the ratio V[Z]/E[Z]2, showing that it is at most linear in the number
of points (see Section 2.1). We later consider the question of derandomization
(see Sections 2.2 and 2.3).

2.1 The Approximation Provided by a Random Sample

We consider an arbitrary metric (δi,j)i,j∈[n] over n points, where δi,j denote the
distance between the ith and jth point. Actually, we shall only use the fact that
the metric is non-negative and symmetric (i.e., for every i, j ∈ [n] it holds that
δi,j = δj,i ≥ 0) and satisfies the triangle inequality (i.e., for every i, j, k ∈ [n]
it holds that δi,k ≤ δi,j + δj,k). Recall that Z is a random variable representing
the distance between a uniformly selected pair of points; that is, Z = δi,j , where
(i, j) ∈ [n]× [n] is uniformly distributed.

Proposition 2. For Z as above, it holds that V[Z] = O(n · E[Z]2).

Proof. By an averaging argument, it follows that there exists a point c (which
may be viewed as a “center”) such that

1
n
·
∑

j∈[n]

δc,j ≤
1
n2
·
∑

i,j∈[n]

δi,j . (5)

Using such a (center) point c, we upper-bound E[Z2] as follows:

E[Z2] =
1
n2
·
∑

i,j∈[n]

δ2i,j

≤ 1
n2
·
∑

i,j∈[n]

(δi,c + δc,j)
2

≤ 1
n2
·
∑

i,j∈[n]

(
2δ2i,c + 2δ2c,j

)

=
4n
n2
·
∑

j∈[n]

δ2c,j

where the first inequality is due to the triangle inequality and the last equality
uses the symmetry property. Thus, we have
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E[Z2] ≤ 4n ·
∑

j∈[n]

(
δc,j
n

)2

≤ 4n ·

⎛

⎝
∑

j∈[n]

δc,j
n

⎞

⎠

2

≤ 4n ·

⎛

⎝
∑

i,j∈[n]

δi,j
n2

⎞

⎠

2

where the last inequality is due to Eq. (5). Thus, we obtain E[Z2] ≤ 4n ·E[Z]2,
and the proposition follows (because V[Z] ≤ E[Z2]).

Tightness of the bound. To see that Proposition 2 is tight, consider the metric
(δi,j)i,j∈[n] such that δi,j=1 if either i=v �= j or j=v �= i and δi,j=0 otherwise.
(Note that this metric can be embedded on the line with v at the origin (i.e.
location 0) and all other points co-located at 1.) In this case E[Z]=2(n−1)/n2 <

2/n while E[Z2]=E[Z], which means that V[Z]
E[Z]2 = 1

E[Z] − 1 > n
2 − 1.

Conclusion. Our analysis implies that it suffices to select a random sample of
size m = O(n/ε2). This improves over the bound m = O(n/ε7/2) established by
Indyk [5, Sec. 8].

2.2 On the Limits of Derandomization

A “direct” derandomization of the sampling-based algorithm requires trying all
pairs of points, which foils our aim of obtaining an approximation algorithm
that runs faster than the obvious “exact” algorithm. Still, one may ask whether
a better derandomization exists. We stress that such a derandomization should
work well for all possible metric spaces. The question is how well can a fixed
sample of pairs (over [n]) approximate the average distance between all the
pairs (of points) in any metric space (over n points). The corresponding notion
is formulated as follows.

Definition 3. (universal approximator): A multi-set of pairs S ⊆ [n] × [n] is
called a universal (L,U)-approximator if for every metric (δi,j)i,j∈[n] it holds that

L(n) · n−2 ·
∑

i,j∈[n]

δi,j ≤ |S|−1 ·
∑

(i,j)∈S
δi,j ≤ U(n) · n−2 ·

∑

i,j∈[n]

δi,j . (6)

In such a case, we also say that S is a universal U/L-approximator.

Needless to say, [n]×[n] itself is a universal 1-approximator, but we seek universal
approximators of almost linear (in n) size. We shall show an explicit construction
(of almost linear size) that provides a logarithmic-factor approximation, and
prove that this is the best possible.
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We note that universal approximators can be represented as n-vertex directed
graphs (possibly with parallel and anti-parallel edges). In some cases, we shall
present universal approximators as undirected graphs, while actually meaning
the corresponding directed graph obtained by replacing each undirected edge
with a pair of anti-parallel directed edges.

A construction. For an integer parameter k, we shall consider the generalized k-
dimensional hypercube having n vertices, which are viewed as k-ary sequences over
[n1/k] such that two vertices are connected by an edges if and only if (as k-long
sequences) they differ in one position. That is, the vertices 〈σ1, ..., σk〉 ∈ [n1/k]k

and 〈τ1, ..., τk〉 are connected if and only if |{i ∈ [k] : σi �= τi}| = 1. In addition,
we add k self-loops to each vertex, where each such edge corresponds to some
i ∈ [k]. Thus, the degree of each vertex in this n-vertex graph equals k · n1/k.
We shall show that this graph constitutes a universal O(k)-approximator.

Theorem 4. The generalized k-dimensional n-vertex hypercube is a universal
(1/k, 2)-approximator.

In particular, the binary hypercube (i.e., k = log2 n) on n vertices constitutes a
universal O(log n)-approximator.

Proof. For every two vertices u, v ∈ [n], we consider a canonical path of length k
between u and v. This path, denoted Pu,v, corresponds to the sequence of vertices
w(0), ..., w(k) such that w(i) = 〈σ1, ..., σk−i, τk−i+1, ..., τk〉, where u = 〈σ1, ..., σk〉
and v = 〈τ1, ..., τk〉. (Here is where we use the self-loops.) Below, we shall view
these paths as sequences of edges (i.e., Pu,v is viewed as the k-long sequence
(w(0), w(1)), ..., (w(k−1), w(k))). An important property of these canonical paths
is that each edge appears on the same number of paths.

Letting E denoted the directed pairs of vertices that are connected by an
edge, and using the triangle inequality and the said property of canonical paths,
we note that

n−2 ·
∑

u,v∈[n]

δu,v ≤ n−2 ·
∑

u,v∈[n]

∑

(w,w′)∈Pu,v

δw,w′

= n−2 ·
∑

(w,w′)∈E
|{(u, v) ∈ [n]× [n] : (w,w′) ∈ Pu,v}| · δw,w′

= n−2 ·
∑

(w,w′)∈E

k · n2

|E| · δw,w
′

which equals k · |E|−1 ·
∑

(w,w′)∈E δw,w′. On the other hand, letting Γ (u) = {v :
(u, v)∈E}, and using the triangle inequality and the regularity of the graph, we
note that

|E|−1 ·
∑

(u,v)∈E
δu,v ≤ |E|−1 ·

∑

(u,v)∈E
n−1 ·

∑

w∈[n]

(δu,w + δw,v)

= |E|−1n−1 ·
∑

u,w∈[n]

∑

v∈Γ (u)

(δu,w + δw,v)
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= |E|−1n−1 ·

⎛

⎝
∑

u,w∈[n]

|Γ (u)| · δu,w +
∑

v,w∈[n]

|Γ−1(v)| · δu,w

⎞

⎠

= |E|−1n−1 · 2 · |E|
n
·
∑

u,w∈[n]

δu,w

which equals 2 · n−2 ·
∑
u,w∈[n] δu,w.

Comment: The second part of the proof of Theorem 4 only uses the fact that
the hypercube is a regular graph. Thus, any regular graph is a universal (0, 2)-
approximator. Relaxing the regularity hypothesis, we note that every n-vertex
graph in which the maximum degree is at most t times the average-degree is
a universal (0, 2t)-approximator. On the other hand, the first part of the proof
uses the fact that all vertex-pairs (in the hypercube) can be connected by paths
such that no edge is used in more than k · n2/|E| of the paths. The argument
generalizes to arbitrary connected graphs in which no edge is used in more than
K · n2

|E| (≤ n2) of the paths, implying that such a graph is a universal (K−1, n+2)-
approximator.

A Lower-Bound. We now show that the construction provided in Theorem 4
is optimal. Indeed, our focus is on the case k < log2 n (and actually, even k =
o(logn)).

Theorem 5. A universal k-approximator for n points must have n(k+1)/k

4k edges.

Proof. Let G = ([n], E) be (a directed graph representing) a universal k-
approximator. We first note that no vertex can have (out)degree exceeding
2k · (|E|/n) (even when not counting self-loops). The reason being that if vertex
v has a larger degree, denoted dv, then we reach contradiction by considering
the metric (δi,j)i,j∈[n] such that δi,j = 1 if either i = v �= j or j = v �= i and
δi,j = 0 otherwise. (Note that this metric can be embedded on the line with v
at the origin (i.e. location 0) and all other points co-located at 1.) In this case
n−2 ·

∑
i,j∈[n] δi,j < 2/n, whereas |E|−1 ·

∑
(i,j)∈E δi,j = |E|−1 · dv (which is

greater than 2k/n).
We now consider the metric induced by the graph G itself; that is, δi,j

equals the distance between vertices i and j in the graph G. Clearly, |E|−1 ·∑
(i,j)∈E δi,j = 1, but (as we shall see) the average distance between pairs of

vertices is much larger. Specifically, letting d ≤ 2k · (|E|/n) denote the maxi-
mum degree of a vertex in G, we have

n−2 ·
∑

u,v∈[n]

δu,v ≥ min
u∈[n]

⎧
⎨

⎩
n−1 ·

∑

v∈[n]

δu,v

⎫
⎬

⎭

≥ n−1 ·
t∑

i=0

di · i
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where t is the smallest integer such that
∑t

i=0 d
i ≥ n, which implies t > logd((1−

d−1) · n) ≈ lnn−d−1

ln d . Thus, n−2 ·
∑
u,v∈[n] δu,v is lower-bounded by dt

n · t ≥
(1 − d−1) · t > (1 − 2d−1) · lnn

ln d which must be at most at most k (because
otherwise G cannot be a universal k-approximator). Using (1−2d−1) · lnnln d ≤ k it

follows that d′ def= d1/(1−2d−1) ≥ n1/k, which (using d′ < 2d) implies 2d > n1/k.
Finally, using d ≤ 2k · (|E|/n), we get |E| ≥ dn

2k >
n(k+1)/k

4k .

Comment: The proof actually applies to any universal (k−1, k)-approximator.

2.3 On the Limits of Derandomization, Revisited

Note that while the first part of the proof of Theorem 5 (i.e., bounding the
maximum degree in terms of the average-degree) uses an Euclidean metric, the
main part of the proof refers to a graph metric (which may not have a Euclidean
embedding). Thus, Theorem 5 does not rule out the existence of sparse graphs
that provide good approximations for points in a Euclidean space.

Definition 6. (universal approximator, restricted): A multi-set of pairs S ⊆
[n]× [n] is called a (L,U)-approximator for the class M if Eq. (6) holds for any
n-point metric of the class M.

Needless to say, any universal (L,U)-approximator is (L,U)-approximator for
the Euclidean metric, but the converse does not necessarily hold. Indeed, we
shall see that approximators for the Euclidean metric can have much fewer edges
than universal approximators (for any metric).

Theorem 7. For every constant ε > 0, there exists a efficiently constructible
(1 + ε)-approximator for the Euclidean metric that has O(n/ε2) edges. Further-
more, such approximators can be constructed in linear-time.

Theorem 7 follows by reducing the general case of (high-dimensional) Euclidean
metric to the line-metric (i.e., one-dimensional Euclidean metric) and presenting
an approximator for the latter metric.

Proposition 8. Suppose that S ⊆ [n] × [n] is an f -approximator for the line-
metric. Then S constitutes an f -approximator for the Euclidean metric.

Proof. Considering a d-dimensional Euclidean space with points P1, ..., Pn ∈ Rd,
we let r denote a uniformly distributed unit vector in Rd. By Eq. (3), for every
vector v ∈ Rd it holds that Er[|〈v, r〉|] = ρ(d) · ‖v‖. Thus, for every i, j ∈ [n] it
holds that ‖Pi − Pj‖ = ρ(d)−1 ·Er[|〈Pi, r〉 − 〈Pi, r〉|] and so

∑

(i,j)∈S
‖Pi − Pj‖ = ρ(d)−1 ·Er

⎡

⎣
∑

(i,j)∈S
|〈Pi, r〉 − 〈Pi, r〉|

⎤

⎦

∑

i,j∈[n]

‖Pi − Pj‖ = ρ(d)−1 ·Er

⎡

⎣
∑

i,j∈[n]

|〈Pi, r〉 − 〈Pi, r〉|

⎤

⎦
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The proposition follows by applying the hypothesis to (each value of r in) the
r.h.s of each of the foregoing equalities.

Strong expanders. Good approximators for the line-metric are provided by the
following notion of graph expansion. We say that the (undirected) graph G =
([n], E) is a (1− ε)-strong expander if for every S ⊂ [n] it holds that

|E(S, [n] \ S)|
|E| = (1± ε) · |S| · (n− |S|)

n2/2
(7)

where E(V1, V2)
def= {{u, v} ∈ E : u∈ V1 ∧ v ∈V2}. As we shall see (in Proposi-

tion 10), sufficiently good expanders (i.e., having relative eigenvalue bound ε/2)
are strong expanders (i.e., (1 − ε)-strong expander). We first establish the con-
nection between strong expanders and good approximators for the line-metric.

Proposition 9. Suppose that the graph G = ([n], E) is a (1−ε)-strong expander.
Then it yields a (1 + ε)-approximator for the line-metric.

The sufficient condition regardingG is also necessary (e.g., for any cut (S, [n]\S),
consider the points p1, ..., pn ∈ R such that pi = 0 if i ∈ S and pi = 1 otherwise).

Proof. For any sequence of points p1, ..., pn ∈ R, consider the “sorting per-
mutation” π : [n] → [n] such that for every i ∈ [n − 1] it holds that pπ(i) ≤
pπ(i+1). By counting the contribution of each “line segment” [pπ(i), pπ(i+1)] to∑

i,j∈[n] |pi − pj |, we get

∑

i,j∈[n]

|pi − pj| =
n−1∑

i=1

2i · (n− i) · (pπ(i+1) − pπ(i)) (8)

Similarly, for Si = {π(1), ..., π(i)}, we have

∑

i,j:{i,j}∈E
|pi − pj| =

n−1∑

i=1

2|E(Si, [n] \ Si)| · (pπ(i+1) − pπ(i)) (9)

Using the proposition’s hypothesis, we have for every i ∈ [n− 1],

2 · |E(Si, [n] \ Si)|
2 · |E| = (1± ε) · 2 · i · (n− i)

n2
(10)

and the proposition follows by combining Eq. (8)–(10).

Proposition 10. Suppose that the graph G = ([n], E) is a d-regular graph with
a second eigenvalue bound λ < d. Then G is a (1− (2λ/d))-strong expander.

Thus any family of constructible O(ε−2)-regular Ramanujan graphs (e.g., [8])
yields a constructible family of (1 − ε)-strong expanders. Furthermore, such
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graphs can be constructed in almost linear time (i.e., each edge can be de-
termined by a constant number of arithmetic operations in a field of size smaller
than n).

Proof. The claim follows from the Expander Mixing Lemma, which refers to
any two sets A,B ⊆ [n], and asserts that

∣
∣
∣
∣
|E(A,B)|
d · n − ρ(A) · ρ(B)

∣
∣
∣
∣ ≤

λ

d
·
√
ρ(A) · ρ(B) (11)

where ρ(S) = |S|/n for every set S ⊆ [n]. Applying the lemma to the special
case of A = B, we infer that |E(A,A)| resides in the interval [ρ(A) · d · |A| ±
λ · |A|]. Assuming, without loss of generality, that |A| ≤ n/2, we conclude that
|E(A, [n] \ A)|/(d · n) resides in [ρ(A) · (1 − ρ(A)) ± (λ/d) · ρ(A)], which is a
sub-interval of [(1± (2λ/d)) · ρ(A) · (1− ρ(A))] (because 1− ρ(A) ≥ 1/2).

Conclusion. The foregoing three propositions imply the existence of (efficiently
constructible) O(ε−2)-regular graphs that are (1 − ε)-approximators for the Eu-
clidean metric. It is easy to see that the argument extends to the �1-metric. We
note that combining the foregoing fact with the proof of Theorem 5 it follows
that no constant-degree expander graph can be embedded in a Euclidean space
(resp., �1-metric) without incurring logarithmic distortion. Details follow.

Recall that a metric (e.g., a graph metric) on n points, denoted (δi,j)i,j∈[n]

is said to be embedded in a Euclidean space with distortion ρ if the distance
between points i and j in the embedding is at least δi,j and at most ρ·δi,j . Thus, if
a (1−ε)-strong expander can be embedded in a Euclidean space with distortion ρ,
then this graph constitutes a (1+ε) ·ρ-approximator of the graph metric induced
by itself. But then the proof of Theorem 5 implies that for k = (1 + ε) · ρ this
graph must have at least n(k+1)/k/4k edges. Actually, if the graph in question
is regular, then we may skip the first part of the said proof and use d = 2|E|/n
(rather than d = 2k|E|/n), thus obtaining degree lower-bound of n1/k/2. Either
way, if the graph has constant degree then it must hold that k = Ω(logn) (and,
for any fixed ε > 0, it follows that ρ = Ω(log n)).

On the other hand, using the fact (cf. [2]) that every metric on n points can
be embedded in the �2-metric with distortion at most O(log n), it follows that
constant-degree expander graphs yield universal log-factor approximators (for
any metric on n points). This improves over the special case of Theorem 4 that
refers to graphs of logarithmic degree.
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Appendix: On ρ(d) and the Related Variance σ2(d)

Recall that ρ(d) def= Er [|〈u, r〉|], where u is an arbitrary unit vector (in Rd)
and r is a uniformly distributed unit vector (in Rd). Analogously, we define the
corresponding variance σ2(d) def= Vr [|〈u, r〉|]. Note that both ρ(d) and σ2(d) are
actually independent of the specific vector u.

Theorem 11. (folklore): ρ(d) = 1
(d−1)·Ad−2

, where A0 = π/2, A1 = 1, and
Ak = k−1

k ·Ak−2.

In particular, ρ(2) = 2/π ≈ 0.63661977 and ρ(3) = 1/2. In general, ρ(d) =
Θ(1/

√
d). A proof of Theorem 11 can be found in [1, Sec. 3.6]. Using similar

techniques (see [1, Sec. 3.7]), one may obtain

Theorem 12. (probably also folklore): σ2(d) = O(1/d). Furthermore, for any
two unit vectors u1, u2 ∈ Rd and for a uniformly distributed unit vector r ∈ Rd,
it holds that Er [|〈u1, r〉| · |〈u2, r〉|] = O(1/d).

In fact, the furthermore clause follows from σ2(d) = O(1/d) (and ρ(d)2 =
O(1/d)) by using the Cauchy-Schwartz Inequality.2

2 That is, Er[|〈u1, r〉| · |〈u2, r〉|] ≤
√

Er[|〈u1, r〉|2] · Er[|〈u2, r〉|2] = Er[|〈u1, r〉|2] =

σ2(d) + ρ(d)2.

http://www.wisdom.weizmann.ac.il/~oded/msc-kfir.html 
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Improved bound for the variance of Z. Recalling that Z =
∑
i,j∈[n] |〈Pi − Pj , r〉|

and using Theorem 12, we have

V[Z] ≤ E[Z2] = Er

⎡

⎣
∑

i1,j1,i2,j2∈[n]

|〈Pi1 − Pj1 , r〉| · |〈Pi2 − Pj2 , r〉|

⎤

⎦

= O(1/d) ·
∑

i1,j1,i2,j2∈[n]

‖Pi1 − Pj1‖ · ‖Pi2 − Pj2‖

= O(1/d) ·

⎛

⎝
∑

i,j∈[n]

‖Pi − Pj‖

⎞

⎠

2

.

Recalling that E[Z] = ρ(d) ·
∑

i,j∈[n] ‖Pi − Pj‖, it follows that V[Z] = O(1/d) ·
(E[Z]/ρ(d))2. Using ρ(d) = Ω(1/

√
d), we conclude that V[Z] = O(E[Z]2).



On Locally Decodable Codes,
Self-correctable Codes, and t-Private PIR�

Omer Barkol, Yuval Ishai, and Enav Weinreb

Dept. of Computer Science, Technion, Haifa, Israel
{omerb,yuvali,weinreb}@cs.technion.ac.il

Abstract. A k-query locally decodable code (LDC) allows to probabilistically
decode any bit of an encoded message by probing only k bits of its corrupted
encoding. A stronger and desirable property is that of self-correction, allowing
to efficiently recover not only bits of the message but also arbitrary bits of its
encoding. In contrast to the initial constructions of LDCs, the recent and most
efficient constructions are not known to be self-correctable. The existence of
self-correctable codes of comparable efficiency remains open.

A closely related problem with a very different motivation is that of private
information retrieval (PIR). A k-server PIR protocol allows a user to retrieve the
i-th bit of a database, which is replicated among k servers, without revealing
information about i to any individual server. A natural generalization is t-private
PIR, which keeps i hidden from any t colluding servers. In contrast to the initial
PIR protocols, it is not known how to generalize the recent and most efficient
protocols to yield t-private protocols of comparable efficiency.

In this work we study both of the above questions, showing that they are in
fact related. We start by presenting a general transformation of any 1-private PIR
protocol (equivalently, LDC) into a t-private protocol with a similar amount of
communication per server. Combined with the recent result of Yekhanin (STOC
2007), this yields a significant improvement over previous t-private PIR proto-
cols. A major weakness of our transformation is that the number of servers in the
resulting t-private protocols grows exponentially with t. We show that if the un-
derlying LDC satisfies the stronger self-correction property, then there is a similar
transformation in which the number of servers grows only linearly with t, which
is the best one can hope for. Finally, we study the question of closing the current
gap between the complexity of the best known LDC and that of self-correctable
codes, and relate this question to a conjecture of Hamada concerning the algebraic
rank of combinatorial designs.

1 Introduction

In this work we study two natural questions concerning locally decodable codes and the
related notion of private information retrieval:

– Local decoding vs. self-correction. Can state-of-the-art locally decodable codes
be enhanced to satisfy a stronger self-correction property at a minor additional cost?
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– 1-private vs. t-private PIR. Can state-of-the-art PIR protocols be strengthened to
provide privacy against t colluding servers at a minor additional cost?

We obtain new insights on these questions and show that, somewhat surprisingly, they
are related to each other. We elaborate on the two questions below.

1.1 Local Decoding vs. Self-correction

A locally decodable code (LDC) is an error-correcting code which supports sublinear-
time decoding. More concretely, a k-query LDC allows to probabilistically decode any
symbol of an encoded message by probing only k symbols of its corrupted encoding. A
stronger and desirable property is that of self-correction. In a k-query self-correctable
code (SCC) the probabilistic decoder is required to recover an arbitrary symbol of the
encoding of the message rather than a symbol of the message itself. Self-correction is
stronger than local decoding in the sense that any linear SCC can be used as an LDC
via a systematic encoding1 of the message. In the context of information storage, the
additional self-correction property allows the encoding to efficiently “repair” itself in
the presence of mobile adversarial corruptions. LDCs were used in several complex-
ity theoretic contexts, such as worst-case to average-case reductions [26,7,6,30] and
randomness extraction [27]. SCCs originate from program checkers [12,26] and were
later applied in the context of probabilistically checkable proofs [16,5,2,3]. We refer the
reader to [32] for a survey of applications of LDCs and SCCs in complexity theory.

The complexity of LDCs with a fixed number of queries k was first explicitly stud-
ied by Katz and Trevisan [23], and has since been the subject of a large body of work
(see [32,17] for surveys). Until this day, there is a nearly exponential gap between the
best known upper bounds on the length of k-query LDCs [10,36] and the correspond-
ing lower bounds [23,24,33,34], for any constant k ≥ 3. The initial constructions of
LDCs were based on Reed-Muller codes and allowed to encode an n-bit message by a
k-query LDC of length exp(n1/(k−1)) [7,5,14,8].2 These LDCs also enjoy the stronger
self-correction property, a fact that blurred the distinction between the two notions. (In-
deed, some definitions of LDC actually required self-correction.) In contrast to these
initial constructions, the recent and most efficient constructions [10,36] are not known
to be self-correctable. In particular, the recent breakthrough result of Yekhanin [36]
(see also [28]) gives a 3-query LDC of a sub-exponential length (more precisely, of
length exp(n1/ log logn) for infinitely many n), assuming the existence of infinitely
many Mersenne primes, or of length exp(n10−7

) using the largest known Mersenne
prime. In contrast, the best known k-query SCC is still of length exp(n1/(k−1)), as in
the initial constructions. The existence of better self-correctable codes remains open.

1.2 1-Private vs. t-Private PIR

A private information retrieval (PIR) [14] protocol allows to query a remote database
while hiding the identity of the items being retrieved even from the servers holding the

1 An encoding E : Fn → Fm is systematic if for every i ∈ [n] there is j ∈ [m] such that
E(x)j = xi for every x ∈ Fn. Any linear code has a systematic encoding.

2 Here and in the following, exp(f(n)) stands for 2O(f(n)).
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database. More concretely, an (information-theoretic)3 k-server PIR protocol allows
a user to retrieve the i-th bit of a database x ∈ {0, 1}n, which is replicated among
k servers, without revealing any information about i to any individual server. A triv-
ial way to solve the PIR problem is simply by communicating x to the user. If there
is only a single server holding the database, this trivial solution is optimal. However,
Chor et al. [14] demonstrated that replicating the database among k ≥ 2 servers gives
rise to nontrivial protocols whose communication complexity is sublinear in the database
size n. Most of the subsequent research in this area (see [17] for a survey) focused on
the goal of minimizing the communication complexity of k-server PIR as a function
of n.

Katz and Trevisan [23] showed that there is a close relation between PIR and LDC. In
particular, a k-server PIR protocol in which the user sends c(n) bits to each server and
receives a single bit in return corresponds to a k-query binary LDC of length exp(c(n)).
Indeed, Yekhanin’s LDC [36] gives rise to a 3-server PIR protocol with no(1) bits of
communication (assuming the existence of infinitely many Mersenne primes).

A natural generalization of PIR is t-private PIR, in which the user’s selection i should
be kept hidden from any t colluding servers. The initial PIR protocols from [14,1] were
generalized to yield t-private protocols of comparable efficiency [21,8,9,35]. (Such
a generalization inherently requires to increase the number of servers proportionally
to t, since a t-private k-server protocol implies a 1-private �k/t�-server protocol of
the same complexity.) In contrast, no similar generalization was known for the recent
PIR protocols of Beimel et al. [10] and Yekhanin [36]. Even in the case t = 2, the
best 2-private k-server protocol prior to the current work required Ω(n1/(k−1)) bits of
communication.

1.3 Our Results

From PIR to t-private PIR. We present a general transformation of any linear k-server
PIR protocol, or alternatively a k-query LDC, into a t-private kt-server protocol with a
similar amount of communication per server. Combined with Yekhanin’s protocol [36]
and assuming the infinitude of Mersenne primes, this yields a t-private protocol with a
constant number of servers and no(1) bits of communication, for any constant t. (In fact,
for small values of t the improvement over the best previous t-private protocols [9,35]
holds unconditionally.) See Corollaries 1 and 2 for these results.

Better t-private PIR via SCC. A major weakness of the above transformation is that
the number of servers in the resulting t-private protocols grows exponentially with t.
We show that if the underlying LDC satisfies the stronger self-correction property, then
there is a similar transformation in which the number of servers grows only linearly
with t. As noted, this is the best one could hope for. See Corollary 3 for this result.

On LDC vs. SCC. Finally, we study the question of closing the current complexity gap
between LDC and SCC. This question is further motivated by the above application to

3 In this work we are not concerned with the alternative computational model for PIR [13,25],
in which the user’s privacy should only hold against computationally bounded servers.
Information-theoretic PIR protocols have some additional advantages over their computational
counterparts beyond the type of privacy they guarantee; see [10] for discussion.
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t-private PIR. While we do not resolve this question, we provide some indication for its
difficulty by relating it to a conjecture of Hamada [18] (see also [19,4,11]) concerning
the algebraic rank of combinatorial designs. Roughly speaking, Hamada’s conjecture
asserts that block designs which originate from Reed-Muller codes minimize the rank
of their incidence matrix. As noted above, the best known SCCs are based on Reed-
Muller codes. We show that a refutation of Hamada’s conjecture would lead to better
SCCs. This implies that proving the known SCCs to be optimal is at least as hard as
proving Hamada’s conjecture. We also show a weak converse of this statement, namely
that a natural variant of Hamada’s conjecture implies the optimality of SCCs of a certain
natural form. This provides some evidence for the difficulty of improving the current
Reed-Muller based constructions of SCCs.

Organization. In Section 2, we start with some preliminaries. Then, in Section 3, we
describe two methods for boosting the privacy of PIR protocols: one that applies to gen-
eral PIR protocols (Section 3.1) and a more efficient one that applies to PIR protocols
with the additional self-correcting property (Section 3.2). In Section 4, we formally de-
fine SCCs and prove their equivalence to the above mentioned version of PIR protocols.
In Section 5, we discuss a connection between SCCs and block designs, and finally, in
Section 6, we mention some open problems.

2 Preliminaries

A k-server PIR protocol involves k servers S1, . . . , Sk (throughout this paper k is con-
stant), each holding the same string x ∈ {0, 1}n, and a user U who wants to retrieve
the bit xi without revealing the value of i. The following definition of a PIR protocol is
similar to standard definitions from the literature (e.g., [9]). It will be convenient for our
purposes to make the domains from which the user’s queries and the servers’ answers
are taken explicit in the specification of the protocol.

Definition 1 (PIR). A k-server PIR protocolP = (R,DQ,DA,Q,A,M) consists of a
probability distributionR, a query domainDQ, an answer domainDA, and three types
of algorithms: a query algorithm Q, an answering algorithm A, and a reconstruction
algorithmM. (The domainsDQ and DA will sometimes be omitted from the specifica-
tion of P .) At the beginning of the protocol, the user picks a random string r from the
distribution R. It then computes a k-tuple of queries Q(i, r) = (q1, . . . , qk) ∈ DQk
and sends to each server Sh the corresponding query qh. Each server Sh responds with
an answer ah = A(h, x, qh), where ah ∈ DA. (In the case of errorless PIR we can
assume, w.l.o.g., that the servers are deterministic.) Finally, the user recovers xi by ap-
plying the reconstruction algorithmM(i, r, a1, . . . , ak). A k-server protocol as above
is a t-private ε-correct PIR protocol, if it satisfies the following requirements:

Correctness. The user errs on computing the correct value with probability at most ε.
Formally, for every i ∈ [n] and every database x ∈ {0, 1}n,

Prr∈R [M(i, r,A(1, x,Q(i, r)1), . . . ,A(k, x,Q(i, r)k)) = xi] ≥ 1− ε.
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By default, we assume PIR protocols to be perfectly correct, namely 0-correct. A statis-
tical PIR protocol is a 1

3 -correct protocol. (The error of such a protocol can be driven
down to 2−σ using O(σ) repetitions).

t-Privacy. Each collusion of up to t servers has no information about the bit that the
user tries to retrieve. Formally, for every two indices i1, i2 ∈ [n] and for every T ⊆ [k]
of size |T | ≤ t, the distributionsQT (i1, r)r∈R andQT (i2, r)r∈R are identical.

The communication complexity of a PIR protocol is the total number of bits communi-
cated between the user and the k servers, maximized over all choices of x, i and r. We
refer to log |DQ| as the query complexity of the protocol, and to log |DA| as its answer
complexity. A PIR protocol is called binary if DA = {0, 1}. In a linear PIR protocol
over a finite field F, the database x is viewed as a vector in Fn and for any fixed server
h and query qh the answering algorithm A(h, x, qh) computes a linear function of x.
All PIR protocols from the literature are linear.

Definition 2 (Locally Decodable Code (LDC)). Let 0 ≤ ε, δ < 1
2 . For integers k, n,

and m, we say that a code C : Σn → Γm is a (k, ε, δ)-LDC if there exists a prob-
abilistic decoding algorithm D, such that for every x ∈ Σn, every i ∈ [n], and
every y ∈ Γm within Hamming distance at most δm from C(x), it holds that: (i)
Pr[Dy(i) = xi] ≥ 1 − ε. (ii) D probes at most k symbols of y. We assume D to be
non-adaptive, in the sense that its choice which symbols to probe is done independently
of y. By default, we consider binary LDCs with Σ = Γ = {0, 1}.

We will typically consider a family of binary LDCs Cn : {0, 1}n → {0, 1}m(n) for
which the parameters ε and δ are constants that do not depend on n. In such a case we
will refer to the family as a k-query LDC and denote it byC. The main open question in
the area is to find the best asymptotic complexity of the code length m(n) in a k-query
LDC. Katz and Trevisan [23] showed a close relation between this question and the
complexity of PIR:

Theorem 1 (implicit in [23]). (i) If there is a k-query LDC C : {0, 1}n → {0, 1}m
then there is a k-server statistical PIR protocol with query complexity O(logm) and
answer complexity O(1). (ii) If there is a statistical PIR protocol with query complex-
ity q(n) and answer complexity a(n), then there is a k-query LDC C : {0, 1}n →
({0, 1}a(n))m where m = O(k2q(n)).

Theorem 1 was proved using the notion of smooth codes, which serve as an intermediate
notion between LDC and PIR, and is essentially equivalent to both.

3 Boosting the Privacy of PIR Protocols

In this section we describe two methods for boosting the privacy threshold t of PIR
protocols at the price of an increase in the number of servers. In Section 3.1, we show
this for arbitrary PIR protocols, but with an exponential (in t) increase in the number
of servers. In Section 3.2, we define a stronger notion of self-retrievable PIR proto-
cols (SRPIR) and show that they can be upgraded to t-private PIR using much fewer
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servers. SRPIR protocols are closely related to SCCs (see Section 4.1), analogously to
the relation between PIR and LDCs. Thus, better SCCs would imply better t-private
PIR protocols.

3.1 From PIR to t-Private PIR

In this section we describe a method to transform an arbitrary 1-private k-server PIR
protocol into a t-private kt-server PIR protocol. This is done via a general composi-
tion of any t1-private k1-server PIR protocol with any t2-private k2-server PIR protocol
which yields a (t1 + t2)-private k1k2-server PIR protocol. Similar composition tech-
niques were used, for different purposes, in [15,22].

We start with the general composition claim. For simplicity of exposition we first
consider the binary case. Let P1 = (R1,Q1,A1,M1) and P2 = (R2,Q2,A2,M2)
be binary t1-private k1-server and t2-private k2-server PIR protocols, respectively. We
construct a (t1 + t2)-private k1k2-server PIR protocol. Partition the k1k2 servers into
k1 sets of size k2: T1, . . . , Tk1 where Tv = {S1,v, S2,v, . . . , Sk2,v}. It will be con-
venient to view the database as a string indexed by Zn = {0, 1, . . . , n− 1}, that is
x = x0x1 · · ·xn−1, instead of x = x1x2 · · ·xn. To retrieve the ith bit in the new PIR
protocol, the user U chooses two random numbers i1, i2 ∈ [n] such that i1 + i2 ≡
i(mod n). Next, the user executes the query algorithm Q1 on i1, to generate a set of
queries q11 , . . . , q

1
k1

. The query q1h is then sent to every server in the set Th.
Denote by x) � the database that results from an �-bit cyclic shift of the database x.

Each server in the set Th prepares an array of n answers to the query q1h by executing the
answering algorithmA1, on the following n databases: x) 0, x) 1, . . . , x) n− 1.
After this stage, each server in the set Th holds the following binary string:

yh
def= A1(h, x) 0, q1h), . . . ,A1(h, x) n− 1, q1h). (1)

In order to reconstruct the bit xi, the user U is interested in the answers of the servers
on the queries q11 , . . . q

1
k1

on the shifted database x ) i2. That is, the user needs the
bits y1

i2
, . . . , yki2 . To retrieve the bit yhi2 , the user and the k2 servers of the set Th execute

P2 where the user’s input is i2 and the servers’ input is yh. The random choices of
U are done independently for every set Th. Note that for every h ∈ [k1] it holds that
yhi2 = A1(h, x) i2, q

1
h). Using the reconstruction algorithmM1 on i1 andA1(1, x)

i2, q
1
1), . . . ,A1(k1, x ) i2, q

1
k1

), the user reconstructs the i1 bit of x ) i2, which is
equal to x(i1+i2 mod n) = xi.

The correctness of the new PIR protocol easily follows from that of the original
protocols. If the query complexities of the original protocols are q1(n) and q2(n) bits
per server, then the query complexity of the new protocol is q1(n) + q2(n) bits per
server. The following claim captures the enhanced privacy of the new protocol. The
proof is deferred to the full version of the paper.

Claim 1. The above PIR protocol is (t1 + t2)-private.

In the non-binary case where the protocols P1 and P2 have answer complexities a1(n)
and a2(n), respectively, we change the protocol as follows: At the end of the first stage
the servers of each set Th are holding the string yh, as in (1). In this case yh is of
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length n · a1(n), and in order to retrieve the a1(n) size string A1(h, x ) i2, q
1
h), the

user and the k2 servers of the set Th perform a1(n) executions of P2 where in the �th
execution, 0 ≤ � < a1(n), the user’s input is i2a1(n) + � and the servers’ input is
yh. Note that these a1(n) execution need not be independent, as it is known that the
a1(n) retrieved bits form a sequence in the string yh. Hence, only one query of P2 must
be sent. Therefore, the overall query complexity remains q1(n) + q2(n). The answer
complexity, however, changes to a1(n)a2(n).

Theorem 2. Given two PIR protocols that are ti-private ki-server PIR protocol with
query complexity qi(n) and answer complexity ai(n), for i ∈ {1, 2}, one can construct
a (t1 + t2)-private k1k2-server PIR protocol with query complexity q1(n) + q2(n) and
answer complexity a1(n)a2(n).

The following theorem is proved by composing a PIR protocol with itself t times, ap-
plying an induction on t using Theorem 2 for the inductive step.

Theorem 3 (Boosting PIR privacy). If there is a 1-private k-server (statistical) PIR
protocol with query complexity q(n) and answer complexity a(n), then there exists a t-
private kt-server (statistical) PIR protocol with query complexityO(tq(n)) and answer
complexity O(a(n)t).

Theorems 1 and 3 imply the following.

Corollary 1 (From LDC to t-private PIR). If there is a k-query LDC C : {0, 1}n →
{0, 1}m then, for every constant t, there is a t-private kt-server statistical PIR protocol
with query complexity O(logm) and answer complexity O(1).

Combining this with Yekhanin’s LDC [36] we get the following corollary.

Corollary 2 (Improved t-private PIR). For every constant t, there exists a t-private
3t-server PIR protocol with communication complexityO(n10−7

). Furthermore, if there
are infinitely many Mersenne primes then, for every constant t, there is a t-private 3t-
server PIR protocol whose communication complexity is nO(1/ log logn) for infinitely
many values of n.

3.2 Better t-Private PIR from Self-retrievable PIR

In this section, we introduce the notion of self-retrievable PIR (SRPIR) protocols. Such
protocols allow not only to privately retrieve each entry of the database, but also to
privately retrieve the answer to any legal query. This means that if the user wants to
know what a server h would answer, given the database x and a query q, he can do this
using the protocol without revealing any information about q to the servers.

Definition 3 (SRPIR). A tuple P ′ = (R,DQ,DA,Q0,Q1,A,M0,M1) is a self-
retrievable PIR protocol if P = (R,DQ,DA,Q0,A,M0) is a PIR protocol, Q1 is
an additional query algorithm and M1 is a query reconstruction algorithm with the
following properties: If U wants to retrieve xi it acts according to P . If U wants to re-
trieve the answer of server h for a query q ∈ DQ, it computes queries Q1((h, q), r) =
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(q1, . . . , qk) ∈ DQk, and the protocol proceeds as before. Finally, the user computes
the answer by executing one of the reconstruction algorithmsM0(i, r, a1, . . . , ak) or
M1((h, q), r, a1, . . . , ak). A k-server protocol as above is a t-private SRPIR, if it sat-
isfies the correctness and the t-privacy requirements from Definition 1, along with the
following further requirements:

Correctness. For every q ∈ DQ, h, r and x,

M1((h, q), r,A(1, x,Q1((h, q), r)1), . . . ,A(k, x,Q1((h, q), r)k)) = A(h, x, q).

This can be relaxed to ε-correctness similarly to Definition 1.

t-Privacy. Each collusion of up to t servers has no information about q and h. Formally,
for every two possible queries (h1, q1), (h2, q2) ∈ [k] × DQ, and for every T ⊆ [k],
of size |T | ≤ t, the distributions Q1

T ((h1, q1), r)r∈R and Q1
T ((h2, q2), r)r∈R are

identical.

In Section 4.1, we show that SRPIR protocols are essentially equivalent to SCCs. We
now describe a method to convert a 1-private k-server SRPIR protocol into a t-private
k′-server PIR protocol, where k′ = t(k − 1) + 1. Our protocol relies on a recursive
construction of a formula with Tk2 gates that computes a single Tk

′

t+1 gate. (Here Tkt
is the t-out-of-k threshold function Tkt : {0, 1}k → {0, 1} defined as Tkt (z) = 1
if and only if

∑k
h=1 zh ≥ t.) The construction of the formula is a straightforward

generalization of a construction from [20] for the special cases k = 3 and k = 4.

Lemma 1. There exists a formula with Tk2 threshold gates that computes a Tk
′

t+1 thresh-

old gate. In particular, there is such a formula of size O(
(
k′

t

)
) and depth O(t log k′).

We proceed to describe the construction of the t-private PIR protocol. We start with a
general overview. Let P = (R,DQ,DA,Q0,Q1,A,M0,M1) be a 1-private k-server
SRPIR protocol (See Definition 3). Denote by Φ the formula promised by Lemma 1.
That is, Φ computes the function Tk

′

t+1 using Tk2 gates. Denote by z1, . . . , zk′ the input
variables of Φ. The queries of the new PIR protocol are computed in a recursive manner
according to the structure of the formula Φ. We associate each gate of Φ with a query
from DQ, going from the output gate to the leaves. Eventually, each input wire of the
formula, labeled by an input zh, is associated with a query fromDQ. For each h′ ∈ [k′],
the query sent to Sh′ in the new PIR protocol is a list of all P-queries associated with
input wires labeled by zh′ . Details follow.

Let i ∈ [n] be the input to the user. Denote by gout the output Tk2 gate of Φ and by
g1, . . . , gk the gates whose output wires are the inputs wires to gout. The user generates
a random string rout ∈R R and executes Q0(i, rout) to get a list of queries q1, . . . qk.
Note that given the answers to these k queries the user can reconstruct the value of xi.
For each h ∈ [k], the gate gh is associated with the pair (h, qh) ∈ [k]×DQ.

Next, the user proceeds to associate a query with all the gates in the subformulae
rooted in the gates g1, . . . gk. Fix h ∈ [k]. Denote by gh,1, gh,2, . . . , gh,k the k gates
whose output wires are the input wires of gh. The user chooses a random string (inde-
pendently from all previously chosen strings) rh ∈R R and executes Q1((h, qh), rh)
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to get k queries qh,1, . . . , qh,k. As before, for each � ∈ [k], the gate gh,� is associated
with the pair (�, qh,�). Note that the answers of A on the queries qh,1, . . . , qh,k, im-
ply the answer of A on the query qh. The user proceeds recursively to associate a pair
(h, q) ∈ [k] × DQ with every gate of the formula Φ. Finally, every input wire of Φ is
associated with a pair from [k]× DQ. For each h′ ∈ [k′], the user sends the server Sh′

all the queries associated with input wires that are labeled by zh′ .
The answering algorithm is simple: Given a set of queries, the server Sh′ simply

answers each of the queries using A, the answering algorithm of the original SRPIR
protocol. Finally, in the reconstruction algorithm, the user proceeds through the formula
Φ, going from the input wires towards the output gate. Given the answers to the queries
associated with the input wires to a given gate g, the user executes the reconstruction
algorithm of the original SRPIR protocol to compute the answer on the query associated
with g. Finally, the user has the k answers of the queries associated with the input wires
of the output gate, from which he can compute the value of xi.

The correctness of the above PIR protocol is straightforward. The t-privacy of the
protocol relies on the fact that a set T of at most t servers corresponds to an input that
is rejected by the formula Φ (this is the input that one gets by setting 1 to zh′ if h′ ∈ T
and is 0 otherwise). The proof is then implied by the privacy of the original SRPIR and
the independence of the randomness used at each gate of Φ when generating the query
of the new PIR protocol. The proof is deferred to the full version of the paper.

Theorem 4 (Boosting privacy for SRPIR). If there exists a 1-private k-server (statis-
tical) SRPIR protocol with query complexity q(n) and answer complexity a(n), then for
every constant t, there exists a t-private (t(k− 1)+ 1)-server (statistical) PIR protocol
with query complexity O(q(n)) and answer complexity O(a(n)). More precisely, the
query complexity is O(

(
kt
t

)
q(n)) and the answer complexity is O(

(
kt
t

)
a(n)).

4 On Self-correctable Codes

A self-correctable code (SCC) is an error-correcting codes allowing each symbol of
the encoded message to be retrieved (or “self-corrected”) by reading only a few other
symbols of the encoded message. Katz and Trevisan [23] showed LDCs to be essentially
equivalent to PIR protocols. In Section 4.1 we show that SCCs are essentially equivalent
to SRPIR protocols. Together with the results of the previous section, this shows that
better SCCs would result in better t-private PIR protocols. In Section 4.2, we describe
the best known constructions of SCCs. Our definition of SCCs is similar to the definition
of smooth codes [23], except that it refers to retrieving a symbol of the encoding of the
message rather than a symbol of the message itself.

Definition 4 (Self-correctable Code (SCC)). Let 0 ≤ ε < 1
2 . We say that C : {0, 1}n

→ {0, 1}m is a (k, k′, ε)-SCC, if there exists a probabilistic non-adaptive correction
algorithm M (the corrector), such that for every x ∈ {0, 1}n and for every two indices
j, j′ ∈ [m], the following hold: (i) C is injective. (ii) Pr[MC(x)(j) = C(x)j ] ≥ 1 − ε
(iii) M probes at most k symbols from C(x). (iv) Pr[M (·)(j) probes symbol j′] ≤ k′

m .
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We refer to a (k, k, 0)-SCC simply as a k-query SCC. We define an exact (k, ε)-SCC
to be one in which the correction algorithm makes exactly k probes and each index is
probed with probability k

m . Similarly to the case of smooth codes, one can get an exact
SCC out of any SCC at the expense of increasing ε.

Lemma 2. If C : {0, 1}n → {0, 1}m is a (k, k′, ε)-SCC, then it is also an exact (k, ε′)-
SCC for ε′ = 1

2 −
( 1
2−ε)

2

2k′ .

4.1 SCC and SRPIR

We prove a strong relation between SCCs and SRPIR protocols. This relation is anal-
ogous to the relation between LDCs and PIR protocols. The following straightforward
generalizations of the claims of [23] are proven in the full version of the paper.

Claim 2 (From SCC to SRPIR). Let C : {0, 1}n → {0, 1}m(n) be a systematic exact
(k, ε)-SCC. Then, there exists a k-server, ε-correct binary SRPIR protocol with query
complexity logm.

Combining Lemma 2 and Claim 2 with Theorem 4, we get the following corollary
which is analogous to Corollary 1:

Corollary 3 (From SCC to t-private PIR). Let C : {0, 1}n → {0, 1}m(n) be a sys-
tematic (k, k′, ε)-SCC for some constants k, k′, and ε. Then, there exists a t-private
(t(k − 1) + 1)-server statistical SRPIR protocol with query complexity O(logm) and
answer complexity O(1).

Claim 3 (From SRPIR to SCC). If there exists a k-server, ε-correct binary SRPIR pro-
tocol with queries of size logm for databases in {0, 1}n. Then there exists a (k, 2k, ε)-
SCC, C : {0, 1}n → {0, 1}2km.

4.2 Best Known SCCs

The best known SCCs are based on Reed-Muller (RM) codes. RM codes over a field F
of size |F| > k give rise to a natural self-correction procedure [7], yielding (non-binary)
k-query SCCs of length exp(n1/(k−1)). Binary SCCs of a similar length can be derived
from the PIR protocol of [8, Theorem 2], which is based on RM codes over extensions
of F2. For k of the form k = 2r − 1, this PIR protocol is in fact an SRPIR. (We discuss
this in detail in the full version of the paper.) Thus, by Claim 3, it implies a binary SCC
with the above parameters.

5 SCCs and Block Designs

In this section, we show a connection between SCCs and an open question from the
theory of combinatorial designs. We start by defining a design.

Definition 5 (Design). Let m, k and λ be positive integers and B be a family of subsets
of [m]. The pair D = 〈[m],B〉 is a 2-(m, k, λ) design, if all the sets (called blocks) in
B are of size k and every 2 distinct points in [m] appear together in exactly λ blocks.
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We now define an algebraic measure of designs, called p-rank.

Definition 6 (p-rank of a Design). Let D be a 2-(m, k, λ) design, and let F be a finite
field of characteristic p, where p is a prime. Consider the incidence matrix ofD denoted
A

def= AD: The columns ofA are labeled by the blocks of B and the rows ofA are labeled
by the points of [m]. The entry A[i, B], for B ∈ B and i ∈ [m] equals 1 if i ∈ B and 0
otherwise. The p-rank of a design D is defined to be rankF(A) = rankFp(A).

The next claim shows that a construction of a design with certain parameters and a low
p-rank yields a construction of a good SCC. Roughly speaking, the SCC is generated by
a matrix dual to the incidence matrix of the design. To correct the jth bit in a codeword,
for j ∈ [m], the corrector uses the blocks of the design containing j. A complete proof
appears in the full version of the paper.

Claim 4 (From design to SCC). Let D = 〈[m],B〉 be a 2-(m, k, λ) design (with k ≥
2), A be the incidence matrix of D, and s = rankF(A), where F is a finite field. Let
C : Fm−s → Fm be a code dual to the code generated byA. Then C is a (k−1)-query
SCC of dimension m− s.

The designs with the lowest known p-rank are geometric designs.

Example 1 (Affine Geometric Designs). Let q = pr be a prime power and m be a
positive integer. The affine geometric design AG(m, q) is defined as follows. The points
of the design are the vectors of the linear space Fmq . The blocks are the 1-dimensional
affine subspaces of Fmq , also called lines. First note that AG(m, q) is a 2-(qm, q, 1)
design, as every line is of size q and every two points are together in exactly one line.

We now analyze the p-rank of the design AG(m, q). We use the properties of Reed-
Muller codes over a field Fq onm variables and degree q−2. Recall that the coordinates
of this code are labeled with vectors from Fmq and thus it is of length qm. The code is
generated by the monomials on m variables x1, . . . , xm of total degree at most q − 2.
Thus, its dimension is

(
m+q−2
q−2

)
. It is known that the incidence vectors of the blocks

of AG(m, q) span exactly the dual code of this Reed-Muller code. Hence, the p-rank
of AG(m, q) is qm −

(
m+q−2
q−2

)
. Moreover, applying Claim 4 on this design for p = 2

gives the binary SCC implicit in [8], with the number of servers being k = q − 1 (See
Section 4.2).

Hamada [18] (see also [19,4,11]) conjectured that the p-rank of every affine geometric
design is minimal among all designs with the same parameters, but proving his con-
jecture is an open problem in design theory. In view of Claim 4, proving strong lower
bounds on SCCs, that is, proving that the currently known SCCs are optimal, requires
proving the following important special case of Hamada’s conjecture.4

Conjecture 1 (Hamada [18]). Consider the design AG(m, q), where q = pr. Then
AG(m, q) has the smallest p-rank from all the designs with the same parameters.

4 The original conjecture was stronger, asserting that every design with similar parameters is
isomorphic to AG(m,q). The weaker conjecture brought herein appears in, e.g., [4].
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5.1 A Generalization of Hamada’s Conjecture

Tonchev [31] defined a generalization of the p-rank measure, called the p-dimension of
a design. In this section, we show that a generalization of Hamada’s conjecture to this
measure may serve as an indication that LDCs are more efficient than SCCs, or that
improving over current SCC constructions might be difficult. We define a framework
for the construction of SCCs and LDCs based on threshold secret sharing schemes.
Both the best known SCC [8] and the best known LDC [36] fall into this framework.

Definition 7 (p-dimension of a Design). Let D be a 2-(m, k, λ) design, and F = Fp,
where p is a prime power. Consider a matrixA with columns labeled by the blocks of B,
rows labeled by the points of [m], and entries from F. We say that A matches the design
D if for every block B ∈ B and point i ∈ [m], the following two conditions holds: (i) If
i /∈ B, thenA[i, B] = 0 (ii) if i ∈ B, thenA[i, B] �= 0. The p-dimension ofD is defined
to be minimum of rankF(A) over all matrices A that match D.

The known SCCs [8] and all the known LDCs (e.g. [8,10,36,28]) are constructed ac-
cording to the following paradigm: The codeword indices are viewed as vectors from
a vector space K�, where K is a finite field.5 The set of the codeword locations probed
to decode/correct a symbol is chosen according to a 2-out-of-k threshold secret sharing
scheme. The scheme is applied independently on each of the � coordinates of the vector
representing the symbol to be decoded/corrected. We concentrate on the following two
well-known secret sharing schemes.

Definition 8 (Extended Shamir Secret Sharing Scheme). Let K be a finite field sat-
isfying |K| ≥ k + 1 and let α1, . . . , αk ∈ K be k distinct non-zero field elements. To
share a secret s ∈ K�, the dealer chooses a random vector a ∈ K�, and gives the server
h the share zh ∈ K�, where for every j ∈ [�] it holds that zhj = sj + αhaj .

Definition 9 (Leading-Coefficient Secret Sharing Scheme). Let K be a finite field
satisfying |K| ≥ k and let α1, . . . , αk ∈ K be k distinct field elements. To share a
secret s ∈ K�, the dealer chooses a random vector a ∈ K�, and gives the server h the
share zh ∈ K�, where for every j ∈ [�] it holds that zhj = aj + αhsj .

We turn to describe a subclass of SCCs which we call threshold-based SCCs.

Definition 10 (Threshold-Based SCC). LetC be a lineark-SCCC : Fn → Fm, where
m = p̃� for some prime p̃ and positive integer �. We identify the set [m] of code indices
with K�, where K = Fp̃, and view it as a domain of secrets. For an index s ∈ K�,
consider the family Zs of subsets of K� of size at most k used by the corrector M to
correct the index labeled by s in a codeword. The code C with corrector M is called a
threshold-based SCC (e.g., Shamir-based SCC or leading-coefficient-based SCC), if the
families {Zs}s∈K� correspond to a threshold secret sharing scheme. That is, the sets of
indices, probed by the corrector to correct the codeword index labeled by s, are exactly
the sets of possible secret shares given to k servers in the secret sharing applied on the
secret s.

5 We note that we use here a field K, since the field F continues to serve as the field of the SCC,
while K serves as the field of the vector space that represents the indices of the code.
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The next claim shows how to transform a Shamir-based SCC into a design. Each block
of the design corresponds to a secret and a set of shares used by the corrector of the
SCC.

Claim 5 (From Shamir-based SCC to Design). Let m = p̃� for some prime p̃. If there
exists Shamir-based k-SCC C : Fn → Fm, where F is a field of characteristic p, then
there exists a 2-(m, k + 1, λ) design of p-dimension m− n, for some integer λ.

Leading coefficient secret sharing schemes yield the following non-perfect version of
combinatorial designs.

Definition 11 (Almost Design). Let B be a family of subsets of [m]. The pair D =
〈[m],B〉 is a 2-(m, k, λ) ε-almost design, where 0 ≤ ε < 1, if all the sets in B are of
size k, every 2 distinct points in [m] appear together in at most λ blocks, and for every
i ∈ [m], it holds that for at least (1− ε)m values j ∈ [m] the set {B ∈ B : i, j ∈ B} is
of size exactly λ.

The definition of p-dimension generalizes naturally to almost designs. In the full version
of the paper we show that almost designs with low p-dimension imply SCCs with good
parameters (similarly to Claim 4) and that leading-coefficient-based SCCs imply almost
designs with low p-dimension (similarly to Claim 5).

Next, we propose a generalization of Hamada’s conjecture, which relaxes the original
conjecture in considering p-dimension rather than p-rank.

Conjecture 2 (Generalized Hamada). Consider the design AG(m, q) from Exam-
ple 1, where q is a prime power. Then, the q-dimension of the design AG(m, q) is
not larger than the q-dimension of any design with the same parameters.

Moreover, we conjecture that any almost design with the same parameters will not have
asymptotically smaller q-dimension. Furthermore, letting q′ be a fixed prime power co-
prime to q, we anticipate that the q′-dimension of any design of the above parameters
will not be asymptotically smaller than the q-dimension of AG(m, q).

Threshold-based LDCs can be defined in a similar way to threshold-based SCCs,
with the only difference that here the domain of secrets is only the message indices
[n] and not the codewords indices [m]. In particular, the best known LDC of [36] is
leading-coefficient-based. However, a threshold-based LDC does not imply a result on
the dimension of designs, as the sets used to correct a message symbol do not corre-
spond to a design. This may serve as an explanation to the fact that if Conjecture 2
is true, then in a framework of Shamir-based or leading-coefficient-based codes, there
is a strong separation between LDCs and SCCs. For instance, for k = 3 there is a
leading-coefficient-based LDC of complexity exp(n−107

) while for SCCs, assuming
the conjectures above, the complexity is exp(n1/2).

6 Open Questions

Our results leave open the following two interesting questions:

– Is there a true gap between the complexity of LDCs and SCCs? Are there better
SCCs than those based on Reed-Muller codes? For instance, is there a 3-query
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binary SCC of length 2o(n
1/2)? Our results of Section 5 may be viewed as providing

evidence that making progress on this front would be difficult.
– Is there a better general transformation from any k-server PIR to t-private PIR?

Our general transformations from Section 3 either require kt servers or require the
underlying PIR to have the stronger “self-retrieval” property.

Acknowledgments. We wish to thank Amos Beimel, Tuvi Etzion, Eyal Kushilevitz,
and Ronny Roth for helpful discussions.
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Abstract. We present the fastest FPRAS for counting and randomly
generating simple graphs with a given degree sequence in a certain range.
For degree sequence (di)

n
i=1 with maximum degree dmax = O(m1/4−τ ),

our algorithm generates almost uniform random graph with that degree
sequence in time O(mdmax) where m = 1

2

∑
i di is the number of edges

in the graph and τ is any positive constant. The fastest known FPRAS
for this problem [22] has running time of O(m3n2). Our method also
gives an independent proof of McKay’s estimate [33] for the number of
such graphs.

Our approach is based on sequential importance sampling (SIS) tech-
nique that has been recently successful for counting graphs [15,11,10].
Unfortunately validity of the SIS method is only known through simu-
lations and our work together with [10] are the first results that analyze
the performance of this method.

Moreover, we show that for d = O(n1/2−τ ), our algorithm can generate
an asymptotically uniform d-regular graph. Our results are improving the
previous bound of d = O(n1/3−τ ) due to Kim and Vu [30] for regular
graphs.

1 Introduction

The focus of this paper is on generating random simple graphs (graphs with no
multiple edge or self loop) with a given degree sequence. Random graph gen-
eration has been studied extensively as an interesting theoretical problem (see
[42,11] for detailed surveys). It has also become an important tool in a variety
of real world applications including detecting motifs in biological networks [37]
and simulating networking protocols on the Internet topology [41,19,32,14,2].
The most general and well studied approach for this problem is the Markov
chain Monte Carlo (MCMC) method [22,23,24,25,16,18,26,8]. However, current
MCMC-based algorithms have large running times, which make them unusable
for real-world networks that have tens of thousands of nodes (for example, see
[20]). This has constrained practitioners to use simple heuristics that are non-
rigorous and have often led to wrong conclusions [36,37]. Our main contribution
in this paper is to provide a much faster fully polynomial randomized approxi-
mation scheme (FPRAS) for generating random graphs; this we can do in almost

M. Charikar et al. (Eds.): APPROX and RANDOM 2007, LNCS 4627, pp. 326–340, 2007.
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linear time. An FPRAS provides an arbitrary close approximaiton in time that
depends only polynomially on the input size and the desired error. (For precise
definitions of this, see Section 2).

Recently, sequential importance sampling (SIS) has been suggested as a more
suitable approach for designing fast algorithms for this and other similar prob-
lems [15,11,31,4]. Chen et al. [15] used the SIS method to generate bipartite
graphs with a given degree sequence. Later Blitzstein and Diaconis [11] used
a similar approach to generate general graphs. Almost all existing work on SIS
method are justified only through simulations and for some special cases counter
examples have been proposed [9]. However the simplicity of these algorithms and
their great performance in several instances, suggest further study of the SIS
method is necessary.

Our Result. Let d1, . . . , dn be non-negative integers given for the degree sequence
and let

∑n
i=1 di = 2m. Our algorithm is as follows: start with an empty graph

and sequentially add edges between pairs of non-adjacent vertices. In every step
of the procedure, the probability that an edge is added between two distinct
vertices i and j is proportional to d̂id̂j(1 − didj/4m) where d̂i and d̂j denote
the remaining degrees of vertices i and j. We will show that our algorithm
produces an asymptotically uniform sample with running time of O(mdmax)
when maximum degree is of O(m1/4−τ ) and τ is any positive constant. Then we
use a simple SIS method to obtain an FPRAS for any ε, δ > 0 with running time
O(mdmaxε

−2 log(1/δ)) for generating graphs with dmax = O(m1/4−τ ). Moreover,
we show that for d = O(n1/2−τ ), our algorithm can generate an asymptotically
uniform d-regular graph. Our results are improving the bounds of Kim and Vu
[30] and Steger and Wormald [40] for regular graphs.

Related Work. McKay and Wormald [33,35] give asymptotic estimates for num-
ber of graphs within the range dmax = O(m1/3−τ ). But, the error terms in their
estimates are larger than what is needed to apply Jerrum, Valiant and Vazirani’s
[21] reduction to achieve asymptotic sampling. Jerrum and Sinclair [22] however,
use a random walk on the self-reducibility tree and give an FPRAS for sampling
graphs with maximum degree of o(m1/4). The running time of their algorithm
is O(m3n2ε−2 log(1/δ)) [39]. A different random walk studied by [23,24,8] gives
an FPRAS for random generation for all degree sequences for bipartite graphs
and almost all degree sequences for general graphs. However the running time
of these algorithms is at least O(n4m3dmax log5(n2/ε)ε−2 log(1/δ)).

For the weaker problem of generating asymptotically uniform samples (not
an FPRAS) the best algorithm was given by McKay and Wormald’s switch-
ing technique on configuration model [34]. Their algorithm works for graphs
with d3

max =O(m2/
∑
i d

2
i ) and d3

max = o(m +
∑
i d

2
i ) with average running

time of O(m + (
∑

i d
2
i )

2). This leads to O(n2d4) average running time for d-
regular graphs with d = o(n1/3). Very recently and independently from our
work, Blanchet [10] have used McKay’s estimate and SIS technique to obtain
an FPRAS with running time O(m2) for sampling bipartite graphs with given
degrees when dmax = o(m1/4). His work is based on defining an appropriate
Lyapunov function as well as using Mckay’s estimates.
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Our Technical Contribution. Our algorithm and its analysis are based on beau-
tiful works of Steger and Wormald [40] and Kim and Vu [29]. The technical
contributions of our work beyond their analysis are the followings:

1. In both [40,29] the output distribution of proposed algorithms are asymp-
totically uniform. Here we use SIS technique to obtain an FPRAS.

2. Both [40,29] use McKay’s estimate [33] in their analysis. In this paper we give
a combinatorial argument to show the failure probability of the algorithm is
small and attain a new proof for McKay’s estimate.

3. We exploit combinatorial structure and a simple martingale tail inequality
to show concentration results in the range d = O(n1/2−τ ) for regular graphs
that previous polynomial inequalities [28] do not work.

Other Applications and Extensions. Our algorithm and its analysis provide more
insight into the modern random graph models such as the configuration model or
random graphs with a given expected degree sequence [17]. In these models, the
probability of having an edge between vertices i and j of the graph is proportional
to didj . However, one can use our analysis or McKay’s formula [33] to see that in
a random simple graph this probability is proportional to didj(1−didj/2m). We
expect that, by adding the correction term and using the concentration result of
this paper, it is possible to achieve a better approximation for which sandwiching
theorems similar to [30] can be applied.

We have also used similar ideas to generate random graphs with large girth
[5]. These graphs are used to design high performance Low-Density Parity-Check
(LDPC) codes. One of the methods for constructing these codes is to generate a
random bipartite graph with a given optimized degree sequence [3]. Two common
heuristics for finding good codes are as follows: (i) generate many random copies
and pick the one with the highest girth; (ii) grow progressively the graph while
avoiding short loops. While the former implies an exponential slowing down
in the target girth, the latter induces a systematic and uncontrolled bias in the
graph distribution. Using the same principles, we can remove the bias and achieve
a more efficient algorithm that sequentially adds the edges avoiding small cycles.

Organization of the Paper. The rest of the paper has the following structure. The
algorithm and the main results are stated in Section 2. In Section 3 we explain
the intuition behind the weighted configuration model and our algorithm. It
also includes the FPRAS using SIS approach. Section 4 is dedicated to analysis
and proofs. We have included the main proofs in this section but due to space
limitations some key ingredients such as combinatorial proof for probability of
failure and also proofs for controlling the variance of SIS estimator are given in
the extended version of this paper [6].

2 Our Algorithm

Suppose we are given a sequence of n nonnegative integers d1, d2, . . . dn with∑n
i=1 di = 2m and a set of vertices V = {v1, v2, . . . , vn}. Assume the sequence of
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given degrees d1, . . . , dn is graphical. That is there exists at least one simple graph
with those degrees. We propose the following procedure for sampling (counting)
an element (number of elements) of set L(d̄) of all labeled simple graphs G
with V (G) = V and degree sequence d̄ =(d1, d2, · · · , dn). Throughout this paper
m =

∑n
i=1 di/2 is number of edges in the graph, dmax = maxni=1{di} and for

regular graphs d refers to degrees; i.e. di = d for all i = 1, . . . , n.

Procedure A

(1) Let E be a set of edges, d̂ = (d̂1, . . . , d̂n) be an n-tuple of integers and P be
a number. Initialize them by E = ∅, d̂ = d̄, and P = 1.

(2) Choose two vertices vi, vj ∈ V with probability proportion to d̂id̂j(1− didj

4m )
among all pairs i, j with i �= j and (vi, vj) /∈ E. Denote this probability by
pij and multiply P by pij . Add (vi, vj) to E and reduce each of d̂i, d̂j by 1.

(3) Repeat step (2) until no more edge can be added to E.
(4) If |E| < m report failure and output N = 0, otherwise output G = (V,E)

and N = (m! P )−1.

Note that for regular graphs the factors 1 − didj/4m are redundant and Pro-
cedure A is the same as Steger-Wormald’s [40] algorithm. Next two theorems
characterize output distribution of Procedure A.

Theorem 1. Let τ > 0: For any degree sequence d̄ with maximum degree of
O(m1/4−τ ), Procedure A terminates successfully in one round with probability
1 − o(1) and any graph G with degree sequence d̄ is generated with probability
within 1 ± o(1) factor of uniform. Expected running time of Procedure A is at
most O(mdmax).

For regular graphs a similar result can be shown in a larger range of degrees.
Let L(n, d) denotes the set of all d regular graphs with n vertices:

Theorem 2. Let τ > 0: If d = O(n1/2−τ ), then for all graphs G ∈ L(n, d)
except a set of size o(|L(n, d)|) Procedure A generates G with probability within
1 ± o(1) factor of uniform. In other words as n → ∞ output distribution of
Procedure A converges to uniform in total variation metric.

The above results show that output distribution of Procedure A is asymptotically
uniform only as n→∞. But for finite values of n we use SIS to obtain an FPRAS
for calculating |L(d̄)| and randomly generating its elements.

Definition 1. An algorithm for approximately counting (randomly generating)
graphs with degree sequence d̄ is called an FPRAS if for any ε, δ > 0, it runs
in time polynomial in m, 1/ε, log(1/δ) and with probability at least 1 − δ the
output of the algorithm is number of graphs (a graph with uniform probability)
up to a multiplicative error of 1 ± ε. For convenience we define a real valued
random variable X to be an (ε, δ)-estimate for a number y if P{(1− ε)y ≤ X ≤
(1 + ε)y} ≥ 1− δ.
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The following theorem summarizes our main result.

Theorem 3. Let τ > 0: For any degree sequence d̄ with maximum degree of
O(m1/4−τ ) and any ε, δ > 0 we give an FPRAS for counting and generating
graphs with degree sequence d̄ with running time O(mdmaxε

−2 log(1/δ)).

3 Definitions and the Main Idea

Before explaining our approach let us quickly review the configuration model
[12,7]. Let W = ∪ni=1Wi be a set of 2m =

∑n
i=1 di labeled mini-vertices with

|Wi| = di. If one picks two distinct mini-vertices uniformly at random and pairs
them together then repeats that for remaining mini-vertices, after m steps a per-
fect matchingM on the vertices of W is generated. Such matching is also called
a configuration on W . One can see that number of all distinct configurations
is equal to (1/m!)

∏m−1
r=0

(
2m−2r

2

)
. The same equation shows that this sequential

procedure generates all configurations with equal probability. Given a configu-
ration M, combining all mini-vertices of each Wi to form a vertex vi, a graph
GM is generated whose degree sequence is d̄.

Note that the graph GM might have self edge loops or multiple edges. In
fact McKay and Wormald’s estimate [35] show that this happens with very high
probability except when dmax = O(log1/2m). In order to fix this problem, at
any step one [40] can only look at those pairs of mini-vertices that lead to simple
graphs (denote these by suitable pairs) and pick one uniformly at random. For
d-regular graphs when d = O(n1/28−τ ) Steger-Wormald [40] have shown this
approach asymptotically samples regular graphs with uniform distribution and
Kim-Vu [29] have extended that result to d = O(n1/3−τ ).

Weighted Configuration Model. Unfortunately for general degree sequences some
graphs can have probabilities that are far from uniform. In this paper we will
show that for non-regular degree sequences suitable pairs should be picked non-
uniformly. In fact Procedure A is a weighted configuration model where at any
step a suitable pair (u, v) ∈ Wi ×Wj is picked with probability proportional to
1− didj/4m.

Here is a rough intuition behind Procedure A. Define the execution tree T of the
configuration model as follows. Consider a rooted tree where root (the vertex in
level zero) corresponds to the empty matching in the beginning of the model and
level r vertices correspond to all partial matchings that can be constructed after r
steps. There is an edge in T between a partial matchingMr from level r to a partial
matchingMr+1 from level r + 1 ifMr ⊂Mr+1. Any path from the root to a leaf
of T corresponds to one possible way of generating a random configuration.

Let us denote those partial matchingsMr whose corresponding partial graph
GMr is simple by “valid” matchings. Denote the number of invalid children of
Mr by Δ(Mr). Our goal is to sample valid leaves of the tree T uniformly at
random. Steger-Wormald’s improvement to configuration model is to restrict the
algorithm at step r to the valid children of Mr and picking one uniformly at
random. This approach leads to almost uniform generation for regular graphs
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[40,29] since the number of valid children for all partial matchings at level r of
the T, is almost equal. However it is crucial to note that for non-regular degree
sequences if the (r + 1)th edge matches two elements belonging to vertices with
larger degrees, the number of valid children forMr+1 will be smaller. Thus there
will be a bias towards graphs that have more of such edges.

In order to find a rough estimate of the bias fix a graphG with degree sequence
d̄. Let M(G) be set of all leaves M of the tree T that lead to graph G; i.e.
Configurations M with GM = G. It is easy to see that |M(G)| = m!

∏n
i=1 di!.

Moreover for exactly (1−qr) |M(G)| of these leaves a fixed edge (i, j) ofG appears
in the first r edges of the path leading to them; i.e. (i, j) ∈ Mr. Here qr = (m−
r)/m. Furthermore we can show that for a typical such leaf after step r, number
of unmatched mini-vertices in each Wi is roughly diqr. Thus expected number
of un-suitable pairs (u, v) is about

∑
i∼Gj

didjq
2
r(1 − qr). Similarly expected

number of unsuitable pairs corresponding to self edge loops is approximately∑n
i=1

(
diqr

2

)
≈ 2mq2rλ(d̄) where λ(d̄) =

∑n
i=1

(
di

2

)
/(
∑n
i=1 di). Therefore defining

γG =
∑

i∼Gj
didj/4m and using

(
2m−2r

2

)
≈ 2m2q2r we can write

P(G) ≈ m!
n∏

i=1

di!
m−1∏

r=0

1
2m2q2r − 2mq2rλ(d̄)− 4m(1− qr)q2rγG

≈ eλ(d̄)+γG m!
n∏

i=1

di!
m−1∏

r=0

1
(
2m−2r

2

) ∝ eγG

Hence adding the edge (i, j) roughly creates an exp(didj/4m) bias. To cancel
that effect we need to reduce probability of picking (i, j) by exp(−didj/4m) ≈
1− didj/4m. We will rigorously prove the above argument in Section 4.

Sequential Importance Sampling (SIS). For finite values ofm output distribution
of Procedure A can be slightly nonuniform but sequential nature of Procedure
A gives us extra information that can be exploited to obtain very close approxi-
mations of any target distribution, including uniform. In particular the random
variable N that is output of Procedure A is an unbiased estimator for |L(d̄)|.
More specifically:

EA(N) = EA(N1{A succeeds}) =
∑

G∈L(d̄)

∑

πG

[m! PA(πG)]−1 PA(πG) = |L(d̄)|

where πG denotes one of the m! ways of generating a graph G by Procedure A.
Therefore we suggest the following algorithm for approximating |L(d̄)|.

Algorithm: CountGraphs(ε, δ)

(1) For k = k(ε, δ) run Procedure A exactly k times and denote the correspond-
ing values of the random variable N by N1, . . . , Nk.

(2) Output X = N1+···+Nk

k as estimator for |L(d̄)|.
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We will show in the next section that if variance of the random variable N
is small enough then Algorithm CountGraphs gives the desired approximation
when k(ε, δ) = O(ε−2 log(1/δ)). In order to generate elements of L(d̄) with prob-
abilities very close to uniform we will use the estimator X and apply SIS to a
different random variable. For that the algorithm is as follows:

Algorithm: GenerateGraph(ε, δ)

(1) Let X be an (ε, δ)-estimate for |L(d̄)| given by Algorithm CountGraphs.
(2) Repeat Procedure A to obtain one successful outcome G.
(3) Find an (ε, δ)-estimate, PG, for PA(G) using Procedure B.
(4) Report G with probability1

1
X

5PG
and stop. Otherwise go back to step (2).

The crucial step of Algorithm GenerateGraph is step (3) that is finding (ε, δ)-
estimate for PA(G). For that we use Procedure B which is exactly similar to
Procedure A except for steps (2), (4).

Procedure B(G, ε, δ)

(1) Let E be a set of edges, d̂ = (d̂1, . . . , d̂n) be an n-tuple of integers and P be
a number. Initialize them by E = ∅, d̂ = d̄, and P = 1.

(2) Choose an edge e = (vi, vj) of G that is not in E uniformly at random.
Assume that (vi, vj) is chosen with probability proportion to d̂id̂j(1− didj

4m )
among all pairs i, j with i �= j and (vi, vj) /∈ E. Denote this probability by
pij and multiply P by pij . Add (vi, vj) to E and reduce each of d̂i, d̂j by 1.

(3) Repeat step (2) until no more edge can be added to E.
(4) Repeat steps (1) to (3) exactly � = �(ε, δ) times and let P1, . . . , P� be corre-

sponding values for P . Output PG = m!P1+···+P�

� as estimator for PA(G).

Note that random variable P at the end of step (3) is exactly PA(πG) for a
random permutation of the edges of G. It is easy to see that EB(P ) = PA(G)/m!.
Therefore PG is an unbiased estimator for PA(G). Later we will show that it is
an (ε, δ)-estimator as well by controlling the variance of random variable P .

4 Analysis

Let us fix a simple graph G with degree sequence d̄. Denote the set of all edge-
wise different perfect matchings on mini-vertices of W that lead to graph G by
R(G). Any two elements of R(G) can be obtained from one another by permuting
labels of the mini-vertices in any Wi. We will find probability of generating a
fixed element M in R(G). There are m! different orders for picking edges ofM
sequentially and different orderings could have different probabilities. Denote
the set of these orderings by S(M). Thus

1 In section 4 we will show that 1
X

< 5PG for large enough n (independent of ε, δ > 0).
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PA(G) =
∑

M∈R(G)

∑

N∈S(M)

PA(N ) =
n∏

i=1

di!
∑

N∈S(M)

PA(N ).

For any orderingN = {e1, . . . , em} ∈ S(M) and 0 ≤ r ≤ m−1 denote probability
of picking the edge er+1 by P(er+1). Hence PA(N ) =

∏m−1
r=0 P(er+1) and each

term P(er+1) equals to

P (er+1 = (i, j)) =
(1− didj/4m)

∑
(u,v)∈Er

d
(r)
u d

(r)
v (1− dudv/4m)

where d(r)
i denotes the residual degree of vertex i after r steps which shows num-

ber of unmatched mini-vertices of Wi at step r. The set Er consists of all possible
edges after picking e1, . . . , er. Denominator of the above fraction for P(er+1) can
be written as

(
2m−2r

2

)
−Ψ(Nr) where Ψ(Nr)=Δ(Nr)+

∑
(i,j)∈Er

d
(r)
i d

(r)
j didj/4m.

This is because
∑

(u,v)∈Er
d
(r)
u d

(r)
v counts number of suitable pairs in step r and

is equal to
(
2m−2r

2

)
−Δ(Nr). The quantity Ψ(Nr) can be also viewed as sum of

the weights of unsuitable pairs. Now using 1− x = e−x+O(x2) for 0 ≤ x ≤ 1 we
can write PA(G) in the range dmax = O(m1/4−τ ) as following

PA(G) =
n∏

i=1

di!
∏

i∼Gj

(1− didj
4m

)
∑

N∈S(M)

m−1∏

r=0

1
(
2m−2r

2

)
− Ψ(Nr)

=
n∏

i=1

di! e−γG+o(1)
∑

N∈S(M)

m−1∏

r=0

1
(
2m−2r

2

)
− Ψ(Nr)

The next step is to show that with very high probability Ψ(Nr) is close to a
number ψr(G) independent of the ordering N . More specifically for ψr(G) =

(2m− 2r)2
(
λ(d̄)
2m +

r
∑

i∼Gj(di−1)(dj−1)

4m3 + (
∑n

i=1 d
2
i )2

32m3

)
the following is true

∑

N∈S(M)

m−1∏

r=0

1
(
2m−2r

2

)
− Ψ(Nr)

= (1 + o(1))m!
m−1∏

r=0

1
(
2m−2r

2

)
− ψr(G)

(1)

The proof of this concentration uses Kim-Vu’s polynomial [28] and is quite tech-
nical. It generalizes Kim-Vu’s [29] calculations to general degree sequences. To
the interest of space we omit this cumbersome analysis but it is given in in Section
5 of extended version of this paper [6]. But in Section 4.1 we show concentration
for regular graphs in a larger region using a new technique.

Next step is to show the following equation for dmax = O(m1/4−τ ).

m−1∏

r=0

1
(
2m−2r

2

)
− ψr(G)

=
m−1∏

r=0

1
(
2m−2r

2

)eλ(d̄)+λ2(d̄)+γG+o(1). (2)

Proof of equation (2) is algebraic and is given in Section 5.2 of [6]. Following
lemma summarizes the above analysis.



334 M. Bayati, J.H. Kim, and A. Saberi

Lemma 1. For dmax = O(m1/4−τ ) Procedure A generates all graphs with degree
sequence d̄ with asymptotically equal probability. More specifically

∑

N∈S(M)

P(N ) =
m!

∏m
r=0

(
2m−2r

2

)eλ(d̄)+λ2(d̄)+o(1)

Proof (of Theorem 1). In order to show that PA(G) is uniform we need an impor-
tant piece. Lemma 1 shows that PA(G) is independent of G but this probability
might be still far from uniform. In other words we need to show that Procedure
A always succeed with probability 1− o(1). We will show this in section 6 of [6]
by proving the following lemma.

Lemma 2. For dmax = O(m1/4−τ ) the probability of failure in one trial of Pro-
cedure A is o(1).

Therefore all graphs G are generated asymptotically with uniform probability.
Note that this will also give an independent proof of McKay’s formula [33] for
number of graphs.

Finally we are left with analysis of the running time which is given by the
following lemma.

Lemma 3. The Procedure A can be implemented so that the expected running
time is O(mdmax) for dmax = O(m1/4−τ ).

Proof of Lemma 3 is given in Section 7 of [6]. This completes proof of
Theorem 1.

Proof (of Theorem 3). First we will prove the following result about output X
of Algorithm GraphCount.

Lemma 4. For any ε, δ > 0 there exist k(ε, δ) = O(ε−2 log(1/δ)) where X is an
(ε, δ)-estimator for |L(d̄)|.

Proof. By definition

P
(
(1 − ε)|L(d̄)| < X < (1 + ε)|L(d̄)|

)
=P

⎛

⎝− εEA(N)
√

VarA(N)
k

<
X − EA(X)
√

VarA(N)
k

<
εEA(N)
√

VarA(N)
k

⎞

⎠

On the other hand by central limit theorem limk→∞
X−EA(X)√
VarA(N)/k

d= Z ∼ N(0, 1).

Therefore εEA(N)√
VarA(N)/k

> zδ guarantees that X is (ε, δ)-estimator |L(d̄)| where

P(|Z| > zδ) = δ. This condition is equivalent to: k > z2
δε

−2VarA(N)/EA(N)2.
Moreover for tail of normal distribution we have P(Z > x) ≈ x−1e−x

2/2(2π)−1 as
x→ +∞ which gives z2

δ = o(log(1/δ)). This means if we show VarA(N)/EA(N)2

<∞ then k = O(log(1/δ)ε−2). In fact we will prove a stronger statement

VarA(N)
EA(N)2

= o(1) (3)

Proof of equation (3) is given in Section 8.1 of [6].
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Last step is to find running time of Algorithm CountGraph. By Theorem 1
each trial of Procedure A takes time O(mdmax). Therefore running time of Algo-
rithm CountGraph is exactly k times O(mdmax) which is O(mdmaxε

−2 log(1/δ)).
This finishes proof of Lemma 4.

Now we are left with analysis of Algorithm GenerateGraph which is given by
following lemma.

Lemma 5. For any ε, δ > 0 there exist �(ε, δ) for Procedure B such that Al-
gorithm GenerateGraph uses O(mdmaxε

−2 log(1/δ)) operations and its output
distribution is an (ε, δ)-estimator for uniform distribution.

Similar calculations as in proof of Lemma 4 show that provided VarB(P )/EB(P )2

< ∞ then for any graph G there exist �(ε, δ) = O(ε−2 log(1/δ)) such that esti-
mator PG is an (ε, δ)-estimator for PA(G). Similarly we will show the following
stronger result in section 8.2 of [6].

VarB(P )
EB(P )2

= o(1) (4)

Now we are ready to prove Lemma 5.

Proof (Proof of Lemma 5). From Theorem 1 there exist integer n0 > 0 inde-
pendent of ε, δ such that for n > n0 the following is true 0.5|L(d̄)| ≤ PA(G) ≤
1.5|L(d̄)|. Thus using Lemma 4 for any ε′, δ′ > 0 and k = k(ε′, δ′) and also
� = k(ε′, δ′), with probability 1− 2δ′ we have:

0.5
1− ε′
1 + ε′

≤
1
X

PG
≤ 1.5

1 + ε′

1− ε′ (5)

Note that for δ′ < δ/2 and ε′ < min(0.25, ε/2) the upper bound in equation
(5) is strictly less than 5 which means 5PGX > 1 and this validates step (4)
of Algorithm GenerateGraph. Moreover the lower bound in equation (5) is at
least 1/8 which shows that expected number of repetitions in Algorithm Gen-
erateGraph is at most 8. On the other hand probability of generating a graph
G by one trial of Algorithm GenerateGraph is equal to PA(G)/(5XPG). This
means probability of generating an arbitrary graph G in one round of Algorithm
GenerateGraph is an (ε, δ)-estimator for 1

5X . Therefore final output distribution
of Algorithm GenerateGraph is an (ε, δ)-estimator for uniform distribution.

Expected running time of Algorithm GenerateGraph is at most 8k times ex-
pected running time of Procedure A plus expected running time of Algorithm
GraphCount which is O(mdmaxε

−2 log(1/δ)). This finishes proof of Lemma 5
and therefore proof of Theorem 3.

4.1 Concentration Inequality for Random Regular Graphs

Recall that L(n, d) denotes the set of all simple d-regular graphs with m =
nd/2 edges. Same as before let G be a fixed element of L(n, d) and M be
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a fixed matching on W with GM = G. The main goal is to show that for
d = o(n1/2−τ ) probability of generating G is at least (1 − o(1)) of uniform; i.e.
PA(G) = (d!)n

∑
N∈S(M) P(N ) ≥ (1− o(1)) /|L(n, d)|. Our proof builds upon

the steps in Kim and Vu [30]. The following summarizes the analysis of Kim and
Vu [30] for d = O(n1/3−τ ). Let m1 = m

d2ω where ω goes to infinity very slowly;
e.g. O(logδ n) for small δ > 0 then:

|L(n, d)|(d!)n
∑

N∈S(M)

P(N )
(a)
=

1− o(1)
m!

∑

N∈S(M)

m−1∏

r=0

(
2m−2r

2

)
− μr

(
2m−2r

2

)
−Δ(Nr)

(b)

≥ 1− o(1)
m!

∑

N∈S(M)

m1∏

r=0

(

1 +
Δ(Nr)− μr

(
2m−2r

2

)
−Δ(Nr)

)

(c)

≥ (1− o(1))
m1∏

r=0

(

1− 3
T 1
r + T 2

r

(2m− 2r)2

)

(d)

≥ (1− o(1)) exp

(

−3e
m1∑

r=0

T 1
r + T 2

r

(2m− 2r)2

)

(6)

Here we explain these steps in more details. First define μr = μ1
r+μ

2
r where μ1

r =
(2m− 2r)2(d− 1)/4m and μ2

r = (2m− 2r)2(d− 1)2r/4m2. Step (a) follows from
equation (3.5) of [30] and McKay-Wormald’s estimate [35] for regular graphs.
Also algebraic calculations in page 10 of [30] justify (b).

The main step is (c) which uses large deviations. For simplicity write Δr

instead of Δ(Nr) and let Δr = Δ1
r + Δ2

r where Δ1
r and Δ2

r show the number
of unsuitable pairs in step r corresponding to self edge loops and double edges
respectively. For pr = r/m, qr = 1 − pr Kim and Vu [30] used their polynomial
inequality [28] to derive bounds T 1

r , T
r
2 and to show with very high probability

|Δ1
r − μ1

r| < T 1
r and |Δ2

r − μ2
r| < T 2

r . More precisely for some constants c1, c2

T 1
r = c1 log2 n

√
nd2q2r(2dqr + 1), T 2

r = c2 log3 n
√
nd3q2r(d2qr + 1)

Now it can be shown that μir = o
(
(2m− 2r)2

)
and T ir = o

(
(2m− 2r)2

)
, i = 1, 2

which validates the step (c). The step (d) is straightforward using 1− x ≥ e−ex
for 1 ≥ x ≥ 0.

Kim and Vu show that for d = O(n1/3−τ ) the exponent in equation (6) is of
o(1). Using similar calculations as equation (3.13) in [30] it can be shown that
in the larger region d = O(n1/2−τ ) for m2 = (m log3 n)/d:

m1∑

r=0

T 1
r

(2m− 2r)2
= o(1),

m1∑

r=m2

T 2
r

(2m− 2r)2
= o(1)

But unfortunately the remaining
∑m2

r=0
T 2

r

(2m−2r)2 is of order Ω(d3/n). In fact it
turns out the random variable Δ2

r has large variance in this range.
Let us explain the main difficulty for moving from d = O(n1/3−τ ) to d =

O(n1/2−τ ). Note that Δ2
r is defined on a random subgraphs GNr of the graph G
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which has exactly r edges. Both [40] and [29,30] have approximated the GNr with
Gpr in which each edge of G appears independently with probability pr = r/m.
Our analysis shows that when d = O(n1/2−τ ) this approximation causes the
variance of Δ2

r to blow up.
In order to fix this problem we modify Δ2

r before moving to Gpr . It can
be shown via simple algebraic calculations that: Δ2

r − μ2
r = Xr + Yr where

Xr=sumu∼GNr
v[d

(r)
u − qr(d− 1)][d(r)

v − qr(d− 1)] and Yr=qr(d− 1)
∑
u[(d

(r)
u −

qrd)2−dprqr]. This modification is critical since the equality Δ2
r−μ2

r = Xr−Yr
does not hold in Gpr .

Next task is to find a new bound T̂ 2
r such that |Xr −Yr| < T̂ 2

r with very high
probability and

∑m2
r=0

T̂ 2
r

(2m−2r)2 = o(1). It is easy to see that in Gpr both Xr

and Yr have zero expected value. At this time we will move to Gpr and show
that Xr and Yr are concentrated around zero. In the following we will show the
concentration of Xr in details. For Yr it can be done in exact same way.

Consider the edge exposure martingale (page 94 of [1]) for the edges that are
picked up to step r. That is for any 0 ≤ � ≤ r define Zr� = E(Xr | e1, . . . , e�).
For simplicity of notation let us drop the index r from Zr� , d

(r)
u , pr and qr.

Next step is to bound the martingale difference |Zi − Zi−1|. Note that for
ei = (u, v):

|Zi−Zi−1|=
∣
∣
∣
∣
(
du−(d−1)q

)(
dv−(d−1)q

)
+
∑

u′∼Gp u

(
du′ −(d−1)q

)
+
∑

v′∼Gp v

(
dv′−(d−1)q

)
∣
∣
∣
∣

(7)

Bounding the above difference should be done carefully since the standard worst
case bounds are weak for our purpose. Note that the following observation is
crucial. For a typical ordering N the residual degree of the vertices are roughly
dq ±

√
dq. We will make this more precise. For any vertex u ∈ G consider the

following Lu = {|du − dq| ≤ c log1/2 n(dq)1/2} where c > 0 is a large constant.
Then the following lemma holds:

Lemma 6. For all 0 ≤ r ≤ m2 the following is true: P(Lcu) = o( 1
m4 ).

Proof of Lemma 6 uses generalization of the Chernoff inequality from [1] and is
given in Section 9 of [6].

To finish bounding the martingale difference we look at other terms in equa-
tion (7). For any vertex u consider the event

Ku =

⎧
⎨

⎩
|
∑

u′∼Gpu

(du′ − (d− 1)q)| ≤ c
(
(dq)3/2 + qd+ dq1/2

)
logn

⎫
⎬

⎭

where c > 0 is a large constant. We will use the following lemma to bound the
martingale difference.

Lemma 7. For all 0 ≤ r ≤ m2 the followings hold P(Kc
u) = o( 1

m4 ).

Proof of Lemma 7 is given in Section 9 of [6].
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Now we are ready to bound the martingale difference. Let L=
⋂m2
r=0

⋂ n
u=1(Lu∩

Ku). Using Lemmas 6, 7 and the union bound P(Lc) = o(1/m2). Hence for the
martingale difference we have |Zi − Zi−1|1L ≤ O(dq + dq1/2 + (dq)3/2) log n.

Next we state and use the following variation of Azuma’s inequality.

Proposition 1 (Kim [27]). Consider a martingale {Yi}ni=0 adaptive to a fil-
tration {Bi}ni=0. If for all k there are Ak−1 ∈ Bk−1 such that E[eωYk |Bk−1] ≤ Ck
for all k = 1, 2, · · · , n with Ck ≥ 1 for all k, then

P(Y −E[Y ] ≥ λ) ≤ e−λω
n∏

k=1

Ck + P(∪n−1
k=0Ak)

Proof (of Theorem 2). Applying the above proposition for a large enough con-
stant c′ > 0 gives:

P

(

|Xr| > c′
√

6r log3 n
(
dq + d(q)1/2 + (dq)3/2

)2
)

≤ e−3 log n + P(Lc) = o(
1
m2

)

The same equation as above holds for Yr since the martingale difference for Yr
is of O(|dqr(du − qrd)|) = O((dq)3/2 log1/2 n)) using Lemma 6.

Therefore defining T̂ 2
r = c′(dq + d(q)1/2 + (dq)3/2)

√
6r log3 n we only need to

show the following is o(1).

m2∑

r=0

(dq + d(q)1/2 + (dq)3/2)
√

6r log3 n

(2m− 2r)2

But using ndq = 2m− 2r:

m2∑

r=0

(
dq + dq1/2 + (dq)3/2

)√
6r log3 n

n2d2q2

=
m2∑

r=0

O

(
d1/2 log1.5 n

n1/2(2m− 2r)
+

d log1.5 n

(2m− 2r)3/2
+

d1/2 log1.5 n

n(2m− 2r)1/2

)

= O
(d1/2 log(nd)

n1/2
+

d

(n log3 n)1/2
+

d

n1/2

)
log1.5 n

which is o(1) for d = O(n1/2−τ ).
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Abstract. Let Hd(n, p) signify a random d-uniform hypergraph with n
vertices in which each of the

(
n
d

)
possible edges is present with probability

p = p(n) independently, and let Hd(n, m) denote a uniformly distributed
d-uniform hypergraph with n vertices and m edges. We establish a lo-
cal limit theorem for the number of vertices and edges in the largest
component of Hd(n, p) in the regime (d − 1)−1 + ε <

(
n−1
d−1

)
p = O(1),

thereby determining the joint distribution of these parameters precisely.
As an application, we derive an asymptotic formula for the probability
that Hd(n, m) is connected, thus obtaining a formula for the asymptotic
number of connected hypergraphs with a given number of vertices and
edges. While most prior work on this subject relies on techniques from
enumerative combinatorics, we present a new, purely probabilistic ap-
proach.

1 Introduction

Notation. A d-uniform hypergraph H is a set V (H) of vertices together with
a set E(H) of edges e ⊂ V (H), each connecting |e| = d vertices. The order of H
is the number |V (H)| of vertices of H , and the size of H is the number |E(H)|
of edges. Thus, a 2-uniform hypergraph is just a graph. Moreover, we say that
v ∈ V (H) is reachable from w ∈ V (H) if either v = w or there exist edges
e1, . . . , ek ∈ E(H) such that v ∈ e1, w ∈ ek, and ei ∩ ei+1 �= ∅ for 1 ≤ i < k.
Clearly, reachability is an equivalence relation. The equivalence classes are the
components of H .

We let N (H) signify the maximum order of a component of H . Furthermore,
throughout the paper the vertex set V (H) will consist of integers. Therefore, the
subsets of V (H) can be ordered lexicographically, and we call the lexicographi-
cally first component of H that has order N (H) the largest component of H . In
addition, we denote byM(H) the size of the largest component.
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�� Supported by the Deutsche Forschungsgemeinschaft (DFG COJ 646).
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We deal with two models of random d-uniform hypergraphs: Hd(n, p) and
Hd(n,m). The random hypergraph Hd(n, p) has the vertex set V = {1, . . . , n},
and each of the

(
n
d

)
possible edges is present with probability p independently of

all others. Moreover, Hd(n,m) is a uniformly distributed d-uniform hypergraph
with vertex set V = {1, . . . , n} and with exactly m edges. In the case d = 2,
the notation G(n, p) = H2(n, p), G(n,m) = H2(n,m) is common. We say that
the random hypergraph Hd(n, p) (resp. Hd(n,m)) enjoys a certain property P
with high probability (w.h.p. for short) if the probability that P holds in Hd(n, p)
(resp. Hd(n,m)) tends to 1 as n→∞.

The Giant Component. Since the pioneering work of Erdős and Rényi [11,12]
on the “giant component” of the random graph G(n,m), the component struc-
ture of random discrete objects (e.g., graphs, hypergraphs, digraphs) has been
among the main subjects of probabilistic combinatorics. One reason for this is the
connection to statistical physics and percolation (as “mean field models”); an-
other reason is the impact of these considerations on computer science (e.g., due
to relations to computational problems such as Max Cut or Max 2-Sat [10]).

In [12] Erdős and Rényi investigated the component structure of sparse ran-
dom graphs with O(n) edges. The main result is that the order N (G(n,m)) of
the largest component undergoes a phase transition as 2m/n ∼ 1. Let us state
a more general version due to Schmidt-Pruzan and Shamir [25], which covers d-
uniform hypergraphs: let either H = Hd(n,m) and c = dm/n, or H = Hd(n, p)
and c =

(
n−1
d−1

)
p; we refer to c as the average degree of H .

(1) If c < (d − 1)−1 − ε for an arbitrarily small but fixed ε > 0, then N (H) =
O(lnn) w.h.p.

(2) If c > (d− 1)−1 + ε, then H has a unique component of order Ω(n) w.h.p.,
which is called the giant component. More precisely, as shown in [9],

N (H) = (1− ρ)n+ o(n) w.h.p., (1)

where ρ is the unique solution to the transcendental equation

ρ = exp(c(ρd−1 − 1)) (2)

that lies strictly between 0 and 1. Furthermore, the second largest component
has order O(lnn).

In the present paper we analyze the distribution of N (H) and M(H) for a
random hypergraph H = Hd(n,m) or H = Hd(n, p) more precisely. We first
establish a local limit theorem for N (Hd(n, p)), thus determining the asymp-
totic distribution of N (Hd(n, p)) precisely. Moreover, we obtain a local limit
theorem for the joint distribution of the order and size of the giant component
of Hd(n, p). Furthermore, from these local limit theorems we infer a formula
for the asymptotic probability that Hd(n,m) is connected or, equivalently, an
asymptotic formula for the number of connected hypergraphs of given order and
size. Thus, we solve a (highly non-trivial) enumerative problem via probabilistic
techniques.
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While in the case of graphs (i.e., d = 2) these results are either known or can
be derived from prior work (cf. the related work section below), all our results
are new for d-uniform hypergraphs with d > 2. Furthermore, our proof relies on
new probabilistic techniques, which, in contrast to most prior work, do not rely
on involved enumerative techniques. In effect, our techniques are fairly generic
and may apply to further problems of a related nature.

This extended abstract is a condensed version of our two recent preprints [4,5],
which contain the complete proofs of all of the results discussed in the present
paper.

2 Main Results

While (1) determines N (Hd(n, p)) up to fluctuations of order o(n), the following
local limit theorem yields the exact limiting distribution of this random variable.

Theorem 1. Let d ≥ 2 be a fixed integer. For any two compact intervals I ⊂ R,
J ⊂ ((d − 1)−1,∞) and for any δ > 0 there is n0 > 0 such that the following
holds. Let p = p(n) be a sequence such that c = c(n) =

(
n−1
d−1

)
p ∈ J for all n, let

0 < ρ = ρ(n) < 1 be the unique solution to (2), and let

σ2
N = σN (n)2 =

ρ
[
1− ρ+ c(d− 1)(ρ− ρd−1)

]
n

(1 − c(d− 1)ρd−1)2
. (3)

If n ≥ n0 and if ν is an integer such that σ−1
N (ν − (1− ρ)n) ∈ I, then

∣
∣
∣
∣1−

√
2πσN exp

[
(ν − (1 − ρ)n)2

2σ2
N

]

P [N (Hd(n, p)) = ν]
∣
∣
∣
∣ ≤ δ.

Theorem 1 shows that for any integer ν such that |ν − (1 − ρ)n| = O(σN ) we
have

P [N (Hd(n, p)) = ν] ∼ 1√
2πσN

exp
[

− (ν − (1− ρ)n)2

2σ2
N

]

. (4)

This implies that N (Hd(n,p))−(1−ρ)n
σN

converges in distribution to the standard
normal distribution. However, Theorem 1 is actually much stronger than this
latter statement, because (4) implies that convergence to the normal distribution
even holds on the level of the event that N (Hd(n, p)) hits a specific value ν. In
fact, observe that the expression on the r.h.s. of (4) is Θ(n− 1

2 ). We sketch the
proof of Theorem 1 in Section 4.

Building upon Theorem 1, we can further establish a local limit theorem for
the joint distribution of N ,M(Hd(n, p)).

Theorem 2. Let d ≥ 2 be a fixed integer. For any two compact sets I ⊂ R2,
J ⊂ ((d−1)−1,∞), and for any δ > 0 there exists n0 > 0 such that the following
holds. Let p = p(n) be a sequence such that c = c(n) =

(
n−1
d−1

)
p ∈ J for all n and
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let 0 < ρ = ρ(n) < 1 be the unique solution to (2). Further, let σN be as in (3)
and set

σ2
M = c2ρd

2 + c(d− 1)(ρ2d−2 − 2ρd−1 + ρd)− ρd−1 − ρd
(1− c(d− 1)ρd−1)2

n+ (1− ρd)cn
d
,

σNM = cρ
1− ρd − c(d− 1)ρd−1(1− ρ)

(1− c(d− 1)ρd−1)2
n.

Suppose that n ≥ n0 and that ν, μ are integers such that x = ν − (1 − ρ)n and
y = μ− (1− ρd)

(
n
d

)
p satisfy n− 1

2
(
x
y

)
∈ I. Then letting

P (x, y)−1 = 2π
√
σ2
Nσ

2
M − σ2

NM

× exp
[

σ2
Nσ

2
M

2(σ2
Nσ

2
M − σ2

NM)

(
x2

σ2
N
− 2σNMxy

σ2
Nσ

2
M

+
y2

σ2
M

)]

,

we have

(1− δ)P (x, y) ≤ P [N (Hd(n, p)) = ν ∧M(Hd(n, p)) = μ] ≤ (1 + δ)P (x, y).

Theorem 2 implies that (centered and scaled version of) N ,M(Hd(n, p)) con-
verge to a bivariate normal distribution. However, the precise statement is actu-
ally much stronger, because it yields the asymptotic probability that N andM
hit any two specific values ν, μ, provided that ν and μ satisfy x = ν− (1−ρ)n =
O(
√
n) and y = μ − (1 − ρd)

(
n
d

)
p = O(

√
n). The proof of Theorem 2 can be

found in Section 5.
As an application of the local limit theorem for Hd(n, p) (Theorem 2), we

obtain the following formula for the asymptotic probability that a random hy-
pergraph Hd(ν, μ) is connected. Here we use the notation Hd(ν, μ) instead of
Hd(n,m), because it will be more convenient in the course of proving the theo-
rem, cf. Section 6.

Theorem 3. Let d ≥ 2 be a fixed integer. For any compact set J ⊂ (d(d −
1)−1,∞), and for any δ > 0 there exists ν0 > 0 such that the following holds.
Let μ = μ(ν) be a sequence of integers such that ζ = ζ(ν) = dμ/ν ∈ J for
all ν. Then there exists a unique number 0 < r = r(ν) < 1 such that r =
exp
(
−ζ · (1−r)(1−rd−1)

1−rd

)
. Let Φ(ζ) = r

r
1−r (1− r)1−ζ(1− rd) ζ

d . Furthermore, let

R2(ν, μ) =
1 + r − ζr

√
(1 + r)2 − 2ζr

exp
(

2ζr + ζ2r

2(1 + r)

)

· Φ(ζ)ν ,

Rd(ν, μ) =
1− rd − (1 − r)ζ(d − 1)rd−1

√
(1− rd + ζ(d− 1)(r − rd−1))(1 − rd)− ζdr(1 − rd−1)2

× exp
(
ζ(d − 1)(r − 2rd + rd−1)

2(1− rd)

)

· Φ(ζ)ν if d > 2.

Finally, let cd(ν, μ) signify the probability that Hd(ν, μ) is connected. Then for
all ν > ν0 we have (1− δ)Rd(ν, μ) < cd(ν, μ) < (1 + δ)Rd(ν, μ).
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3 Related Work

Random Graphs. Stepanov [27] was the first to obtain a local limit theorem
for N (G(n, p)), thereby proving the d = 2 case of Theorem 1. However, his
approach does not yield the joint distribution of N (G(n, p)) and M(G(n, p)).
Moreover, Pittel [21] proved that N (G(n, p)) and N (G(n,m)) (suitably centered
and scaled) are asymptotically normal. The arguments in both [21,27] are of
enumerative and analytic nature.

Bender, Canfield, and McKay [6] computed the asymptotic probability that
G(n,m) is connected for any ratio m/n. Although they employ a probabilistic
result from �Luczak [18] to simplify their arguments, their proof is based on enu-
merative methods. Luczak and �Luczak [19] used the result from [6] to establish a
local limit theorem for the order of the largest component for the cluster-scaled
model of random graphs (a generalization of G(n, p)). Furthermore, Pittel and
Wormald [22,23] applied enumerative arguments to derive an improved version
of the main result of [6] and to obtain (among other results) a local limit the-
orem for the joint distribution of N ,M(G(n, p)). In summary, in [6,7,19,22,23]
enumerative methods were used to infer the distributions of N ,M(G(n, p)). By
contrast, in the present paper we use the converse approach: employing purely
probabilistic methods, we first determine the distributions of N ,M(G(n, p)),
and from this we derive the number of connected graphs with given order and
size.

Furthermore, a few authors have applied probabilistic arguments to problems
related to the present work. For instance, Barraez, Boucheron, and Fernandez de
la Vega [2] exploited the analogy between the component structure of G(n, p) and
branching processes to show that N (G(n, p)) is asymptotically normal. However,
their techniques do not yield the asymptotic probability that N (G(n, p)) hits a
specific value, i.e., a local limit theorem. Finally, van der Hofstad and Spencer [13]
used a novel perspective on the branching process argument to rederive the
formula of Bender, Canfield, and McKay [6] for the number of connected graphs.

Random Hypergraphs. In contrast to the case of graphs (d = 2), little is
known about the phase transition and the connectivity probability of random
d-uniform hypergraphs with d > 2.

Karoński and �Luczak [16] derived an asymptotic formula for the number of
connected d-uniform hypergraphs of order n and size m = n

d−1 + o(lnn/ ln lnn)
via combinatorial techniques. Since the minimum number of edges necessary
for connectivity is n−1

d−1 , this formula addresses sparsely connected hypergraphs.
Building upon this result, the same authors investigated the phase transition
in Hd(n,m) and Hd(n, p) [17]. They obtained local limit theorems for the joint
distribution of N ,M(Hd(n,m)) and N ,M(Hd(n, p)) in the early supercritical
phase, i.e., their results apply to m =

(
n
d

)
p = n

d(d−1) + o(n2/3(lnn/ ln lnn)1/3).
Furthermore, Andriamampianina and Ravelomanana [1] extended the result
from [16] to the regime m = n

d−1 + o(n1/3) via enumerative techniques. In
addition, relying on [1], Ravelomanana and Rijamamy [24] extended [17] to
m =

(
n
d

)
p = n

d(d−1) + o(n7/9). All of these results either deal with very sparsely
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connected hypergraphs (i.e., m = n
d−1 + o(n)), or with the early supercriti-

cal phase (i.e., m =
(
n
d

)
p = n

d(d−1) + o(n)). By comparison, in the present
paper we deal with connected hypergraphs with m = n

d−1 + Ω(n) edges and
the component structure of random hypergraphs Hd(n,m) or Hd(n, p) with
m =

(
n
d

)
p = n

d(d−1) +Ω(n), thus complementing the aforementioned work.
The regime of m and p that we deal with in the present work was previously

studied by Coja-Oghlan, Moore, and Sanwalani [9] using probabilistic arguments.
Setting up an analogy between a certain branching process and the component
structure of Hd(n, p), they computed the expected order and size of the largest
component of Hd(n, p) along with the variance of N (Hd(n, p)). Furthermore,
they computed the probability that Hd(n,m) is connected up to a constant
factor. Hence, Theorem 3 improves on this result, as the new result yields tight
asymptotics for the connectivity probability. Nonetheless, in the present work
we use some of the ideas from [9] (e.g., exposing the edges of Hd(n, p) in several
rounds).

4 The Local Limit Theorem for N (Hd(n, p))

Throughout this section, we assume that the conditions stated in Theorem 1 are
satisfied. That is, we assume that

(
n−1
d−1

)
p > (d− 1)−1, and that |ν − (1− ρ)n| =

O(
√
n), where 0 < ρ < 1 is the solution to (2).

In order to compute the probability that N (Hd(n, p)) = ν, we expose the
edges of the random hypergraph Hd(n, p) in several rounds. To this end, let
ε > 0 be small enough but fixed such that (1 − ε)

(
n−1
d−1

)
p > (d − 1)−1 + ε. Let

p1 = (1−ε)p, and let p2 be the solution to the equation p1 +p2−p1p2 = p; thus,
p2 ∼ εp. We expose the edges of Hd(n, p) in four rounds as follows.

R1. Let H1 be a random hypergraph obtained by including each of the
(
n
d

)

possible edges with probability p1 independently. Let G signify its largest
component.

R2. Let H2 be the hypergraph obtained from H1 by adding each edge e �∈ H1

that lies completely outside of G (i.e., e ⊂ V \ G) with probability p2

independently.
R3. Obtain H3 by adding each possible edge e �∈ H1 that contains vertices of

both G and V \G with probability p2 independently.
R4. Finally, obtain H4 by including each possible edge e �∈ H1 such that e ⊂ G

with probability p2 independently.

Note that for each possible edge e ⊂ V the probability that e is present in H4

equals p1 + (1− p1)p2 = p; hence, H4 = Hd(n, p).
As
(
n−1
d−1

)
p1 > (d − 1)−1 + ε by our choice of ε, the main result of Schmidt-

Pruzan and Shamir [25] entails that H1 has exactly one component of linear
size Ω(n) (the “giant component”) w.h.p. Moreover, since w.h.p. also the final
hypergraph H4 has exactly one component of linear size (again by [25]), the set
G is contained in the largest component of H4 w.h.p. Hence, N (H3) = N (H4)
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(because all the edges added in R4 lie completely inside of the largest component
of H3). Therefore, in order to analyze the distribution of N (H4), we shall study

1. the distribution of |G| = N (H1),
2. the number S = N (H3)− |G| of vertices that get attached to G by R2–R3.

Regarding the first problem, we have the following result.

Proposition 4. Let c1 =
(
n−1
d−1

)
p1 and c3 =

(
n−1
d−1

)
p. Moreover, let 0 < ρ3 < ρ1 <

1 signify the solutions to the transcendental equations ρj = exp
[
cj(ρd−1

j − 1)
]

and let

μj = (1− ρj)n, σ2
j =

ρj
[
1− ρj + cj(d− 1)(ρj − ρd−1

j )
]
n

(1 − cj(d− 1)ρd−1
j )2

(j = 1, 3).

Then (N (Hj)− μj)/σj converges in distribution to the standard normal distri-
bution for j = 1, 3.

The proof of Proposition 4 is based on Stein’s method. Instead of investigating
N (Hd(n, p)) directly, we actually study the number n−N (Hd(n, p)) of vertices
of Hd(n, p) that belong to components of order O(lnn). To analyze this quantity,
we extend an argument from Barbour, Karoński, and Ruciński [3], who showed
that the number of components of a given size k = O(1) in the random graph
G(n, p) is asymptotically normal. By comparison, to establish Proposition 4, we
need to take into account small components outside the largest component of
any size 1 ≤ k = O(lnn) in the random hypergraphs Hd(n, p1) and Hd(n, p)
(details omitted).

Furthermore, the following proposition shows that S given that |G| = n1

satisfies a local limit theorem.

Proposition 5. There are numbers μS = Θ(n), λS = Θ(1), and σS = Θ(
√
n)

such that for all integers n1 satisfying |n1−μ1| ≤ n0.6 the following is true. If s
is an integer such that |μS + λS(n1 − μ1)− s| ≤ O(

√
n), then

P [S = s||G| = n1] ∼
1√

2πσS
exp
(

− (μS + λS(n1 − μ1)− s)2
2σ2

S

)

. (5)

Proof (sketch). Let us assume for simplicity that d = 2. A similar application
of Stein’s method as in the proof of Proposition 4 shows that given |G| = n1

the random variable (S − μS − λS(n1 − μ1))σ−1
S is asymptotically normal. To

establish the local formula (5), we decompose S = Sbig + Siso, where Siso is
the number of isolated vertices in V \ G that get attached to G in step R3.
Since d = 2, Siso is binomially distributed with mean Ω(n). Consequently,
Siso has a local limit theorem. This implies that for any two numbers s1, s2
such that |μS + λS(n1 − μ1) − si| ≤ O(

√
n) and |s1 − s2| = o(

√
n) we have

P [S = s1||G| = n1] ∼ P [S = s2||G| = n1]. In combination with the fact that S
given |G| = n1 is asymptotically normal, this implies the assertion. (Note that
the proof does not require an explicit analysis of Sbig.) ��
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Since N (H3) = |G| + S, Propositions 4 and 5 yield μ3 = μ1 + μS + o(
√
n).

Therefore, combining Propositions 4 and 5, we conclude that for any integer ν
such that z = (ν − μ3)/σ3 = O(1) we have

P [N (H3) = ν] ∼
∑

s+n1=ν

P [S = s||G| = n1] P [|G| = n1]

∼ 1
2πσS

∫ ∞

−∞
exp

[

−x
2

2
− 1

2

(

x · (1 + λS)
σ1

σS
− z · σ3

σS

)2
]

dx.

Integrating the right hand side, we obtain the desired formula for N (H3) =
N (H4) = N (Hd(n, p)), thus completing the proof of Theorem 1.

5 The Bivariate Local Limit Theorem

In this section we keep the assumption and the notation of Theorem 2. That
is, we assume that

(
n−1
d−1

)
p > (d − 1)−1, and that ν, μ are integers such that

x = ν− (1− ρ)n, y = μ− (1− ρd)
(
n
d

)
p = O(

√
n), where 0 < ρ < 1 is the solution

to (2). Moreover, we let σ2 =
(
n
d

)
p.

In this section we derive the bivariate local limit theorem stated in Theorem 2
from the univariate local limit theorem (Theorem 1) via Fourier analytic argu-
ments. The first step is to observe that the local limit theorem for N (Hd(n, p))
(Theorem 1) implies a bivariate local limit theorem for the joint distribution
of N (Hd(n, p)) and the number M̄(Hd(n, p)) of edges outside the largest com-
ponent. Indeed, given that N (Hd(n, p)) = ν ∼ (1 − ρ)n, the random variable
M̄(Hd(n, p)) is asymptotically binomial Bin(

(
n−ν
d

)
, p); this simply follows from

the fact that w.h.p. Hd(n, p) has a unique component of order Ω(n) (cf. [25]).
Consequently, setting μ̄ =

(
n
d

)
p− μ, we get

P
[
N (Hd(n, p)) = ν ∧ M̄(Hd(n, p)) = μ̄

]

∼P [N (Hd(n, p)) = ν] · P
[

Bin
[(
n− ν
d

)

, p

]

= μ̄

]

. (6)

As Theorem 1 (and the well-known local limit theorem for the binomial dis-
tribution – e.g., [8, Chapter 1]) yields an explicit formula for the r.h.s. of (6), we
can thus infer an explicit formula for P

[
N (Hd(n, p)) = ν ∧ M̄(Hd(n, p)) = μ̄

]
.

However, this does not yield a result on the joint distribution of N (Hd(n, p))
andM(Hd(n, p)), because the total number of edges in Hd(n, p) is random.

To get around this problem, we make a detour to the Hd(n,m) model, in
which the total number of edges is fixed (namely, m). Hence, M̄(Hd(n,m)) =
m−M(Hd(n,m)). Moreover, given that the total number of edges in Hd(n, p)
equals m, Hd(n, p) is distributed as Hd(n,m). In effect,

P
[
N (Hd(n, p)) = ν ∧ M̄(Hd(n, p)) = μ̄

]
(7)

=
(n

d)∑

m=0

P
[

Bin
((

n

d

)

, p

)

= m

]

· P
[
N (Hd(n,m)) = ν ∧ M̄(Hd(n,m)) = μ̄

]
.
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Now, the crucial idea is to “solve” (7) for

P
[
N (Hd(n,m)) = ν ∧ M̄(Hd(n,m)) = μ̄

]

via Fourier inversion. To this end, recall that (6) yields an explicit expression for
the l.h.s. of (7). Moreover, the local limit theorem for the binomial distribution
provides an explicit formula for the first factor on the r.h.s. of (7). Further-
more, the terms P

[
N (Hd(n,m)) = ν ∧ M̄(Hd(n,m)) = μ̄

]
are independent of

p, while equation (7) holds for all p. In other words, (7) is a (grossly over-
determined) system of equations that we would like to solve for the quantities
P
[
N (Hd(n,m)) = ν ∧ M̄(Hd(n,m)) = μ̄

]
.

In order to put this to work, let pz = p+zσ
(
n
d

)−1,mz = �
(
n
d

)
pz� = �

(
n
d

)
p+zσ�,

and set z∗ = ln2 n. Moreover, consider the two functions defined as follows: for
z ∈ [−z∗, z∗],

f(z) = fn,ν,μ(z) = nP
[
N (Hd(n, pz)) = ν ∧ M̄(Hd(n, pz)) = μ̄

]
,

g(z) = gn,ν,μ(z) = nP
[
N (Hd(n,mz)) = ν ∧ M̄(Hd(n,mz)) = μ̄

]

and for z ∈ R \ [−z∗, z∗], f(z) = g(z) = 0. Thus,

P
[
N (Hd(n,m)) = ν ∧ M̄(Hd(n,m)) = μ̄

]
= g(0)/n, (8)

i.e., our goal is to derive an explicit expression for g. Furthermore, we can re-
state (7) in terms of the functions f, g as follows.

Lemma 6. Let φ(z) = 1√
2π

exp(− z22 ). Then ‖f−g∗φ‖2 = o(1), where g∗φ(z) =
∫
R g(z − ξ)φ(ξ)dξ signifies the convolution of g and φ.

Proof (sketch). This essentially follows by approximating the binomial
distribution in (7) by a normal distribution, thereby replacing the sum by an
integral. ��

As a next step, we derive the following explicit formula for f .

Lemma 7. Set λ = dσ(ρd−ρ)
σN (1−c(d−1)ρd−1) and let

F (z) =
n

2πρd/2σσN
(9)

× exp
[

−1
2
(
(xσ−1

N − zλ)2 + ρd(yρ−dσ−1 − cρ−1σ−1x+ z)2
)
]

.

Then ‖f − F‖∞ = o(1).

Lemma 7 is a direct consequence of (6), Theorem 1, and the local limit theorem
for the binomial distribution.

Further, it is easy (though somewhat tedious) to compute a function h such
that F = h ∗ φ.
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Lemma 8. Let λ be as Lemma 7, and define

ς = λ2 + ρd, κ = −
[
λ

σN
+
cρd−1

σ

]

x+
y

σ
, θ =

x2

σ2
N

+
(cρd−1x− y)2

ρdσ2
, and

h(z) =
n

2πρd/2
√

1− ςσNσ
exp

[

− ςθ − κ
2

2ς
− (ςz + κ)2

2(ς − ς2)

]

. (10)

Then F = h ∗ φ, and consequently ‖f − h ∗ φ‖2 = o(1).

Of course, if it were true that f = F = g ∗ φ and F = h ∗ φ, then we could
infer immediately that g = h; for the Fourier transforms would satisfy ĝφ = ĥφ,
whence ĝ = ĥ, and thus g = h by Fourier inversion. However, Lemmas 6 and 8
only yield that ‖f ∗φ− g ∗φ‖2 = o(1). Nonetheless, using the Fourier transform
in a slightly more sophisticated way, we can derive that ‖g − h‖∞ = o(1). Due
to (8) and becauseM(Hd(n,m)) + M̄(Hd(n,m)) = m, this implies that

P [N (Hd(n,m)) = ν ∧M(Hd(n,m)) = μ] ∼ h(0)/n. (11)

In other words, we have derived the following local limit theorem for theHd(n,m)
model.

Theorem 9. Let

τ2
N = ρ

1− (c+ 1)ρ− c(d− 1)ρd−1 + 2cdρd − cdρ2d−1

(1 − c(d− 1)ρd−1)2
n,

τ2
M = cρd

1− c(d− 2)ρd−1 − (c2d− cd+ 1)ρd − c2(d− 1)ρ2d−2

d(1− c(d− 1)ρd−1)2
n

+cρd
2c(cd− 1)ρ2d−1 − c2ρ3d−2

d(1 − c(d− 1)ρd−1)2
n,

τNM = cρd
1− cρ− c(d− 1)ρd−1 + (c+ cd− 1)ρd − cρ2d−1

(1 − c(d− 1)ρd−1)2
n,

Q(x, y)−1 = 2π
√
τ2
N τ

2
M − τ2

NM

× exp
[

τ2
N τ

2
M

2(τ2
N τ

2
M − τ2

NM)

(
x2

τ2
N
− 2τNMxy

τ2
N τ

2
M

+
y2

τ2
M

)]

.

Then P [N (Hd(n,m)) = ν ∧M(Hd(n,m)) = μ] ∼ Q(x, y).

Theorem 9 just follows from (11) by bringing the expression for h from Lemma 8
into the standard form of a bivariate normal distribution.

Finally, it is easy to derive Theorem 2 from Theorem 9: the Hd(n, p) model
is related to the Hd(n,m) model by the formula

P [N (Hd(n, p)) = ν ∧M(Hd(n, p)) = μ] = (12)

=
(n

d)∑

m=0

P
[

Bin
((

n

d

)

, p

)

= m

]

· P [N (Hd(n,m)) = ν ∧M(Hd(n,m)) = μ] .

Due to Theorem 9 we can compute the sum on the r.h.s. explicitly, thereby
obtaining the expression stated in Theorem 2.
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6 The Number of Connected Hypergraphs

In this section we keep the assumptions of Theorem 3. Thus, suppose that ν,
μ are integers such that μ/ν > (d − 1)−1. We shall derive a formula for the
probability cd(ν, μ) that Hd(ν, μ) is connected, or, equivalently, for the number
Cd(ν, μ) of connected hypergraphs of order ν and size μ from the local limit
theorem Theorem 2. To this end, we set up a relation between Cd(ν, μ) and the
probability that in a somewhat larger random hypergraph Hd(n, p) the event
N (Hd(n, p)) = ν and M(Hd(n, p)) = μ occurs. This idea is originally due to
�Luczak [18], and has been investigated in detail in [9].

More precisely, given ν and μ, there exist ν < n = O(ν) and 0 < p < 1,(
n−1
d−1

)
p > (d− 1)−1, such that

E(N (Hd(n, p))) = ν + o(
√
ν) and E(M(Hd(n, p))) = μ+ o(

√
μ)

(cf. [9, Section 3.1]). Since
(
n−1
d−1

)
p > (d − 1)−1, Hd(n, p) has a unique “giant

component” of order Ω(n) w.h.p. Moreover, given that the giant component has
order ν and size μ, the giant component clearly is a uniformly distributed con-
nected hypergraph with these parameters. Therefore, we obtain the expression

P [N (Hd(n, p)) = ν ∧M(Hd(n, p)) = μ] ∼
(
n

ν

)

Cd(ν, μ)pμ(1− p)(
n
d)−(n−ν

d )−μ.

Here
(
n
ν

)
is the number of ways to choose the vertex setG of the giant component,

Cd(ν, μ) is the number of ways to choose the connected hypergraph induced on
G, pμ signifies the probability that all of the edges of the chosen connected
hypergraph are present, and the (1− p)-factor accounts for the probability that
G is not connected to V \G.

Finally, since the l.h.s. is known due to Theorem 2, we can solve for Cd(ν, μ).
Simplifying the resulting formula yields the expression stated in Theorem 3.
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Abstract. We consider the problem of derandomizing random walks in
the Euclidean space Rk. We show that for k = 2, and in some cases in
higher dimensions, such walks can be simulated in Logspace using only
poly-logarithmically many truly random bits.

As a corollary, we show that the Dirichlet Problem can be determin-
istically simulated in space O(log n

√
log log n), where 1/n is the desired

precision of the simulation.

1 Introduction

1.1 Space-Bounded Derandomization and the Dirichlet Problem on
Graphs

We are interested in derandomizing some problems that can be solved by a prob-
abilistic log-space Turing Machine. There are many ways to view a probabilistic
log-space computation. By definition, a probabilistic space bounded TM has a
special state where it can request a random bit. It has to use its working tape
if it wants to store the bits it has seen so far. If the machine M uses S = S(n)
cells on its working tape and queries at most R = R(n) random bits, it is said
to have a space/randomness complexity of (S,R). We require the machine to
terminate in 2O(S) steps, thus making sure that for all possible random bits the
machine halts (cf. discussion in [1]).

Denote the set of valid configurations of M by CM , |CM | = 2O(S). Denote the
set of accepting configurations (i.e. configurations whereM has terminated in the
accepting state) by Cacc, and the set of rejecting configurations by Crej . Denote
the initial configuration by cinit. We can view the evaluation path of the machine
M on input x as a random processM(x)t whereM(x)t ∈ CM is the configuration
of the computation of M on x at time t. Let T (x) = 2O(S) be the time at
which the computation terminates. T (x) is a random variable and furthermore,
by definition, M(x)T (x) ∈ Cacc ∪ Crej . The “result” of the computation of M
on an input x is its acceptance probability, pacc(x) := P [M(x)T (x) ∈ Cacc].
Derandomizing the machine M involves giving an algorithm for computing pacc
within some error ε, with ε usually being 2−S.

One way to present the computation of the probabilistic log-space machine
M is by considering configurations graph G of the machine. The nodes of G are
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CM . If a configuration U ∈ CM corresponds to a random bit querying state,
then it is connected to two configurations, V0 and V1, one corresponding to the
configuration when the requested random bit is 0, and the other when it is 1. If
U corresponds to any other configuration, then it is connected to the unique next
state V of U , unless U ∈ Cacc∪Crej , in which case it is connected to itself. There
is a natural correspondence between runs of the machine and random walks on G
originating at cinit and terminating on the set Cacc ∪Crej . The probability that
the random walk terminates on Cacc is exactly pacc(x). We can formulate this
problem in slightly more general terms. The name, which arises from connection
to the classical Dirichlet Problem, will be explained later.

Definition 1. The Directed Dirichlet Problem DirDP is defined as follows.

Input: A directed graph G, a vertex v0, a set B of vertexes, a parameter ε and
a function f : B → [0, 1].

Output: Assuming all vertexes of V − B have out-degree of at least 1 and the
random walk on the graph originating at v0 hits the set B in time Poly(|V |, 1/ε)
with probability at least 1− ε/2, the output should be the expected value of f(b),
where b is the first vertex in B that a random walk originating at v0 hits, com-
puted with precision ε. We denote this value by Φ(v0).

Here the “random walk” takes all the edges from a vertex v with equal probabil-
ity. Note that we do not need to worry about the representation of the function
f , because it is not hard to see that in order to estimate Φ(v0) with precision ε
we only need to know f with precision Θ(ε).

From the discussion above, it follows that derandomizing DirDP is as hard
as derandomizing space-bounded machines.

Theorem 1. The following problems are (deterministic) space-O(S) reducible
to each other:

– Given a probabilistic machine M running in space S = S(n) and randomness
R = 2O(S), and an input x, |x| = n, compute pacc(x) within an error of
ε = 2−S.

– Solve the DirDP problem on a graph of size 2S within an error of ε = 2−S.

An equivalent view on the general Dirichlet problem on graphs is a global one.
Suppose that instead of considering only one starting point v0, we consider
all possible starting points. Assuming that for any initial v the random walk
originating at v eventually hits B with probability 1, we see that the function
Φ(v) satisfies the following equations:

{
Φ(v) = 1

deg(v) ·
∑

(v,u)∈E Φ(u) for v /∈ B
Φ(v) = f(v) for v ∈ B (1)

It can be shown that under the conditions above, the equation (1) has a unique
solution. Note that the first condition can be restated as (ΔG)Φ = 0, where ΔG
is the Laplacian matrix of the graph G.



Derandomization of Euclidean Random Walks 355

Attempts to solve DirDP, which is at least as hard as derandomizing the
class BPSPACE(S), can now be restricted to different classes of graphs. One
restriction would be to consider the undirected graphs, to obtain the correspond-
ing UndirDP problem. To our knowledge, even in this case no results better
than the general space O(S3/2) derandomization [2] are known. In this paper we
consider an important special case of the problem, where the underlying graph
has a geometric Euclidean structure.

1.2 The Classical Dirichlet Problem and Its Derandomization

First, we describe the classical Dirichlet problem on Rk. Given a bounded domain
Ω and a continuous function on the boundary of Ω, f : ∂Ω → [0, 1], the goal is
to find a function Φ : Ω → R that satisfies:

{
ΔΦ(x) ≡

∑k
i=1

∂2Φ(x)
∂x2

i
= 0 for x ∈ Interior(Ω)

Φ(x) = f(x) for x ∈ ∂Ω
(2)

This classical problem, dating back to the 1840s has numerous applications in
Science and Engineering (see for example [3]).

Equation (2) can be viewed as a continuous version of equation (1) because
the condition ΔΦ(x) = 0 on the interior of Ω can be shown to be equivalent to
the following condition. For a point x denote by B(x, ε) the (open) ball of radius
ε around x. Then for any x ∈ Interior(Ω), and for any ε such that B(x, ε) ⊂
Interior(Ω), Φ(x) is equal to the average value of Φ(x) on B(x, ε). Thus, just as
in equation (1), we have that for any x, Φ(x) is equal to the average value of Φ
on its “neighbors”.

Fig. 1. Examples of solutions to the two-dimensional Dirichlet problem where Ω is
a square domain and the boundary condition f is either 1 (black) or 0 (white); the
color inside Ω represents the value of Φ. It is equal to the probability that a Brownian
motion originating at a point will hit a black segment on the boundary.

As in the graph case above, Brownian motion, the continuous version of a ran-
dom walk, can be used to solve the Dirichlet problem. For any x ∈ Interior(Ω),
denote by Bt the Brownian motion process originating at x: B0 = x. Let the
random variable T be the first time Bt hits the boundary ∂Ω. Then the solution
to (2) is the expected value of f at BT :
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Φ(x) = E[f(BT )].

Solutions of a Dirichlet problem are illustrated on Fig. 1.
In order to approximately solve the Dirichlet problem in practice, one would

need to discretize it first. This is possible under some mild conditions on the
continuous problem, that will be discussed in Section 2. We define a discrete
grid version of the continuous Dirichlet problem in Rk.

Definition 2. Consider the subdivision of the unit cube in Rk by a grid with
step 1/n. Let Ω be a subset of the unit cube formed by a collection of small
cubes in the grid. The boundary of Ω is comprised of a finite collection C of
k − 1-dimensional squares. Let the boundary condition f : ∂Ω → [0, 1] be given
within a precision of n−3. f is continuous and linear on each of the squares of
the boundary. In other words, it is specified by the values it takes on each piece
s ∈ C of the boundary.

The discrete Euclidean Dirichlet problem is, given a grid point x inside Ω, to
compute the solution Φ(x) within an error of 1/n. We call this problems EucDP.

The most interesting case of EucDP is for R2, because of its connections to the
Riemann Mapping Problem and to conformal geometry (see, for example, [4]).
We almost completely derandomize the problem in this case.

Theorem 2. The EucDP over R2 is solvable by a randomized TM in space
S = O(log n) using R = O(log4n) random bits.

The randomness complexity of the machine in Theorem 2 is very low compared to
the O(n) complexity of the näıve solution. This allows us to further derandomize
it while paying only a small overhead in terms of space complexity. By using
various known derandomization results, we obtain:

Corollary 1. The problem EucDP is solvable by

(a) [2] a deterministic machine that uses O(log n
√

log logn) space;
(b) [5] a deterministic machine that uses O(log n log logn) space and runs in

poly-time;
(c) [6] a deterministic logspace machine that solves the problem within an error

of 1

2log1−γ n
for any γ > 0.

As an application, one obtains a derandomized space-efficient algorithm for com-
puting conformal maps. For a simply-connected planar domain Ω � C with
w ∈ Ω, Riemann Uniformization Theorem states that there is unique conformal
map ψ of Ω onto the unit disk D with ψ(w) = 0, ψ′(0) > 0. Conformal maps and
Uniformization are used extensively in many areas, such as solving Partial Dif-
ferential Equations [7], Hydrodynamics [8], Electrostatics [9], and in computer
tomography such as brain mapping [10].

Theorem 3. There is an algorithm A of complexity described in Corollary 1
that computes the uniformizing map in the following sense.
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Let Ω be a bounded simply-connected domain, and w0 ∈ Ω. Suppose that for
some n, ∂Ω is given to A with precision 1

n by O(n2) pixels. Then A computes the
absolute value of the uniformizing map ψ : (Ω,w) → (D, 0) within an error of
O(1/n). Furthermore, the algorithm computes the value of ψ(w) with precision
1/n as long as |ψ(w)| < 1− 1/n.

The reduction of Theorem 3 to Corollary 1 is given in [11].
The rest of the paper is organized as follows. In Section 2, we discuss the

discretization of the continuous Dirichlet problem. In Section 3, we describe our
algorithm and prove the main lemma, Lemma 3. The lemma implies Theorem 2
and, using the methods of [11], Theorem 3. In Section 4, we discuss the general-
ization of the Theorem 2 to higher dimensions.

2 Discretizing the Euclidean Dirichlet Problem

In this section we discuss the discretization of continuous Dirichlet problem.
We start with a technical result about stability of the Dirichlet problem. Infor-
mally, it states that a slight change in boundary and boundary data induces an
insignificant change in the solution.

Lemma 1. Let γ1, γ2 be two closed Jordan curves, dist(γ1, γ2) < 1/n3. Let
f1(t), f2(t) be two continuous functions on γ1, γ2 respectively with the following
continuity property: if x ∈ γ1, y ∈ γ2, and |x− y| < 1/n2, then |f1(x)− f2(y)| <
1/n. Let Φ1 and Φ2 be the solutions of the corresponding Dirichlet problems. Let
z be a point inside both γ1 and γ2 that is at least 1/n-away from both curves.
Then |Φ1(z)− Φ2(z)| < 2/n.

Here dist(γ1, γ2) < 1/n3 if no point in γ1 is more than 1/n3 away from γ2

and vice versa. The lemma follows from the standard estimates in Geometric
Function Theory (see, for example, [12]).

Lemma 1 allows us to approximate the solution of the Dirichlet problem on
a Jordan curve γ by approximating it using a 1/n3-grid curve, and by approx-
imating the boundary data by a continuous piecewise-linear function on the
grid-curve, a process illustrated on Fig. 2. Thus the continuous Dirichlet prob-
lem, at least for domains bounded by finitely-many Jordan curves, can be solved
with an arbitrarily high precision using EucDP.

Fig. 2. Discretization of the continuous Dirichlet Problem
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3 Derandomizing the Dirichlet Problem

Let Ω ⊂ R2 be as in the definition of EucDP (Definition 2). Let x ∈ Ω with
R(x) = dist(x, ∂Ω). We define a stochastic jump point process xt inductively.
At each iteration the process jumps one half of the distance to the boundary
at random direction. More precisely, xt is defined, using complex numbers to
parameterize R2, by

x0 = x, xt = xt−1 +
1
2
e2πiθtR(xt−1).

Here θ1, θ2, . . . is a sequence of independent random variables, uniformly dis-
tributed on the interval [0, 1].

In the limit, this process can be used to solve Dirichlet problem. Specifically,
the following Kakutani’s theorem is classical.

Lemma 2 (Kakutani’s theorem). Let f be a continuous function on ∂Ω,
Φ be the solution of the corresponding Dirichlet problem. With probability 1,
limt→∞ xt = x∞ exists, x∞ ∈ ∂Ω, and E[f(x∞)] = Φ(x).

For the proof of the lemma, see for example [13], Appendix G. Let us remark
that the theorem is also true for domains in Rk.

Our algorithm is based on a discretized version of Lemma 2 and the following
observation. The stochastic process yt = log dist(xt, ∂Ω) is a supermartingale
with Θ(1)-jump at every step. Note that yt is bounded from above by a constant,
since Ω is bounded. Hence yt is a random walk on (−∞, C) with constant-
magnitude steps and a downwards drift. Thus it is expected to hit the point −T
in time t = O(T 2). In particular, yt will drop below − logn in time log3 n with
high probability. At that point, xt will be 1/n-close to ∂Ω.

In the discretized world, we need to take care of the rounding errors, which
may affect both the expected solution and the rate of convergence of the
algorithm.

Historic Remarks. Our algorithm is a variant of a celebrated “Walk on
Spheres” algorithm, first proposed by M. Muller in [14]. The exponential rate
of convergence of the process xt to the boundary was established for convex do-
mains by M. Motoo in [15] and was later generalized for a wider class of planar
and 3-dimensional domains by G. A. Mikhailov in [16]. See also [17] for additional
historical background and the use of the method for solving other boundary value
problems.

Let us note that in addition to taking care of rounding error, our proof controls
the rate of convergence for a wider class of domains, including all regular planar
domains.

To discretize the process, we fix a square grid of size n−c for sufficiently large
constant c (we can take any c > 6). The process will only run on points on the
grid. Note that storing the coordinates of a point on the grid requires O(log n)
space.
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For a point x ∈ R2, let the snapping S(x) be one of the points on the grid
closest to x. Note that |x − S(x)| < n−c. Let Rd(x) be the distance from x to
the (discretized) boundary of Ω computed with precision of n−c (and requiring
only O(log n) bits to store). Note that it is easy to compute in space O(log n),
since the discretized boundary is just a polygon with O(n2c) vertexes.

Let us now discretize the process xt. Let Xt be the stochastic process on the
grid defined by

X0 = S(x), Xt = S
(
Xt−1 +

1
2
e2πiθtRd(Xt−1)

)
.

Here θ1, θ2, . . . is a sequence of independent random variables taking values
0, 1/n2c,2/n2c, . . . , (n2c − 1)/n2c with equal probabilities. Note that computing
one iteration of Xt requires O(log n) random bits. The process Xt is illustrated
on Fig. 3.

Fig. 3. Illustration of the process Xt. (a) one step of the process; (b) a sample path of
five steps of the process.

Now let us define the stopping time T by T = min
(
min{t : Rd(Xt) <

n−3}, B log3 n
)
, for a sufficiently large constant B. In other words, we stop the

process once we are n−3-close to the boundary but never after time t = B log3 n.
By the definition of T and our discussion about the complexity of computing

each jump, XT is computable in space O(log n) using O(log4 n) random bits.
We claim that the values f(XT ) computed with precision n−2 can be used to
approximate the solution of the continuous Dirichlet problem.

Note that the boundary data f from EucDP satisfies the following condition

If x, y ∈ ∂Ω with |x− y| < n−3, then

|f(x)− f(y)| < An−2 for some constant A. (*)

If f is a continuous function satisfying (*), then we can extend it to a grid
point x ∈ Ω with Rd(x) < n−3 by assigning f(x) to be equal to f(y), where y
is a closest to x point of ∂Ω. By (*), it is well defined up to an error of O(n−2).
For other points of the grid we take f(x) = 0.
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Lemma 3. Let f be a continuous function on ∂Ω satisfying (*). Let Φ be the
solution of the Dirichlet problem with boundary values f . Let Rd(x) > 1/n. Then

|E[f(XT )]− Φ(x)| = O(n−2).

Lemma 3 implies Theorem 2 by the discussion above.
To simplify the notations, we normalize Ω so that Diameter(Ω) ≤ 1. Define

the one-dimensional stochastic process Yt = logRd(Xt).

Strategy of the proof of Lemma 3. First, we establish that with high probability
XT is n−3-close to the boundary. We use the mean-value property of the loga-
rithm in R2 to show that the expected value of Yt is non-increasing with time.
We also show that the variance of each step of Yt is bounded from below by some
constant. Note that Yt is always in the interval [−4 logn, 0], and this implies that
Yt will hit the lower boundary with probability at least 1/2 in O(log2 n) steps,
and with probability at least 1− n−2 in O(log3 n) steps.

We also have to take care of the effects of discretization of the jumps and
snapping to the grid. To deal with this problem, we use estimates on the deriva-
tive of the logarithm. Then, using the mean-value property of Φ and the fact that
with high probability XT is close to the boundary, so that Φ(XT ) is not much
different from f(XT ), we establish the statement of the lemma. The snapping
and discretization are controlled using Harnack’s inequality (Lemma 4).

We split the proof of the lemma into several steps.

Step 1: The process Yt does not have a significant drift upwards. More
specifically,

E[Yt|Yt−1] < Yt−1 + n−3 (3)
Proof. Let z be the point near ∂Ω realizing Rd(Xt). Note also, that for any two
numbers a1, a2 > n−3 we have | log a1− log a2| < n3|a1−a2|. Using the fact that
the function g(x) = log |z − x| is harmonic on R2, we obtain

Yt−1 = g(Xt−1) =
∫ 1

0

g

(

Xt−1 +
Rd(Xt−1)

2
e2πiθ

)

dθ >

1
n2c

n2c−1∑

j=0

g

(

Xt−1 +
Rd(Xt−1)

2
e2πi

j

n2c

)

−

πRd(Xt−1)n−2c · (2/Rd(Xt−1)) (4)

To obtain the last inequality, we approximate the integral using n2c equally
spaced points, the distance between adjacent points is πRd(Xt−1)n−2c, and the
derivative of g is bounded by 2/Rd(Xt−1). We continue the chain of inequalities
(4) by noting that the snapping operator S only changes the value of |x− z| by
at most n−c, and hence the value of g(x) is changed by at most n3−c,

Yt−1 >
1
n2c

n2c−1∑

j=0

g

(

S

(

Xt−1 +
Rd(Xt−1)

2
e2πi

j

n2c

))

− 2πn−2c − n3−c >

E[Yt|Yt−1]− n−3. (5)
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Fig. 4. with probability at least 1/3, the jump brings Xt closer to z by a factor of at

least
√

3
2

Step 2: For some absolute constant β > 0, E[(Yt − Yt−1)2|t ≤ T ] > 2β > 0

Proof. Let z be the point near ∂Ω realizing Rd(Xt). With probability at least
1/3, Yt ≤ log |z−Xt| < log

√
3

2 +log(|z−Xt−1|+n−c) < log
√

3
2 +log(1+n3−c)+

log |z −Xt−1| < −0.1 + Yt−1, provided Xt−1 is a away from the boundary (see
Fig. 4). Thus

E[(Yt − Yt−1)2|t ≤ T ] > 1/3(−0.1)2 > 0.002 > 0,

hence we can take β = 0.001.

Define yet another process Zt = Yt − n−3t, when t ≤ T , and Zt = ZT for
t > T . Note that by Step 1 the process Zt = Yt − n−3t is a supermartingale. By
Doob-Meyer decomposition (see [18]), we can write Zt = Mt + It, where M is a
martingale and It is a decreasing adapted process.

We have Zt ≤ Yt ≤ 0, since the diameter of Ω is at most 1. Also, by the
definition of the stopping time T , Zt ≥ −3 logn−n−3 log3 n > −4 logn. Observe
that, like Yt, Zt has definite quadratic variation at each jump. More specifically,

E[(Zt − Zt−1)2|t ≤ T ] =

E[(Yt − Yt−1)2|t ≤ T ] + 2n−3E[(Yt − Yt−1)|t ≤ T ] + n−6 > β, (6)

provided n is large enough.

Step 3: E[Zt−1(Zt − Zt−1)] ≥ 0.

Proof

E[Zt−1(Zt − Zt−1)] = E[Zt−1E[Zt − Zt−1|Zt−1]] =
E[Zt−1E[Mt −Mt−1|Zt−1]] + E[Zt−1E[It − It−1|Zt−1]] ≥ 0, (7)

since E[Mt −Mt−1|Zt−1] = 0, It − It−1 ≤ 0, Zt−1 ≤ 0.

Let T ′ = C log2 n, where C is a large constant to be defined later.
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Step 4: P[T < T ′] > 1/2.

Proof. Assume the contrary. It means that for all t ≤ T ′, P[T ≥ t] = 1−P[T <
t] ≥ 1/2. This implies

E[Z2
t ] = E[((Zt − Zt−1) + Zt−1)2] =

E[Z2
t−1] + E[(Zt − Zt−1)2] + 2E[Zt−1(Zt − Zt−1)] =

E[Z2
t−1] + E[(Zt − Zt−1)2|t ≤ T ]P[T ≥ t] + 2E[Zt−1(Zt − Zt−1)] ≥

E[Z2
t−1] + β/2. (8)

The last inequality follows from the equations (6) and (7). It implies that
E[Z2

T ′ ] ≥ β
2T

′ = C β
2 log2 n. But 0 ≥ ZT ′ > −4 logn, so E[Z2

T ′ ] < 16 log2 n.
Thus, if we choose C = 32/β, we get a contradiction.

Step 5: P[T < B log3 n] > 1 − n−2. In other words, with high probability XT

stops near the boundary before the time expires.

Proof. By repeating the process from Step 4 independently 2 logn times, we get
that after 2C log3 n steps,

P[T < 2C log3 n] > 1− n−2.

It means that with probability at least 1 − n−2, for some t < 2C log3 n, Xt is
n−3-close to ∂Ω. Thus, if we take B = 2C in the definition of the stopping time
T , we arrive at the desired conclusion.

In the next step, we use Harnack’s inequality (see, for example, [19]) to estimate
the distortion of the map Φ:

Lemma 4 (Harnack’s inequality). Let Ω ⊂ Rk, x, y ∈ Ω, dist(x, ∂Ω) = R,
|x− y| = r. Let Ψ be a positive harmonic function in Ω. Then

(
R− r
R+ r

)k
≤ Ψ(x)
Ψ(y)

≤
(
R+ r

R− r

)k

Let us define two random processes we use to estimate |E[f(xT )]− Φ(x)|:

Φ+
t = Φ(Xt) + n3−ct, Φ−

t = Φ(Xt)− n3−ct

Step 6: Φ+
t is a submartingale and Φ−

t is a supermartingale

Proof. The proof is very similar to the proof of Step 1. Harnack’s Inequality and
0 < Φ < 1 imply that
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Φ(Xt−1) =
∫ 1

0

Φ

(

Xt−1 +
Rd(Xt−1)

2
e2πiθ

)

dθ >

1
n2c

n2c−1∑

j=0

Φ

(

Xt−1 +
Rd(Xt−1)

2
e2πi

j

n2c

)
(
1− πRd(Xt−1)n−2c · (2/Rd(Xt−1))

)
>

1
n2c

n2c−1∑

j=0

Φ

(

S

(

Xt−1 +
Rd(Xt−1)

2
e2πi

j

n2c

))
(
1− 2πn−2c − n3−c) >

1
n2c

n2c−1∑

j=0

Φ

(

S

(

Xt−1 +
Rd(Xt−1)

2
e2πi

j

n2c

))

− 2πn−2c − n3−c >

E[Φ(Xt)|Φ(Xt−1)]− n−3. (9)

It implies the first statement. The proof of the second statement is the same.

Now we are in position to prove Lemma 3.

Proof (Proof of Lemma 3). By the Submartingale Theorem (see [20]), Φ(x) =
Φ+

0 ≤ E[Φ+
T ]. But Φ+

T = Φ(XT ) + n3−cT ≤ Φ(XT ) + n3−c log3 n. Thus

Φ(x) ≤ E[Φ(XT )] + n3−c log3 n ≤ E[f(XT )] + n3−c log3 n+

E[Φ(XT )|T = B log3 n]P[T = B log3 n]+

max
T<B log3 n

(Φ(XT )− f(XT )) ≤ E[f(XT )] + 3Ln−2

for sufficiently large L and c. Here we use the fact that the modulus of continuity
of Φ is no greater than the modulus of continuity of f(see [13]). We also use the
Step 4 to obtain an estimate on P[T = B log3 n]. Using the same reasoning for
Φ−
t we get

Φ(x) ≥ E[f(XT )]− 3Ln−2.

Finally, by combining the two inequalities we obtain the statement of the lemma.

4 Higher Dimensions: Planar-Like Domains

The proposed algorithm for solving the planar Dirichlet problem does not work
for general higher dimensional domains. The only obstacle to literally repeating
our proof in higher dimensions comes from the absence of the superharmonicity
of the function log dist(x, ∂Ω) (the mean-value property used in equation (4)).
In other words, it is no longer true that the value of log dist(Xt, ∂Ω) is non-
increasing on average. It turns out that the difficulty leads to an example of a
domain for which our method does not converge in logarithmic number of steps,
and will thus require a large number of random bits.

Let us describe an example of such a domain in R3. The domain Ω will be the
unit cube with cubes of size 1/n removed around every nonzero point of a 2/

√
n

grid. Standard results about the random walk in R3 (see, for example, [20]) imply
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that a random walk started at the center of the cube hits its surface before it
hits the removed cubes with probability greater than 1/2. Thus if the Dirichlet
boundary condition f is changed on the surface of the unit cube, Φ(center) will
change significantly. On the other hand, since for any point x ∈ Ω, dist(x, ∂Ω) <
1/
√
n, it will take Ω(

√
n) steps for our process to reach the boundary of the unit

cube. So our algorithm will require Ω(
√
n logn) random bits.

On the other hand, for a large class of domains, which we call planar-like, our
algorithm still works.

Definition 3. A domain Ω ⊂ Rk is called planar-like if for every point y �∈ Ω
there is a k − 2-dimensional plane containing y and not intersecting Ω.

Note that since 2 − 2 = 0-dimensional planes are points, every planar domain
is automatically planar-like. We can also observe that any convex domain is
planar-like, since in this case for every y �∈ Ω there is a k − 1-dimensional plane
containing y and not intersecting Ω.

It is very easy to see that the function log dist(x, ∂Ω) is superharmonic for
planar-like domains (because logarithm of the distance to a k − 2-dimensional
plane is harmonic away from the plane). This allows us to slightly modify the
proof of Lemma 3 (only Step 6 requires a minimal change in the constants in
Harnack’s principle) to obtain the following Theorem.

Theorem 4. The EucDP over Rk is solvable by a randomized TM in space
S = O(log n) using R = O(log4n) random bits for planar-like domains.

We defer the details of the proof to the full version of the paper.
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Abstract. We study the two party problem of randomly selecting a string among
all the strings of length n. We want the protocol to have the property that the
output distribution has high entropy, even when one of the two parties is dishonest
and deviates from the protocol. We develop protocols that achieve high, close to
n, entropy.

In the literature the randomness guarantee is usually expressed as being close
to the uniform distribution or in terms of resiliency. The notion of entropy is not
directly comparable to that of resiliency, but we establish a connection between
the two that allows us to compare our protocols with the existing ones.

We construct an explicit protocol that yields entropy n−O(1) and has 4 log∗ n
rounds, improving over the protocol of Goldreich et al. [3] that also achieves
this entropy but needs O(n) rounds. Both these protocols need O(n2) bits of
communication.

Next we reduce the communication in our protocols. We show the existence,
non-explicitly, of a protocol that has 6 rounds, 2n+8 log n bits of communication
and yields entropy n − O(log n) and min-entropy n/2 − O(log n). Our proto-
col achieves the same entropy bound as the recent, also non-explicit, protocol of
Gradwohl et al. [4], however achieves much higher min-entropy: n/2−O(log n)
versus O(log n).

Finally we exhibit very simple explicit protocols. We connect the security pa-
rameter of these geometric protocols with the well studied Kakeya problem mo-
tivated by harmonic analysis and analytical number theory. We are only able to
prove that these protocols have entropy 3n/4 but still n/2 − O(log n)
min-entropy. Therefore they do not perform as well with respect to the explicit
constructions of Gradwohl et al. [4] entropy-wise, but still have much better min-
entropy. We conjecture that these simple protocols achieve n−o(n) entropy. Our
geometric construction and its relation to the Kakeya problem follows a new and
different approach to the random selection problem than any of the previously
known protocols.
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1 Introduction

We study the following communication problem. Alice and Bob want to select a random
string. They are not at the same location so they do not see what the other player does.
They communicate messages according to some protocol and in the end they output a
string of n bits which is a function of the messages communicated. This string should
be as random as possible, in our case we measure the amount of randomness by the
entropy of the probability distribution that is generated by this protocol.

The messages they communicate may depend on random experiments the players
perform and on messages sent so far. The outcome of an experiment is known only to
the party which performs it so the other party cannot verify the outcome of such an
experiment or whether the experiment was carried out at all. One or both the parties
may deviate from the protocol and try to influence the selected string (cheat). We are
interested in the situation when a party honestly follows the protocol and wants to have
some guarantee that the selected string is indeed as random as possible. The measure of
randomness we use is the entropy of probability distribution that is the outcome of the
protocol.

In this paper we present protocols for this problem. In particular we show a
protocol that achieves entropy n − O(1) if at least one party is honest and that
uses 4 log∗ n rounds and communicates n2 +O(n logn) bits. The round complex-
ity of our protocol is optimal up-to a constant factor; the optimality follows from a
result of Sanghvi and Vadhan [8]. We further consider the question of reducing the
communication complexity of our protocols. We show non-constructively that there
are protocols with linear communication complexity that achieve entropy n− logn
in just 3 rounds, and in 6 rounds achieves in addition min-entropy n/2−O(logn)
which is close to the optimal bound of n/2, that follows from Goldreich et al. [3]
and from a bound on quantum coin-flipping due to Kitaev (see [2]). We propose
several explicit and very simple protocols that have entropy 3n/4 and we conjec-
ture that they have entropy n − o(n). Our proofs establish a connection between
the security guarantee of our protocols and the well studied problem of Kakeya
over finite fields motivated by Harmonic analysis and analytic number theory (see
[5,6] for background information on Kakeya Problem). Although these construc-
tive protocols do not achieve the same parameters as the best known constructive
protocols (see next section), our (geometric) protocols are quite different in nature
and much simpler to implement and still yield much higher min-entropy.

1.1 Previous Work

There is a large body of previous work which considers the problem of random string
selection, and related problems such as a leader selection and fault-tolerant compu-
tation. We refer the reader to [8] for an overview of the literature. In this paper we
assume that both parties have unlimited computational power, i.e., so called full infor-
mation model. Several different measures for the randomness guarantee of the protocol
are used in the literature. The most widely used is the (μ, ε)-resilience and the statistical
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distance from the uniform distribution. Informally a protocol is (μ, ε)-resilient if for
every set S ⊂ {0, 1}n with density μ (cardinality μ2n), the output of the protocol is
in S with probability at most ε. In this paper we study however another very natural
randomness guarantee, namely the entropy of the resulting output distribution. There is
a certain relationship between the entropy and resilience, but these parameters are not
interchangeable.

In [3], Goldreich et al. constructs a protocol that is (μ,
√
μ)-resilient for all μ > 0.

This protocol runs in O(n) rounds and communicates O(n2) bits. We show that their
security guarantee also implies entropy n − O(1). Hence, our first protocol, that uses
4 log∗ n is an improvement in the number of rounds with respect to the entropy measure
over that protocol.

Sanghvi and Vadhan [8] give a protocol for every constant δ > 0 that is (μ,
√
μ+ δ)-

resilient and that has constant statistical distance from the uniform distribution. This
type of resilience essentially guarantees security only for sets of constant density. In-
deed, their protocol allows the cheating party to bias the output distribution so that a
particular string has a constant probability of being the output. Hence, their protocol
only guarantees constant min-entropy and entropy (1 − ε)n for ε > 0. Sanghvi and
Vadhan also show a lower bound Ω(log∗ n) on the number of rounds of any random
selection protocol that achieves constant statistical distance from the uniform distribu-
tion. We show that entropy n−O(1) implies being close to uniform distribution so the
lower bound translates to our protocols.

Recently, Gradwohl et al. [4], who also considered protocols with more than 2 play-
ers, constructed for each μ a O(log∗ n)-round protocol that is (μ,O(

√
μ))-resilient and

that uses linear communication. Our results are not completely comparable with those
of [4]; the protocols of [4] only achieve entropy n − O(log n) whereas the entropy
n − O(1) of our protocol implies only (μ,O(1/ log(1/μ)))-resilience for all μ > 0.
Their (1/n2, O(1/n))-resilient protocol, non-explicit matches our non-explicit protocol
from Section 4.1 in terms of entropy but our protocol can be extended to also achieve
high (n/2−O(log n)) min-entropy at the cost of additional 3 rounds.

This extensibility comes from the fact that all our protocols are asymmetric. When
Bob is honest (and Alice dishonest) the min-entropy of the output is guaranteed to be as
high as n−O(logn), which implies, by the aforementioned result of Kitaev [2] that the
min-entropy is only O(log n) when Bob is dishonest (and Alice honest). The protocols
of Gradwohl et al. in general do not have this feature. Whenever their protocols achieve
high (n−O(log n)) entropy the min-entropy is only O(log n).

Finally our explicit geometric protocol only obtains 3n/4 entropy and thus per-
forms worse than the explicit protocol from [4], that achieves for μ = 1/ logn en-
tropy n − o(n). Our explicit protocols though still have min-entropy n/2 − O(log n)
outperforming [4], that only gets min-entropyO(log n).

The paper is organized as follows. In the next section we review the notion of entropy
and of other measures of randomness, and we establish some relationships among them.
Section 3 contains our protocol that achieves entropy n−O(1). In Section 4 we address
the problem of reducing the communication complexity of our protocols. Due to space
limitations we omit almost all the proofs from this extended abstract.
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2 Preliminaries

Let Y be a random variable with a finite range S. The entropy of Y is defined by:

H(Y) = −
∑

s∈S
Pr[Y = s] · log Pr[Y = s].

If for some s ∈ S, Pr[Y = s] = 0 then the corresponding term in the sum is considered
to be zero. All logarithms are based two.

Let X,Y be (possibly dependent) jointly distributed random variable with ranges
T, S, respectively. The entropy of Y conditional to X is defined by:

H(Y|X) =
∑

t∈T
Pr[X = t]H(Y|X = t),

where Y|X = t stands for the random variable whose range is S and which takes
outcome s ∈ S with probability Pr[Y = s|X = t].

The following are basic facts about the entropy:

H(f(Y)) ≤ H(Y) for any function f, (1)

H(Y) ≤ log |S|, (2)

H(Y|X) ≤ H(Y), (3)

H(〈X,Y〉) = H(Y|X) +H(X), (4)

H(X) ≤ H(〈Y,X〉) (follows from (4)), (5)

H(〈Y,X〉) ≤ H(Y) +H(X) (follows from (3) and (4)). (6)

Here 〈Y,X〉 stands for the random variable with range S×T , which takes the outcome
〈s, t〉 with probability Pr[X = t,Y = s]. We will abbreviate H(〈Y,X〉) as H(Y,X)
in the sequel.

The following corollaries of these facts are used in the sequel

1. Let Yi be random variables with the same range S and let Y be obtained by picking
an index i ∈ {1, . . . , n} uniformly at random and then drawing a random sam-
ple according to Yi. Then H(Y) ≥ 1

n

∑n
i=1H(Yi). (Indeed, let X stand for the

random variable uniformly distributed in {1, . . . , n}. Then H(Y) ≥ H(Y|X) =
1
n

∑n
i=1H(Yi).)

2. Let � ≥ 1 be an integer and f : S → T be a function from a set S to a set
T . Let Y be a random variable with range S. If ∀t ∈ T , |f−1(t)| ≤ � then
H(f(Y)) ≥ H(Y) − log �. (Indeed, let X be the index of Y in f−1(Y). Then
H(Y) = H(f(Y),X) ≤ H(f(Y)) +H(X) ≤ H(f(Y)) + log �).

The min-entropy of a random variable X with a finite range S is

H∞(X) = min{− logPr[X = s] : s ∈ S}.

The statistical distance between random variables X,Y with the same finite range
S is defined as the maximum

|Pr[X ∈ A]− Pr[Y ∈ A]|
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over all subsets A of S. It is easy to see that the maximum is attained for A consisting
of all s with Pr[X = s] > Pr[Y = s] (as well as for its complement). For every integer
n ≥ 1, we denote by Un the uniform probability distribution of strings {0, 1}n.

In order to apply a lower-bound from [8] to show that our main protocol needs
Ω(log∗ n) rounds we establish a relation between entropy and constant statistical dis-
tance.

Lemma 1. For every real c there is a real q < 1 such that the following holds. If X is
a random variable with range {0, 1}n and H(X) ≥ n− c then the statistical distance
of X and Un is at most q.

Definition. Let r, n be natural numbers. A deterministic strategy of a player (Alice or
Bob) is a function that maps each tuple 〈x1, . . . , xi〉 of binary strings where i < r to a
binary string (the current message of the player provided 〈x1, . . . , xi〉 is the sequence of
previous messages). A randomized strategy of a player (Alice or Bob) is a probability
distribution over deterministic strategies.

A protocol running in r rounds is a function f that maps each r-tuple 〈x1, . . . , xr〉 of
binary strings to a binary string of length n (the first string x1 is considered as Alice’s
message, the second string x2 as Bob’s message and so on) and a pair 〈SA,SB〉 of
randomized strategies.

If SA, SB are deterministic strategies of Alice and Bob then the outcome of the pro-
tocol for SA, SB is defined as f(x1, . . . , xr) where x1, . . . , xr are defined recursively:
x2i+1 = SA(〈x1, . . . , x2i〉) and x2i+2 = SB(〈x1, . . . , x2i+1〉).

If SA,SB are randomized strategies of Alice and Bob then the outcome of the pro-
tocol is a random variable generated as follows: select independently Alice’s and Bob’s
strategies SA, SB with respect to probability distributions SA and SB , respectively, and
output the result of the protocol for SA, SB .

We say that Alice follows the protocol (is honest) if she uses the strategy SA. We say
that Alice deviates from the protocol (cheats) if she uses any other randomized strategy.
Similarly for Bob.

We say that a protocol P for random string selection is (k, l)-good if the following
properties hold:

1. If both Alice and Bob follow the protocol then the outcome is a fully random string
of length n.

2. If Alice follows the protocol and Bob deviates from it then the outcome has entropy
at least k.

3. If Bob follows the protocol and Alice deviates from it then the outcome has entropy
at least l.

(End of Definition.)

Throughout the paper we use the following easy observation that holds for every
protocol:

Lemma 2. Assume that Alice’s strategy SA guarantees that the entropy of the outcome
is at least α for all deterministic strategies of Bob. Then the same guarantee holds for
all randomized strategies of Bob as well. A similar statement is true for min-entropy in
place of entropy.
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In [8], Sanghvi and Vadhan establish that any protocol for random selection that guaran-
tees a constant statistical distance of the output from the uniform distribution requires at
leastΩ(log∗ n) rounds. Hence we obtain the following corollary to the previous lemma.

Corollary 1. If P is a protocol that is (n−O(1), n− O(1))-good then P has at least
Ω(log∗ n) rounds.

For μ, ε > 0, a random string selection protocol P is (μ, ε)-resilient if for any set S of
size at most μ2n, the probability that the output of P is in S is at most ε, even if one of
the parties cheats.

In order to compare our results with previous work we state the following claim.

Lemma 3. For a random selection protocol P the following holds.

1. If P is (μ, dμc)-resilient for some constants c, d > 0 and any μ > 0 then P is
(n−O(1), n− O(1))-good.

2. If P is (n − O(1), n − O(1))-good then for some constant d and any μ > 0 it is
(μ, d/ log(1/μ)))-resilient.

3 The Main Protocol

In this section we construct a protocol that is (n−O(1), n−O(1))-good. We start with
the following protocol.

Lemma 4. There is a (n − 1, n − logn)-good protocol P0 running in 3 rounds and
communicating n2 + n + logn bits. If Bob is honest then the outcome of P0 has min-
entropy at least n− logn.

Proof. The protocol P0(A,B) is as follows:

1. Player A picks x1, x2, . . . , xn ∈ {0, 1}n uniformly at random and sends them to
Player B.

2. Player B picks y ∈ {0, 1}n uniformly at random and sends it to Player A.
3. Player A picks an index j ∈ {1, . . . , n} uniformly at random and sends it to B.
4. The outcome R of the protocol is xj ⊕ y, i.e., the bit-wise xor of xj and y.

Note that the entropy bounds are tight as a cheating Bob can set y = x1 in the
protocol and thenH(R) = n− 1. Similarly, a cheating Alice can enforce the first logn
bits of the outcome to be all zero bits so H(R) = n− log n in that case.

1) It is easy to verify that the outcome R of the protocolP0(Alice,Bob) is uniformly
distributed if both Alice and Bob follow the protocol and hence it has entropy n.

2) Assume that Alice follows the protocol and Bob is trying to cheat. Hence, Alice
picks uniformly at random x1, . . . , xn ∈ {0, 1}n. Bob picks y. Then Alice picks a
random index j ∈ {1, . . . n} and they set R = xj ⊕ y. Clearly, H(x1, . . . , xn) = n2,
thus

n2 = H(x1, . . . , xn) ≤ H(x1, . . . , xn, y) ≤ H(x1 ⊕ y, . . . , xn ⊕ y) +H(y)
≤ H(x1 ⊕ y, . . . , xn ⊕ y) + n.
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Here the first inequality holds by (5), the middle one by (1) and (6), and the last one by
(2). Therefore,

(n2−n)/n ≤ H(x1⊕y, . . . , xn⊕y)/n≤
n∑

i=1

H(xi⊕y)/n=H(xj⊕y|j)≤H(xj⊕y).

Here the second inequality holds by (6), the equality holds, as Alice chooses j uni-
formly, and the last inequality is true by (3).

3) Assume that Bob follows the protocol and Alice is trying to cheat. Hence, Alice
carefully selects x1, . . . , xn, Bob picks a random string y ∈ {0, 1}n and Alice carefully
chooses j ∈ {1, . . . , n}. Thus H(y|〈x1, . . . , xn〉) = n and hence

H(xj ⊕ y) ≥ H(xj ⊕ y|〈x1, . . . , xn〉) ≥ H(y|〈x1, . . . , xn〉)−H(j|〈x1, . . . , xn〉)
≥ H(y|〈x1, . . . , xn〉)−H(j) ≥ n− log n.

Here the second inequality holds by (1) and (6). Verifying the lower bound on the min-
entropy is straightforward.

Our protocol achieves our goal of having entropy of the outcome close to n if Alice
is honest. However if she is dishonest she can fix up-to logn bits of the outcome to
her will. Clearly, Alice’s cheating power comes from the fact that she can choose up-to
logn bits in the last round of the protocol. If we would reduce the number of strings
xj she can choose from in the last round, her cheating ability would decrease as well.
Unfortunately, that would increase cheating ability of Bob. Hence, there is a trade-off
between cheating ability of Alice and Bob. To overcome this we will reduce the number
of strings Alice can choose from but at the same time we will also limit Bob’s cheating
ability by replacing his y by an outcome of yet another run of the protocol played
with Alice’s and Bob’s roles reversed. By iterating this several times we can obtain the
following protocol.

Let log∗ n stand for the number of times we can apply the function �log x� until we
get 1 from n. For instance, log∗ 100 = 4.

Theorem 1. There is a (n−2, n−3)-good protocol running in 2 log∗ n+1 rounds and
communicating n2 + O(n logn) bits. Depending on n, either if Alice or Bob is honest
then the min-entropy of the protocol is at least n−O(log n).

Proof. Let k = log∗ n − 1. Define �0 = n and �i = �log �i−1�, for i = 1, . . . , k, so
�k−1 ∈ {3, 4} and �k = 2.

For i = 1, . . . , k we define protocol Pi(A,B) as follows.

1. Player A picks x1, x2, . . . , x�i ∈ {0, 1}n uniformly at random and sends them to
Player B.

2. Players A and B now run protocol Pi−1(B,A) (note that players exchange their
roles) and set y to the outcome of that protocol.

3. Player A picks an index j ∈ {1, . . . , �i} uniformly at random and sends it to B.
4. The outcome Ri of this protocol is xj ⊕ y.



High Entropy Random Selection Protocols 373

We claim that the protocols are (n− 2, n− log 4�i)-good:

Lemma 5. For all i = 0, 1, . . . , k the following is true.

1. If both Alice and Bob follow the protocol Pi(Alice,Bob) then its outcome Ri sat-
isfies H(Ri) = n.

2. If Alice follows the protocolPi(Alice,Bob) then the outcome Ri satisfiesH(Ri) ≥
n− 2.

3. If Bob follows the protocol Pi(Alice,Bob) then the outcome Ri of the protocol
satisfies H(Ri) ≥ n− log 4�i.

All the bounds on the entropy are valid also when conditioned on the tuple consisting of
all strings communicated before running Pi. Furthermore, if i is even and Bob is honest
or i is odd and Alice is honest then H∞(Ri) ≥ n−

∑i+1
j=1 �j .

Proof. The first claim is straightforward to verify. We prove the other two simultane-
ously by an induction on i. For i = 0 the claims follow from Lemma 4. So assume that
the claims are true for i− 1 and we will prove them for i.

If Alice follows the protocol Pi(Alice,Bob) then she picks x1, . . . , x�i uniformly
at random. Then the protocol Pi−1(Bob,Alice) is invoked to obtain y = Ri−1. We
can reason just as in the proof of Lemma 4. However this time we have a better lower
bound for H(x1, . . . , x�i , y). Indeed, by induction hypothesis, since Alice follows the
protocol,

H(y|x1, . . . , x�i) ≥ n− log 4�i−1 ≥ n− 2�i.

Here the last inequality holds for all i < k as �i−1 > 4 in this case and hence 2�i ≥
2 log �i−1 > log 4�i−1. For i = k we have �i−1 ∈ {3, 4} and �i = 2 and the inequality
is evident.

Thus,

H(x1, . . . , x�i , y) = H(x1, . . . , x�i) +H(y|x1, . . . , x�i) ≥ �in− 2�i + n.

Just as in Lemma 4, this implies

H(xj ⊕ y) ≥ H(xj ⊕ y|j) =
li∑

s=1

H(xs ⊕ y)/li

≥ (H(x1, . . . , x�i , y)−H(y))/�i ≥ (�in− 2�i + n− n)/�i = n− 2.

Assume that Bob follows the protocol Pi(Alice,Bob) but Alice deviates from it by
carefully choosing x1, . . . , x�i and j. Then the protocol Pi−1(Bob,Alice) is invoked
to obtain y = Ri−1. By induction hypothesis H(y|x1, . . . , x�i) ≥ n − 2. Now Alice
chooses j ∈ {1, . . . , �i}. Similarly as in the proof of Lemma 4, we have

H(xj ⊕ y) ≥ H(xj ⊕ y|〈x1, . . . , x�i〉) ≥ H(y|〈x1, . . . , x�i〉)−H(j|〈x1, . . . , x�i〉)
≥ H(y|〈x1, . . . , x�i〉)−H(j) ≥ n− 2− log �i.

The claim about min-entropy follows by induction.

By the lemma, the protocolPk is (n−2, n−3) good. It runs in 2k+3 = 2(log∗ n−1)+3
rounds.
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The number of communicated bits is equal to

n2 + n+ logn+
k∑

i=1

(n�i + log �i)

All �i’s in the sum are at most logn and decrease faster than a geometric progression.
Hence the sum is at most its largest term (n logn) times a constant.

4 Improving Communication Complexity

In the previous section we have shown a protocol for Alice and Bob that guarantees that
the entropy of the selected string is at least n−O(1). The protocol has an optimal (up-to
a constant factor) number of rounds and communicates O(n2) bits. In this section we
will address the possibility of reducing the amount of communication in the protocol.

We focus on the basic protocol P0(A,B) as that protocol contributes to the commu-
nication the most. The protocol can be viewed as follows.

1. Player A picks x ∈ {0, 1}mA uniformly at random and sends it to Player B.
2. Player B picks y ∈ {0, 1}mB uniformly at random and sends it to Player A.
3. Player A picks an index j ∈ {0, 1}m′

A uniformly at random and sends it to B.
4. A fixed function f : {0, 1}mA×{0, 1}mB ×{0, 1}m′

A → {0, 1}n is applied to x, y
and j to obtain the outcome f(x, y, j).

We will denote such a protocol by P0(A,B, f). In the basic protocol the parameters
are: mA = n2, mB = n and m′

A = logn. We would like to find another suitable
function f with a smaller domain.

We note first that three rounds in the protocol are necessary in order to obtain the
required guarantees on the output of the protocol. In any two round protocol at least
one of the parties can force the output to have entropy at most n/2 + O(log n). (In a
two round protocol, if for some x, the range of f(x, ·) is smaller than n2n/2 then Alice
can enforce entropy n/2 + logn by picking this x. On the other hand if f(x, ·) has a
large range for all x, then Bob can cheat by almost always enforcing the output to lie in
a set of size 2n/2. Bob’s cheating set can be picked at random.).

4.1 Non-explicit Protocol

The following claim indicates that finding a suitable function f should be feasible.

Lemma 6. If f : {0, 1}n × {0, 1}n × {0, 1}8 logn → {0, 1}n is taken uniformly at
random among all functions then with probability at least 1/2, P0(A,B, f) satisfies:

1. If both Alice and Bob follow the protocol P0(Alice,Bob, f) then its outcome R
satisfies H(R) = n−O(1).

2. If Alice follows the protocol P0(Alice,Bob, f) then the outcome R satisfies H(R)
≥ n−O(1).

3. If Bob follows the protocol P0(Alice,Bob, f) then the outcome R of the protocol
satisfies H(R) ≥ n−O(log n) and H∞(R) ≥ n−O(log n).
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The question is how to find an explicit function f of similar properties. We propose the
following three functions that we believe have the required properties. We prove several
results in that direction.

1. frot : {0, 1}n × {0, 1}n × {1, . . . , n} → {0, 1}n defined by f(x, y, j) = xj ⊕
y, where xj is the j-th rotation of x, xj = xjxj+1 · · ·xnx1 · · ·xj−1. Here n is
assumed to be a prime.

2. flin : F k−1×F k×F → F k, where F = GF [2logn], k = n/ logn and f(d, y, j) =
(1, d1, . . . , dk−1) ∗ j + (y1, . . . , yk).

3. fmul : F × F ×H → F , where F = GF [2n], H ⊆ F , |H | = n, and f(x, y, j) =
x ∗ j + y.

In particular the function frot is interesting as it would allow very efficient im-
plementation. We conjecture that for f ∈ {frot, flin, fmul} protocol P0(A,B, f) is
(n− o(n), n−O(log n))-good.

Lemma 7. P0(A,B, frot) is (n/2 − 3/2, n − logn)-good when n is prime and the
min-entropy of the outcome is at least n−O(log n) when Bob follows the protocol.

A similar lemma holds also for our other two candidate functions.

Averaging the Asymmetry. One of the interesting features of our protocols is the
asymmetry of cheating power of the two parties. We used this asymmetry to build the
protocol with entropy n − O(1). One can also use this asymmetry for “averaging”
their cheating powers in the following simple way. Given a protocol Qn(A,B) for
selecting an n bit string, Alice and Bob first select the first n/2 bits of the string by
running the protocol Qn/2(Alice,Bob) and then they select the other half of the string
by running the protocolQn/2(Bob,Alice). If the protocolQn is (k(n), l(n))-good then
the averaging protocol is (k(n/2) + l(n/2), k(n/2) + l(n/2))-good. Similarly if the
min-entropy when Alice follows the protocol is bounded from below by k∞(n) and
when Bob follows the protocol by l∞(n), then the min-entropy of the outcome of the
averaging protocol is at least k∞(n/2) + l∞(n/2).

Hence from Lemma 7 we obtain the following corollary.

Corollary 2. There is a 5-round protocol for random string selection that communi-
cates 2n + O(log n) bits, that is (3n/4 − O(log n), 3n/4 − O(log n))-good and that
has min-entropy at least n/2 − O(log n) when at least one of the parties follows the
protocol.

In the next section we show for a variant of P0(A,B, flin) a similar security guarantee.

4.2 Geometric Protocols and the Problem of Kakeya

We exhibit here a variant of the protocol P0(A,B, flin) and show that it achieves en-
tropy at least 3n/4 − O(1) if at least one party is honest. Fix a finite field F and a
natural m ≥ 2. Let q = |F |. We rephrase the protocol as follows:
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1. Alice picks at random a vector d = (1, d2, . . . , dm) ∈ Fm and sends it to Bob.
2. Bob picks at random x = (x1, . . . , xm) ∈ Fm and sends it to Alice.
3. Alice picks at random t ∈ F and sends it to Bob.
4. The output of the protocol is

y = x+ td = (x1 + t, x2 + td2, . . . , xm + tdm).

The geometric meaning of the protocol is as follows. Alice picks at random a direc-
tion of an affine line in the m-dimensional space Fm over F . Bob chooses a random
affine line going in that direction. Alice outputs a random point lying on the line.

It is easy to lower bound the entropy of the output y of this protocol assuming that
Bob is honest.

Lemma 8. If Bob is honest then the outcome y of the protocol satisfies

H(y) ≥ H∞(y) ≥ (m− 1) log q.

Note that Alice can cheat this much. For example, Alice can force y1 = 0 by choosing
always t = −x1.

In the case when Alice is honest we are able to prove the bound H(y) ≥ (m/2 +
1) log q−O(1). We do not know whether Bob indeed can cheat this much. This question
is related to the following problem known as Kakeya problem for finite fields.

Kakeya Problem. Let L be a collection of affine lines in Fm such that for each direc-
tion there is exactly one line in L going in that direction. Let PL denote points in lines
from L. How small can be |PL|?
For a family L of lines let XL denote the random variable in PL that is a random point
on a random line in L. That is, to generate an outcome of XL, we pick a random line
� in L (all the lines are equiprobable) and then pick a random point on � (all the points
on � are equiprobable).

Call any set of lines L satisfying the conditions of Kakeya problem a Kakeya fam-
ily and let H(m, q) stand for the minimum H(XL) over all Kakeya families L. Let
H∞(m, q) stand for the similar value for min-entropy.

Lemma 9. Assume that Alice is honest. Then the outcome of the protocol always satis-
fiesH(y) ≥ H(m, q) and there is Bob’s strategy such thatH(y) = H(m, q). The same
is true for min-entropy in place of entropy.

Proof. Let YS stand for the outcome of the protocol provided Bob uses a deterministic
strategy S. There is an onto function S #→ L from deterministic Bob’s strategies to
Kakeya sets such that XL coincides with YS .

Indeed, assume that Bob uses a deterministic strategy S. That is, for each d =
(1, d2, . . . , dm) Bob chooses x = x(d) deterministically. Thus Bob defines a Kakeya
family L consisting of all lines of the form

{x(d) + td | t ∈ F}.

Obviously XL = YS .
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Conversely, for every Kakeya set L there is Bob’s strategy S mapped by this function
to L (choose any point in the line in L going in direction d specified by Alice).

This implies the statement of the lemma for deterministic strategies. For randomized
strategies it follows from Lemma 2.

Note that for every family of lines L we have H(YL) ≤ log |PL|. Thus to prove that
the entropy of the outcome is at least α (provided Alice is honest) we need to show
the lower bound |PL| ≥ 2α for Kakeya problem. The best known lower bound for
|PL| is Ω(qm/2+1) [6,5] (and it is conjectured that |PL| must be close to qm). Note
that this bound does not immediately imply that H(YL) ≥ (m/2 + 1) log q for every
Kakeya set L, as the entropy of a random variable can be much less than the log-
cardinality of the set of outcomes. However, the key proposition from the proof of the
bound |PL| = Ω(qm/2+1) presented in [5] indeed allows to prove a slightly weaker
inequality H(YL) ≥ (m/2 + 1) log q − O(1).

Proposition 1 ([5]). Let L be a collection of affine lines in Fm such that every 2-
dimensional plane has at most q + 1 lines from L. Let P be a subset of Fm. Then

|{(p, l) | l ∈ L, p ∈ P, p ∈ l}| ≤ C · (|P |1/2|L|3/4|F |1/4 + |P |+ |L|)

for some constant C.

This proposition allows to prove the following

Theorem 2. If Alice is honest then the outcome of the geometric protocol satisfies
H(y) ≥ (m/2+1) log q−O(1) andH∞(y) ≥ log q provided thatm2 log2 q/q ∈ O(1).

Proof. The second statement is obvious. Let us prove the first one. By Lemma 9 it
suffices to show that H(XL) ≥ (m/2 + 1) log q −O(1) for every Kakeya family L.

Let α stand for q−m/2−1c where c ≥ 1 is a constant to be defined later. We will show
that H(XL) ≥ − logα − O(1). For each y ∈ PL let py stand for the probability that
XL = y: that is, py is equal to the number of lines in L containing y divided by qm. We
classify y’s according to the value of py as follows.

Let Q denote the set of those y ∈ PL with

py ≤ α

and Si for i = 1, 2, . . . ,− logα the set of those y ∈ PL with

α2i−1 < py ≤ α2i.

The entropy of XL is the average value of − log py . For all y in Q we have− log py ≥
− logα. For all y in Si we have − log py ≥ − logα − i. Thus H(XL) can be lower
bounded by

H(XL) ≥ − logα−
∑

i

i ·
( ∑

y∈Si

py

)
≥ − logα−

∑

i

i · |Si| · α2i.

Thus we need to show that
∑

i

i · |Si| · α2i = O(1). (7)
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To this end we need to upper bound |Si|. We are able to show the following bound.

Lemma 10. For all i we have |Si| · α2i = O(2−i) or |Si| · α2i = O(q−1).

As the series
∑

i i2
−i converges and q−1 · (− log2 α) ∈ O(1) these bounds obviously

imply (7).

Proof. Note that every 2-dimensional plane has at most q+1 lines from L (the number
of different directions in every plane is equal to q + 1). Apply Proposition 1 to L and
P = Si. We obtain

|{(p, l) | l ∈ L, p ∈ Si, p ∈ l}| ≤ C · (|Si|1/2|L|3/4q1/4 + |Si|+ |L|)
= C · (|Si|1/2q(3m−2)/4 + |Si|+ qm−1).

Every point in Si belongs to more than α2i−1qm lines in L hence

|{(p, l) | l ∈ L, p ∈ Si, p ∈ l}| > |Si|α2i−1qm.

Combining the inequalities we obtain

|Si|α2iqm < C · (|Si|1/2q(3m−2)/4 + |Si|+ qm−1).

If the last term in the right hand side is greater than the other ones, we have

|Si|α2i < 3C · q−1.

If the second term in the right hand side is greater than the other ones, we have

α2iqm < 3C.

Note that, since m ≥ 2, i ≥ 1, we have α2iqm = 2icqm/2−1 ≥ 2c. Therefore this
cannot be the case, if we let c ≥ 1.5C.

In the remaining case (the first term in the right hand side is greater than the other
ones) we have

|Si|1/2 < 3C2−iα−1q−m/4−1/2 ⇒ |Si| < 9C22−2iα−2q−m/2−1,

and
|Si|α2i < 9C22−iα−1q−m/2−1 = 9C22−i.

The last equality holds by the choice of α. Therefore,

|Si|α2i ≤ 9C22−i.

If we choose m = 4 then the lower bounds for H(y) in the cases when Alice cheats
and Bob cheats coincide and are equal to 3 log q −O(1). Thus we get:

Theorem 3. There is a (3n/4−O(1), 3n/4−O(1))-good 3-round protocol that com-
municates 2n bits.

Using averaging we obtain the following corollary:

Theorem 4. There is a (3n/4−O(1), 3n/4−O(1))-good 6-round protocol that com-
municates 2n bits and guarantees the min-entropy at least n/2−O(1) for both players.
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Abstract. We continue the study, started in [9], of property testing
of graphs in the orientation model. A major question which was left
open in [9] is whether the property of st-connectivity can be tested
with a constant number of queries. Here we answer this question on
the affirmative. To this end we construct a non-trivial reduction of the
st-connectivity problem to the problem of testing languages that are de-
cidable by branching programs, which was solved in [11]. The reduction
combines combinatorial arguments with a concentration type lemma that
is proven for this purpose. Unlike many other property testing results,
here the resulting testing algorithm is highly non-trivial itself, and not
only its analysis.

1 Introduction

We continue the study, started in [9], of property testing of graphs in the orien-
tation model. This is a model that combines information that has to be queried
with information that is known in advance, and so does not readily yield to
general techniques such as that of the regularity lemma used in [1] and [3].

Specifically, the information given in advance is an underlying undirected
graph G = (V,E) (that may have parallel edges). The input is then constrained
to be an orientation of G, and the distances are measured relative to |E| and
not to any function of |V |. An orientation of G is simply an orientation of its
edges. That is, for every edge e = {u, v} in E(G) an orientation of G specifies
which of u and v is the source vertex of e, and which is the target vertex. Thus
an orientation defines a directed graph G whose undirected skeleton is G. Given
the undirected graph G, a property of orientations is just a partial set of all
orientations of G.

We study orientation properties in the framework of property testing. The
meta problem in the area of property testing is the following: Given a combina-
torial structure S, distinguish between the case that S satisfies some property P
and the case that S is ε-far from satisfying P . Roughly speaking, a combinatorial
� Research supported in part by an Israel Science Foundation grant number 55/03.
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structure is said to be ε-far from satisfying some property P if an ε-fraction of its
representation has to be modified in order to make S satisfy P . The main goal in
property testing is to design randomized algorithms, which look at a very small
portion of the input, and use this information to distinguish with high probabil-
ity between the above two cases. Such algorithms are called property testers or
simply testers for the property P . Preferably, a tester should look at a portion
of the input whose size is a function of ε only and is independent of the input
size. A property that admits such a tester is called testable.

Blum, Luby and Rubinfeld [4] were the first to formulate a question of this
type, and the general notion of property testing was first formulated by Rubin-
feld and Sudan [14], who were interested in studying various algebraic properties
such as the linearity of functions. The definitions and the first study of property
testing as a framework were introduced in the seminal paper of Goldreich, Gold-
wasser and Ron [6]. Since then, an extensive amount of work has been done on
various aspects of property testing as well as on studying particular properties.
For comprehensive surveys see [13,5].

Here the relevant combinatorial structure is an orientation G of the underlying
graph G, and the distance between two orientations G1, G2 is the number of
edges that are oriented differently in G1 and G2. Thus an orientation G is ε-far
from a given property P if at least ε|E(G)| edges have to be redirected in G to
make it satisfy P . Ideally the number of queries that the tester makes depends
only on ε and on nothing else (in particular it depends neither on |E| nor the
specific undirected graph G itself).

A major question that has remained open in [9] is whether connectivity prop-
erties admit such a test. For a fixed s, t ∈ V (G), an orientation G is st-connected
if there is a directed path from s to t in it. Connectivity and in particular st-
connectivity is a very basic problem in graph theory which has been extensively
studied in various models of computation.

Our main result is that the property of being st-connected is testable by a
one-sided error algorithm with a number of queries depending only on ε. That
is, we construct a randomized algorithm such that for any underlying graph
G, on input of an unknown orientation the algorithm queries only O(1) edges
for their orientation and based on this decides with success probability 2

3 (this
of course could be amplified to any number smaller than 1) between the case
that the orientation is st-connected and the case that it is ε-far from being
st-connected. Our algorithm additionally has one-sided error, meaning that st-
connected orientations are accepted with probability 1. Note that the algorithm
knows the underlying graph G in advance and G is neither alterable nor part of
the input to be queried. The dependence of the number of queries in our test on
ε is triply exponential, but it is independent of the size of the graph.

To put our result in context with previous works in the area of property
testing, we note that graph properties were extensively studied since the early
beginning in the defining paper of Goldreich, Goldwasser and Ron [6]. The model
that was mainly studied is the dense graphs model in which an input is a graph
represented as a subgraph of the complete graph. As such, for n-vertex graphs,
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the input representation size is
(
n
2

)
which is the number of all possible unordered

pairs. Thus, any property that has o(n2) witness size, and in particular the
property of undirected st-connectivity, is trivially testable as every input is close
to the property. Similarly, properties of directed graphs were studied in the same
context mostly by [1,3]. Inputs in this model are subgraphs of the complete
directed graph (with or without anti parallel edges). In this case, directed st-
connectivity is again trivial.

Other models in which graph properties were studied are the bounded-degree
graph model of [7] in which a sparse representation of sparse graphs is considered
(instead of the adjacency matrix as in the dense model), and the general density
model (also called the mixed model) of [12] and [10]. In those models edges can
be added as well, and so st-connectivity (directed or not) is again trivial as the
single edge (s, t) can always be added and thus every graph is close to having
the property. Testing general (all-pairs) connectivity is somewhat harder, and
for this constant query testers are generally known, e.g. the one in [7] for the
undirected bounded degree case.

Apart from [9], the most related work is that of [8] in which a graphG = (V,E)
is given and the properties are properties of boolean functions f : E(G) →
{0, 1}. In [8] the interpretation of such a function is as an assignment to certain
formulae that are associated with the underlying graph G, and in particular can
viewed as properties of orientations (although the results in [8] concentrate on
properties that are somewhat more “local” than our “global” property of being
st-connected). Hence, the results here should be viewed as moving along the
lines of the investigation that was started in [9] and [8]. A common feature of
the current work with this previous one, which distinguishes these results from
results in many other areas of property testing and in particular the dense graph
models, is that the algorithms themselves are rather non-trivial in construction,
and not just in their analysis.

The algorithm that we present here for st-connectivity involves a preprocess-
ing stage that is meant to reduce the problem to that of testing a branching
program of bounded width. Once this is achieved, a randomized algorithm sim-
ulating the test for the constant width branching program from [11] is executed
to conclude the result.

In general, the decision problem of st-connectivity of orientations of a given
graph is not known to be reducible to constant width branching programs. In
fact, it is most probably not the case as st-connectivity is complete for NL (non-
deterministic LOG space) while deciding constant width branching programs is
in L. In particular, it is not clear how to deal with high degree vertices or with
large cuts. The purpose of the preprocessing stage is to get rid of these difficulties
(here it will be crucial that we only want to distinguish between inputs that have
the property and inputs that are quite far from having the property). This is done
in several steps that constitute the main part of the paper. In particular we have
an interim result in which most but not all edges of the graph are partitioned
into constant width layers. This is proved using a weak concentration lemma for
sequences of integers, which is formulated and proved for this purpose.
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After the small portion of edges not in constant width layers is dealt with
(using a reduction based on graph contraction), we can reduce the connectivity
problem to a constant width read once branching program. Once such a branch-
ing program is obtained, the result of [11] can be used essentially in a black box
manner.

Some interesting related open problems still remain. We still do not know if
the property of being strongly st-connected is testable with a constant number
of queries. The orientation G is strongly st-connected if there is a directed path
in G from s to t as well as a directed path from t to s. A more general problem
is whether in this model we can test the property of being all-pairs strongly-
connected using a constant number of queries. Another related property is the
property that for a given s ∈ V (G) every vertex is reachable by a directed path
from s. The complexity of these problems is unknown, although there are some
indications that similar methods as those used here may help in this regard.

The rest of this paper is organized as follows. In Section 2 we introduce the
needed notations and definitions. Section 3 contains the statement of the main
result and an overview of the proof. In Section 4 we reduce the problem of
testing st-connectivity in general graphs to the problem of testing st-connectivity
in nicely structured bounded-width graphs (we later call them st-connectivity
programs). Due to space considerations, most of the proofs from Section 4 are
omitted. In Section 5 we reduce from testing st-connectivity programs to testing
clustered branching programs. Converting these clustered branching programs
into regular ones, to which we can apply the testing algorithm from [11], is
straightforward. Finally in Section 6 we combine these ingredients to wrap up
the proof.

2 Preliminaries

2.1 Notations

In what follows, our graphs are going to possibly include parallel edges, so we use
‘named’ pairs for edges, i.e. we use e = e{u, v} for an undirected edge named e
whose end points are u and v. Similarly, we use e = e(u, v) to denote the directed
edge named e that is directed from u to v. Let G = (V,E) be an undirected multi-
graph (parallel edges are allowed), and denote by n the number of vertices in V .
We say that a directed graph G is an orientation of the graph G, or in short
a G-orientation, if we can derive G from G by replacing every undirected edge
e = e{u, v} ∈ E with either e(u, v) or e(v, u), but not both. We also call G the
underlying graph of G.

Given an undirected graph G and a subset W ⊂ V of G’s vertices, we denote
by G(W ) the induced subgraph of G on W , and we denote by E(W ) = E(G(W ))
the edge set of G(W ). The distance between two vertices u, v in G is denoted
by distG(u, v) and is set to be the length of the shortest path between u and v.
Similarly, for a directed graph G, distG(u, v) denotes the length of the shortest
directed path from u to v. The distance of a vertex from itself is distG(v, v) =
distG(v, v) = 0. In the case where there is no directed path from u to v in G,
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we set distG(u, v) = ∞. The diameter of an undirected graph G is defined as
diam(G) = maxu,v∈V {distG(u, v)}. Through this paper we always assume that
the underlying graph G is connected, and therefore its diameter is finite.

For a graph G and a vertex v ∈ V , let Γin(v) = {u : ∃e(u, v) ∈ E} and
Γout(v) = {u : ∃e(v, u) ∈ E} be the set of incoming and outgoing neighbors
of v respectively, and let Γ (v) = Γin(v) ∪ Γout(v) be the set of neighbors in
the underlying graph G. Let degin(v), degout(v) and deg(v) denote the sizes
of Γin(v), Γout(v) and Γ (v) respectively. We denote the i-neighborhood (in the
underlying undirected graph G) of a vertex v by Ni(v) = {u : distG(u, v) ≤ i}.
For example, N1(v) = {v} ∪ Γ (v), and for all v ∈ V , V = Ndiam(G)(v).

2.2 Orientation Distance, Properties and Testers

Given two G-orientations G1 and G2, the distance between G1 and G2, denoted
by Δ(G1,G2), is the number of edges in E(G) having different directions in G1

and G2.
Given a graph G, a property PG of G’s orientations is a subset of all pos-

sible G-orientations. We say that an orientation G satisfies the property PG if
G ∈ PG. The distance of G1 from the property PG is defined by δ(G1,PG) =
minG2∈PG

Δ(G1,G2)
|E(G)| . We say that G is ε-far from PG if δ(G,PG) ≥ ε, and other-

wise we say that G is ε-close to PG. We omit the subscript G when it is obvious
from the context.

Definition 1 ((ε, q)-tester). Let G be a fixed undirected graph and let P be a
property of G’s orientations. An (ε, q)-tester T for the property P is a randomized
algorithm, that for any G that is given via oracle access to the orientations of
its edges operates as follows.

– The algorithm T makes at most q orientation queries to G (where on a query
e ∈ E(G) it receives as the answer the orientation of e in G).

– If G ∈ P , then T accepts it with probability 1 (here we define only one-sided
error testers, since our testing algorithm will be one).

– If G is ε-far from P , then T rejects it with probability at least 2/3.

The query complexity of an (ε, q)-tester T is the maximal number of queries q
that T makes on any input. We say that a property P is testable if for every
ε > 0 it has an (ε, q(ε))-test, where q(ε) is a function depending only on ε (and
independent of the graph size n).

2.3 Connectivity Programs and Branching Programs

Our first sequence of reductions converts general st-connectivity instances to
well structured bounded-width st-connectivity instances, as formalized in the
next definition.

Definition 2 (st-Connectivity Program). An st-Connectivity Program of
width w and length m over n vertices (or CP (w,m, n) in short), is a tuple
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〈G,L〉, where G is an undirected graph with n vertices and L is a partition of
G’s vertices into layers L0, . . . , Lm. There are two special vertices in G: s ∈ L0

and t ∈ Lm, and the edges of G are going only between vertices in consecutive
layers, or between the vertices of the same layer, i.e. for each e = e{u, v} ∈ E(G)
there exists i ∈ [m] such that u ∈ Li−1 and v ∈ Li, or u, v ∈ Li. The partition L
induces a partition E1, . . . , Em of E(G), where Ei is the set of edges that have
both vertices in Li, or one vertex in Li−1 and another in Li. In this partition of
the edges the following holds: maxi{|Ei|} ≤ w.

Any orientation of G’s edges (that maps every edge e{u, v} ∈ E(G) to ei-
ther e(u, v) or e(v, u)) defines a directed graph G in the natural way. An st-
connectivity program C = 〈G,L, 〉 defines a property PC of G’s orientations in
the following way: G ∈ PC if and only if in the directed graph G there is a
directed path from s to t.

Next we define branching programs. These are the objects to which we can apply
the testing algorithm of [11].

Definition 3 (Branching Program). A Read Once Branching Program of
width w over an input of n bits (or BP (w, n) in short), is a tuple 〈G,L, X〉,
where G is a directed graph with 0/1-labeled edges, L is a partition of G’s vertices
into layers L0, . . . , Ln such that maxi{|Li|} ≤ w, and X = {x0, . . . , xn−1} is a
set of n Boolean variables. In the graph G there is one special vertex s belonging
to L0, and a subset T ⊂ Ln of accepting vertices. The edges of G are going only
between vertices in consecutive layers, i.e. for each e = e(u, v) ∈ E(G) there is
i ∈ [n] such that u ∈ Li−1 and v ∈ Li. Each vertex in G has at most two outgoing
edges, one of which is labeled by ‘0’ and the other is labeled by ‘1’. In addition,
all edges between two consecutive layers are associated with one distinct member
of X = {x0, . . . , xn−1}. An assignment σ : X → {0, 1} to X defines a subgraph
Gσ of G, which has the same vertex set as G, and for every layer Li−1 (whose
outgoing edges are associated with the variable xji ), the subgraph Gσ has only the
outgoing edges labeled by σ(xji ). A read once branching program B = 〈G,L, X〉
defines a property PB ⊂ {0, 1}n in the following way: σ ∈ PB if and only if in
the subgraph Gσ there is a directed path from the starting vertex s to any of the
accepting vertices in T .

Branching programs that comply with the above definition can be tested by the
algorithm of [11]. However, as we will see in Section 5, the branching programs
resulting from the reduction from our st-connectivity programs have a feature
that they require reading more than one bit at a time to move between layers.
The next definition describes these special branching programs formally.

Definition 4 (Clustered Branching Program). A c-clustered Read Once
Branching Program of width w and length m over an input of n bits (or shortly
BPc(w,m, n)) is a tuple 〈G,L, X, I〉, where similarly to the previous definition,
G is a directed graph with labeled edges (see below for the set of labels), L =
(L0, . . . , Lm) is a partition of G’s vertices into m layers such that maxi{|Li|} ≤
w, and X = {x0, . . . , xn−1} is a set of n Boolean variables. Here too, G has one
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special vertex s belonging to L0, and a subset T ⊂ Ln of accepting vertices. The
additional element I is a partition (I1, . . . , Im) of X into m components, such
that maxi{|Ii|} ≤ c.

All edges in between two consecutive layers Li−1 and Li are associated with
the component Ii of I. Each vertex in Li−1 has 2|Ii| outgoing edges, each of them
labeled by a distinct α ∈ {0, 1}|Ii|.

An assignment σ : X → {0, 1} to X defines a subgraph Gσ of G, which has
the same vertex set as G, and for every layer Li (whose outgoing edges are
associated with the component Ii), the subgraph Gσ has only the edges labeled by(
σ(xi)

)

i∈Ii

. A c-clustered read once branching program B = 〈G,L, X, I〉 defines

a property PB ⊂ {0, 1}n in the following way: σ ∈ PB if and only if in the
subgraph Gσ there is a directed path from the starting vertex s to one of the
accepting vertices in T .

Observe that BP (w,m) is equivalent to BP1(w,m,m).

3 The Main Result

For an undirected graph G and a pair s, t ∈ V (G) of distinct vertices, let P stG be
a set of G-orientations under which there is a directed path from s to t. Formally,
P stG = {G : distG(s, t) <∞}.

Theorem 1. The property P stG is testable. In particular, for any undirected
graph G, two vertices s, t ∈ V (G) and every ε > 0, there is an (ε, q)-tester

T for P stG with query complexity q = (2/ε)2
(1/ε)·2O(ε−2 )

.

Note that the property P stG is trivially testable whenever the undirected distance
from s to t in G is less than ε|E(G)|. In particular, our result is interesting only
for sparse graphs, i.e. graphs for which |E(G)| ≤ |V (G)|/ε.

We can slightly improve the query complexity to q = (2/ε)2
O((1/ε)(1/ε) )

by
proving a stronger version of the concentration argument (Lemma 4), but we
omit this proof from this extended abstract.

3.1 Proof Overview

The main idea of the proof is to reduce the problem of testing st-connectivity
in the orientation model to the problem of testing a Boolean function that is
represented by a small width read once branching program. For the latter we
have the result of [11] asserting that each such Boolean function is testable.

Theorem 2 ([11]). Let P ⊆ {0, 1}n be the language accepted by a read-once
branching program of width w. Then testing P with one-sided error requires at
most

(
2w

ε

)O(w)
queries.
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By the definition above of BP (w, n), one could already notice that testing the ac-
ceptance of a branching program resembles testing st-connectivity, and that the
two problems seem quite close. However, there are several significant differences,
as noted here.

1. In branching programs, every layer is associated with a variable, querying
which reveals all the edges going out from this layer. In st-connectivity in-
stances, in order to discover the orientation of these edges we need to query
each of them separately.

2. The length of the input in branching programs is the number of layers rather
than the total number of edges.

3. The edges in branching program graphs are always directed from Li−1 to
Li for some i ∈ [n]. In our case, the graph is not layered, and a pair u, v of
vertices might have any number of edges in both directions.

4. In branching programs the graphs have out-degree exactly 2, while an input
graph of the st-connectivity problem might have vertices with unbounded
out-degree.

5. The most significant difference is that the input graphs of the st-connectivity
problem may have unbounded width. This means that the naive reduction
to branching programs may result in an unbounded width BP s, which we
cannot test with a constant number of queries.

We resolve these points in several steps. First, given an input graph G, we reduce
it to a graph G(1) which has the following property: for every induced subgraph
W of G(1), the diameter of W is larger than ε times the number of edges in
W . Then we prove that G(1) can be layered such that most of its edges lie
within bounded-width layers. In particular, the total number of edges in the
“wide” layers is bounded by ε

2E(G(1)). For this we need a concentration type
lemma which is stated and proven here for this purpose. Next we reduce G(1)

to a graph G(2), which can be layered as above, but without wide layers at all.
This in particular means that the number of edges in G(2) is of the order of the
number of layers, similarly to bounded width branching programs. In addition, in
this layering of G(2) the vertex t is in the last layer (while the vertex s remains
in the first layer). Then we reduce G(2) (which might be thought of as the
undirected analogue of a bounded width branching program) to a clustered read
once bounded width branching program. Finally we show that these clustered
branching programs can be converted into non-clustered branching programs, to
which we can apply the test from [11].

4 Reducing General Graphs to Connectivity Programs

In this section we make our first step towards proving Theorem 1. We reduce the
problem of testing st-connectivity in a general graph to the problem of testing
st-connectivity of an st-Connectivity Program. First we define the notion of
reducibility in our context, and then we describe a sequence of reductions that
will eventually lead us to the problem of testing read once bounded width BP s.
Due to space considerations, some of the proofs from this section are omitted.
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4.1 Reducibility Between st-Connectivity Instances

Let Gst denote the class of undirected graphs having two distinct vertices s and
t, and let G,G′ ∈ Gst. We say that G is (ε, η)-reducible to G′ if there is a function
ρ that maps orientations of G to orientations of G′ (from now on we denote by
G′ the orientation ρ(G)) such that the following holds.

– If G ∈ P stG then G′ ∈ P stG′

– If δ(G, P stG ) ≥ ε then δ(G′, P stG′) ≥ η
– Any orientation query to G′ can be simulated by a single orientation query

to G.

We say that G is (ε)-reducible to G′ if it is (ε, ε)-reducible to G′. Notice that
whenever G is (ε, η)-reducible to G′, any (η, q)-tester T ′ for P stG′ can be converted
into an (ε, q)-tester T for P stG . Or in other words, (ε, q)-testing P stG is reducible
to (η, q)-testing P stG′ .

In the following section we introduce our first reduction, which is referred to
as the reduction from G to G(1) in the proof overview.

4.2 Reduction to Graphs Having High-Diameter Subgraphs

An undirected graph G is called ε-long if for every subset of vertices W ⊂ V (G),
diam(G(W )) > ε|E(W )|.

Lemma 1. Any graph G ∈ Gst is (ε)-reducible to a graph G′ ∈ Gst which is
ε-long.

We first define a general contraction operator for graphs, and then use it for the
proof. Given a graph G let W ⊂ V be a subset of its vertices, and let C1, . . . , Cr
be the vertex sets of the connected components of G(W ). Namely, for each Ci ⊂
W , the induced subgraph G(Ci) of the underlying graph G is connected, and for
any pair u ∈ Ci, v ∈ Cj (i �= j) of vertices, e{u, v} /∈ E(G). We define a graph
G/W as follows. The graphG/W has the vertex set V/W = (V \W )∪{c1, . . . , cr}
and its edges are

E/W =
{
e{u, v} : (u, v ∈ V \W ) ∧ (e ∈ E)

}
∪

{
e{ci, v} : (v ∈ V \W ) ∧ ∃u∈Ci(e{u, v} ∈ E)

}

Intuitively, in G/W we contract every connected component Ci of G(W ) into
a single (new) vertex ci without changing the rest of the graph. Note that such a
contraction might create parallel edges, but loops are removed. Whenever s ∈ Ci
for some i ∈ [r], we rename the vertex ci by s, and similarly if t ∈ Cj then we
rename cj by t. In the following a connected component containing both s and
t will not be contracted, so we can assume that the distinguished vertices s and
t remain in the new graph G/W . Given an orientation G of G we define the
orientation G/W = ρ(G) of G/W as the orientation induced from G in the
natural way (note that there are no “new” edges in G/W ).
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Lemma 2. Let W ⊂ V be a subset of G’s vertices, such that diam(G(W )) ≤
ε|E(W )|. Then G is (ε)-reducible to the graph G/W .

Proof. Fix an orientation G of G. It is clear that if G ∈ P stG then G/W ∈ P stG/W .
Now assume that δ(G, P stG ) ≥ ε. Let d and d′ denote δ(G, P stG ) · |E(G)| and
δ(G/W,P stG/W ) · |E(G/W )| respectively. From the definition of the graph G/W
it follows that d′ ≥ d−diam(G(W )). This is true since any st-path in G/W can
be extended to an st-path in G by reorienting at most diam(G(W )) edges in W
(by definition, diam(G(W )) is an upper bound on the undirected distance from
any “entry” vertex to any “exit” vertex in G(W )). From the condition on W

we have |E(G/W )| = |E| − |E(W )| ≤ |E| − diam(G(W ))
ε . Combining these two

together we have

δ(G/W,P stG/W ) =
d′

|E(G/W )| ≥
d− diam(G(W ))
|E| − diam(G(W ))/ε

≥

d− diam(G(W ))
d/ε− diam(G(W ))/ε

= ε

In addition, it is clear that we can simulate each query to G/W by making at
most one query to G. ��
Now the proof of Lemma 1 follows by applying this contraction (iteratively) for
each “bad” subgraph W , until eventually we get a graph G′ in which all ver-
tex subsets W satisfy diam(G(W )) > |E(W )|

ε . If in some stage we have both s
and t contained in the contracted subgraph W , then we just output a tester
that accepts all inputs (since in this case all orientations are ε-close to being
st-connected). Note that this process may result in several different graphs (de-
pending on choices of the set W in each iteration), but we are only interested in
one (arbitrary) graph G′. ��

4.3 Properties of ε-Long Graphs

Next we show that an ε-long graph G can be “layered” so that the total number
of edges in the “wide” layers is bounded by ε

2E(G). We first define graph layering.

Definition 5 (Graph layering and width). Given a graph G and a vertex
s ∈ V (G), let m denote the maximal (undirected) distance from s to any other
vertex in G. We define a layering L = (L0, L1, . . . , Lm) of G’s vertices as follows.
L0 = {s} and for every i > 0, Li = Ni(s) \ Ni−1(s). Namely Li is the set of
vertices which are at (undirected) distance exactly i from s. Note that for every
edge e{u, v} of G either both u and v are in the same layer, or u ∈ Li−1 and
v ∈ Li for some i ∈ [m].

We also denote by EL
i the subset of G’s edges that either have one vertex in

Li and the other in Li−1, or edges that have both vertices in Li. Alternatively,
EL
i = E(Li∪Li−1)\E(Li−1). We refer to the sets Li and EL

i as vertex-layers and
edge-layers respectively. We might omit the superscript L from the edge-layers
notation when it is clear from the context.

The vertex-width of a layering L is maxi{|Li|}, and the edge-width of L is
maxi{|Ei|}.



390 S. Chakraborty et al.

Bounding the Number of Edges Within Wide Edge-Layers. The fol-
lowing lemma states that in a layering of an ε-long graph most of the edges are
captured in edge-layers of bounded width.

Lemma 3. Consider the layering L of an ε-long graph G as defined above, and
let I = {i : |Ei| > 2100/ε2/ε} be the set of indices of the wide edge-layers. Then
the following holds:

∑
i∈I |Ei| ≤ ε

2 |E|.

Proof. Denote by A = 〈a0, a1, . . . , am〉 a sequence of integers, where a0 = 1 and
for every i ≥ 1, ai = |Ei|.

Definition 6 (ε-good sequence). Let 0 < ε < 1 be a positive constant. A
sequence 1 = a0, a1, . . . , am of positive natural numbers is ε-good if for every
0 ≤ k < m and � ∈ [m− k] we have that

k+�∑

i=k+1

ai ≤
� · ak
ε

.

Claim 1. Let G be a graph in which for any induced subgraph W we have
|E(W )| < diam(W )/ε. Then the sequence A = 〈a0, a1, . . . , am〉 defined above
is ε/4-good.

Proof (Proof of Claim 1). Let us assume the contrary of the claim. Let k and �
be such that

k+�∑

i=k+1

ai >
4� · ak
ε

Consider the subgraphW defined by the vertices ∪k+�i=kLi and the edges ∪k+�i=k+1Ei.
Now the number of edges in W is clearly

∑k+�
i=k+1 ai. For each vertex v in Lk

consider the neighborhood of distance � + 1 from v, N�+1(v), and denote the
subgraph it spans by Wv. Notice that each Wv is of diameter at most 2(�+1) ≤
4�, and that the union of the edge sets of the Wv includes the whole edge set of
W , so we have

∑
v∈Lk

|E(Wv)| ≥
∑k+�

i=k+1 ai. The number of vertices in Lk is at
most ak, so by the pigeonhole principle we know that at least one of the vertices
v in Lk has at least 1

ak

∑k+�
i=k+1 ai edges in Wv. By our assumption on

∑k+�
i=k+1 ai

we have |E(Wv)| > 4�
ε ≥ diam(Wv)/ε, a contradiction. ��

Proving Lemma 3 requires the following concentration type lemma, proof of
which is omitted due to lack of space.

Lemma 4 (The weak concentration lemma). Let 〈a0, . . . , am〉 be an ε-good
sequence and let B = {i | ai > 25/ε2/ε}. Then

∑
i∈B ai ≤ ε

∑m
i=1 ai. ��

Now the proof of Lemma 3 follows directly from Claim 1 and Lemma 4. ��
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4.4 Reduction to Bounded Width Graphs

In this section we prove that ε-long graphs can be reduced to graphs that have
bounded width. In terms of the proof overview, we are going to reduce the graph
G(1) to the graph G(2).

Let G = (V,E) ∈ Gst, and let L = (L0, L1, . . . , Lm) be the layering of G as
above. We call an edge-layer Ei wide if |Ei| > 1

ε · 2100/ε2 . Let W be the set of all
wide edge-layers.

Lemma 5. If G ∈ Gst satisfies
∑
Ei∈W |Ei| ≤ ε

2 |E| then G is (ε, ε/2)-reducible
to a graph G′ which has no wide edge-layers at all.

The proof of Lemma 5 appears in omitted.

4.5 Reducing Bounded Width Graphs to st-Connectivity Programs

So far we reduced the original graph G to a graph G′ which has a layering
L = (L0, L1, . . . , Lm) of edge-width at most w = 1

ε · 2100/ε2 , and in which the
source vertex s belongs to layer L0. The remaining difference between G′ and
an st-connectivity program is that in G′ the target vertex t might not be in
the last vertex-layer Lm. The following lemma states that we can overcome this
difference by another reduction.

Lemma 6. Let G′ be a graph as described above. Then G′ is (ε, ε/2)-reducible
to an st-connectivity program S of width at most w + 1. ��

5 Reducing st-Connectivity Programs to Branching
Programs

We now show how to reduce an st-connectivity program to a clustered branching
program (recall Definition 2 and Definition 4). First observe that we can assume
without loss of generality that if an st-connectivity program has edge-width w,
then its vertex-width is at most 2w (since removing vertices of degree 0 essentially
does not affect the st-connectivity program, and a vertex in Li with edges only
between it and Li+1 can be safely moved to Li+1).

Before moving to the formal description of the reduction, we start with a short
intuitive overview. A branching program corresponds to a (space bounded) com-
putation that moves from the start vertex s, which represents no information
about the input at all, and proceeds (via the edges that are consistent with the
input bits) along a path to one of the final vertices. Every vertex of the branch-
ing program represents some additional information gathered by reading more
and more pieces of the input. Thus, the best way to understand the reduction is
to understand the implicit meaning of each vertex in the constructed branching
program.

Given a graph G of a bounded width st-connectivity program, and its layering
L0, L1, . . . Lm, we construct a graph G′ (with layering L′

0, L
′
1, . . . L

′
m) for the

bounded-width branching program. The graph G′ has the same number of layers



392 S. Chakraborty et al.

asG. Each level L′
i inG′ will represent the conditional connectivity of the vertices

in the subgraph Gi = G(
⋃i
j=0 Li) of G. To be specific, the knowledge we want

to store in a typical vertex at layer L′
i of G′ is the following.

– for every u ∈ Li whether it is reachable from s in Gi.
– for every v, u ∈ Li whether v is reachable from u in Gi.

Hence, the amount of information we store in each node x ∈ L′
i has at most

2w + (2w)2 many bits, and so there will be at most 42w2+w vertices in each L′
i,

meaning that the graph G′ of the branching program is of bounded width as
well.

Lemma 7. Let ε > 0 be a positive constant. Given a CP (w,m, n) instance C =
〈G,L〉, we can construct a BPw(42w2+w,m, n) instance B = 〈G′,L′, X ′, I ′〉 and
a mapping ρ from G-orientations to assignments on X such that the following
holds,

– if G satisfies PC then σ = ρ(G) satisfies PB .
– if G is ε-far from satisfying PC then σ = ρ(G) is ε-far from satisfying PB .
– any assignment query to σ can be simulated using a single orientation query

to G.

Proof. First we describe the construction, and then show that it satisfies the
requirements above.

The vertices of G′: We fix i and show, based on the layer Li of G, how to
construct the corresponding layer L′

i of G′. Each vertex in L′
i corresponds to a

possible value of a pair (Si, Ri) of sets. The first set Si ⊆ Li contains vertices
v ∈ Li for which there is a directed path from s to v in the subgraph of G induced
on
⋃i
j=0 Lj. The second set Ri ⊆ Li×Li is a set of ordered pairs of vertices, such

that every ordered pair (u, v) is in Ri if there is a directed path from u to v in the
subgraph of G induced on

⋃i
j=0 Lj (the path can be of length 0, meaning that

the Ri’s contain all pairs (v, v), v ∈ Li). Notice that |L′
i| = 2|Li|2+|Li| ≤ 42w2+w

for all i.

The edges of G′: Now we construct the edges of G′. Recall that E′
i+1 denotes

the set of (labeled) edges having one vertex in L′
i+1 and the other in L′

i. Fix i and
a vertex v ∈ L′

i. Let (S,R) be the pair of sets that correspond to v. Let S′′ be the
set Li+1∩Γout(S), namely the neighbors of vertices from S that are in Li+1, and
set R′′ = {(v, v) : v ∈ Li+1}∪ {(u, v) :

(
u, v ∈ Li+1

)
∧
(
v ∈ Γout(u)

)
} ∪ {(u, v) :

(
u, v ∈ Li+1

)
∧
((
Γout(u)× Γin(v)

)
∩R �= ∅

)
}. Now define R′ as the transitive

closure of R′′, and set S′ = S′′ ∪ {v ∈ Li+1 : ∃u∈S′′(u, v) ∈ R′}. Let v′ ∈ L′
i+1

be the vertex corresponding to the pair (S′, R′) that we defined above. Then the
edges of E′

i+1 are given by all such pairs of vertices (v, v′).
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The variables in X ′: Each variable x′i ∈ X ′ is associated with an edge ei ∈
E(G). This association is actually the mapping ρ above, i.e. every orientation G
of G defines an assignment σ on X ′.

The partition I ′ of X ′: Recall that Ei denotes the set of edges of G having
either one vertex in Li−1 and the other in Li, or both vertices in Li. The partition
I ′ of X ′ is induced by the partition L of V (G). Namely, the component Ii of I
contains the set of variables in X ′ that are associated with edges in Ei. Thus w
is also a bound on the sizes of the components in I.

The set T ′ ⊂ L′
m of accepting vertices: The set T ′ is simply the subset of

vertices in L′
m whose corresponding set S contains the target vertex t of G.

Note that each value of a variable in X ′ corresponds exactly to an orien-
tation of an edge in G. This immediately implies the third assertion in the
statement of the lemma. Distances between inputs are clearly preserved, so to
prove the other assertions it is enough to show that the branching program ac-
cepts exactly those assignments that correspond to orientations accepted by the
connectivity program. It is straightforward (and left to the reader) to see that
the vertex reached in each L′

i indeed fits the description of the sets R and S,
and so an assignment is accepted if and only if it corresponds to a connecting
orientation. ��
The branching programs resulting from the above reduction have a feature that
they require reading more than one bit at a time to move between layers. Specif-
ically, they conform to Definition 4. The result in [11], however, deals with stan-
dard branching programs (see Definition 3), which in relation to the above are
a special case in which essentially m = n and all the Ii’s have size 1. Going
from here to a standard (non-clustered) branching program (in which the edges
between two layers depend on just one Boolean variable) is easy.

6 Wrapping Up – Proof of Theorem 1

We started with a graphG and wanted to construct an (ε, q)-testing algorithm for
st-connectivity of orientations of G. In Section 4.1, Section 4.2 and Section 4.3 we
constructed a graph G1 such that if we have an (ε, q)-test for st-connectivity in
G1, then we have an (ε, q)-test for G. Additionally G1 has the property that most
of the edge-layers in G1 are of size at most w = 1

ε · 2100/ε2 . Then in Section 4.4
we constructed a graph G2 such that if we have an ( ε2 , q)-test for st-connectivity
in G2 then we have an (ε, q)-test for G1 and hence we have one for G. Moreover
G2 has all its edge-layers of size at most w. Finally in Section 4.5 we built a
graph G3 which has all its edge-layers of width at most w + 1, and in addition,
the vertices s and t are in the first and the last vertex-layers of G3 respectively.
We also showed that having an ( ε4 , q)-test for st-connectivity in G3 implies an
( ε2 , q)-test for G2, and hence an (ε, q)-test for G. This ends the first part of the
proof, which reduces general graphs to st-connectivity programs.

Then in Section 5 from G3 we constructed a read once (w + 1)-clustered
Branching Program that has width 42(w+1)2+w+1 so that an ( ε4 , q)-test for this
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BP gives an ( ε4 , q)-test for st-connectivity in G3. Then we converted the (w+1)-
clustered Branching Program to a non-clustered Branching Program which has
width w1 = 42(w+1)2+(w+1)2(w+1). Once we have our read once bounded width
branching program then by applying the algorithm of [11] for testing branching
programs we get an ( ε4 , q)-test with q = (2w1

ε/4 )O(w1) queries for our problem.
Hence by combining all of the above, we get an (ε, q) testing algorithm for our

original st-connectivity problem, where q = (2/ε)2
O((1/ε)·2(100/ε2 ))

. ��
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Abstract. Using the symmetric form of the Lovász Local Lemma, one
can conclude that a k-uniform hypergraph H admits a proper 2-colouring

if the maximum degree (denoted by Δ) of H is at most 2k

8k
independently

of the size of the hypergraph. However, this argument does not give us
an algorithm to find a proper 2-colouring of such hypergraphs. We call
a hypergraph linear if no two hyperedges have more than one vertex in
common.

In this paper, we present a deterministic polynomial time algorithm
for 2-colouring every k-uniform linear hypergraph with Δ ≤ 2k−kε

, where
1/2 < ε < 1 is any arbitrary constant and k is larger than a certain
constant that depends on ε. The previous best algorithm for 2-colouring
linear hypergraphs is due to Beck and Lodha [4]. They showed that for
every δ > 0 there exists a c > 0 such that every linear hypergraph
with Δ ≤ 2k−δk and k > c log log(|E(H)|), can be properly 2-coloured
deterministically in polynomial time.

1 Introduction

The probabilistic method [2] is widely used in theoretical computer science
and discrete mathematics to guarantee the existence of a combinatorial struc-
ture with certain desired properties. However, these techniques are often non-
constructive. Efficient construction of structures with desired properties is an
important research theme in various areas like Ramsey theory, graph colouring
and coding theory.

In many applications of the method, there are N events (typically “bad”) in
some probability space, and one is interested in showing that the probability
that none of the events happen is positive. This will be true if the events are
mutually independent and each event occurs with probability less than one. In
practice, however one often finds events that are not independent of each other.
The Lovász Local Lemma is a powerful sieve method that can be used in this
context when the events have limited dependence.

� Research of the first author is supported by a NSERC graduate scholarship and
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The power of the Lemma comes from the fact that it allows one to conclude
a global result by analysing the local property of random combinatorial struc-
tures. In particular, the symmetric form of the Lemma implies that a random
2-colouring of the vertices of a k-uniform hypergraph of maximum degree 2k

8k ,
generates no monochromatic edges with non-zero probability1. But it provides
no clue as to how to find such a structure efficiently. The Local Lemma merely
guarantees the existence of, what has been called a “needle in a haystack”. It can
be easily verified that if the total number of edges m in the hypergraph is much
larger than 4k, then with extremely small probability the colouring is proper.
The question that we are interested in is the following :
“Is there an efficient algorithm to find such a ‘rare’ colouring?”

Beck[3] and Alon[1] developed algorithmic versions of the Lemma which
evoked its symmetric form. Beck showed that if the maximum degree Δ of the
hypergraph is reduced to 2αk, where α = 1/48, then indeed there is a positive
answer to the question above.

An interesting and natural class to consider is that of linear (also called
‘almost disjoint’) hypergraphs. It is known that such hypergraphs allow sig-
nificantly higher degree while remaining 2-colourable i.e. Erdös and Lovász [5]
showed that they are 2-colourable even for Δ ≤ (4 − o(1))k. Beck and Lodha[4]
obtained a deterministic polytime algorithm to find a proper 2-colouring for such
hypergraphs under the restrictions that Δ < 2(1−δ)k and that the total number
of hyperedges (denoted by m) satisfies (2m)1+β < 2(k−2k′)2k/4

, where β > 0 is
a real constant and 3 ≤ k′ ≤ 2k/3 is an integer. Their method builds upon the
ideas in [3] and uses involved combinatorial analysis that runs into several cases.

1.1 Our Result

We build upon the general method outlined in [9] to get an algorithm for
2-colouring k-uniform linear hypergraphs with larger maximum degree. Further,
our algorithm does not require any conditions to be imposed on the relationship
between total size of the hypergraph and the number of vertices in a hyperedge.

Theorem 1. There exists a deterministic polytime algorithm that for every con-
stant ε > 1/2, finds a proper 2-colouring of any k-uniform linear hypergraph H,
whose maximum degree is bounded by 2k−k

ε

, provided k ≥ kε, where kε is a
positive integer that depends only on ε.

Our deterministic algorithm is constructed in two steps. First, we develop a
randomized algorithm that is conceptually fairly simple. The random algorithm
genarates the colouring iteratively in phases. It employs novel freezing techniques
that may be useful for dealing with other problems. In particular, our freezing is
guided by the crucial use of the asymmetric form of the Local Lemma as opposed
to the method of Beck and Lodha [4] that uses the symmetric form. This allows
us to minimize freezing enabling the random colouring to work more effectively.
1 It is known that k-uniform hypergraphs remain 2-colourable even for Δ ≤ c ∗

2k/
√

k log k, for some constant c and k larger than a certain constant (see [10]).
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We finish off by derandomizing our algorithm by a simple application of the
method of conditional expectations due to Erdös and Selfridge [6].

In Section 2, we introduce the basic terminology and the needed background
on the Local Lemma. Section 3 introduces a randomized algorithm, Section 4 pro-
vides its analysis and Section 5 derandomizes the algorithm proving Theorem 1.
We remark that the technique in this paper can be suitably modified to make
it work for the more general case of hypergraphs having constant co-degree (co-
degree of any pair of vertices being the number of edges containing that pair).
Note that linear hypergraphs have co-degree at most one.

2 Basic Notions

A hypergraph H is given by a set of vertices (denoted by V ) and a set of non-
empty subsets of V (denoted by E). Each subset in E is called a hyperedge.
In this paper, we will often call a hyperedge simply an edge. The size of H is
simply the sum of the cardinalities of V and E. H is called k-uniform if each of
its hyperedges has cardinality k. The degree of a vertex v in V is the number of
hyperedges containing v and is denoted by dv. We denote the maximum degree
of H by Δ i.e Δ = maxv∈V dv. Two hyperdges intersect at a vertex v if v
is contained in both of them. A hypergraph is called linear if every pair of
hyperedges intersect at most at one vertex. We associate an undirected graph
GH with every hypergraph H in the following way: V (GH) = V (H)∪E(H), and
E(GH) = {(x, y)|x, y ∈ V (H), x, y ∈ e for some e ∈ E(H) OR x ∈ V (H), y ∈
E(H), x ∈ y OR x, y ∈ E(H), x ∩ y �= ∅}. A path from one vertex/edge x of
H to another vertex/edge y of H is just a simple path in GH from x to y. The
distance from x to y is the length of the shortest path in GH from x to y. We
say that vertex x and y are reachable from each other if there exists a path from
one to the other. A (connected) component of H is a hypergraph C such that
V (C) is a maximal set of vertices of H that are reachable from each other and
E(C) = {e ∈ E(H)|e ⊆ V (C)}.

A 2-colouring χ ofH is any assignment of colours from the set of 2-colours (we
use red and blue) to its vertices i.e χ : V → {red, blue}. We say a hyperedge e is
monochromatic under the colouring χ if every vertex contained in e receives the
same colour. χ is called a proper 2-colouring precisely if it does not generate any
monochromatic hyperedge. In this work, we generate a 2-colouring iteratively,
and each phase of our algorithm generates a partial colouring of vertices. For
such a partial colouring, we call an edge uni-coloured if its vertices have not
received two different colours. An uncoloured vertex is called nice if it lies in
exactly one uni-coloured edge. For any uni-coloured edge e, its restriction to the
uncoloured vertices is e′ = {v ∈ e : v is not coloured}. A partial colouring χ
of H induces the hypergraph H′ with its vertex set consisting of all uncoloured
vertices and its edge set consisting of the restriction of all its uni-coloured edges.
The following simple remarks will be useful:

Remark 2. A hypergraph H has a proper 2-colouring if and only if each of its
components has one.
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Remark 3. A partial colouring χ of H extends to a proper colouring if the in-
duced hypergraph H′ has a proper colouring.

Remark 4. Let χ be a partial colouring of H and let e be a uni-coloured edge
that has a pair of nice vertices v1 and v2. Extend χ to χ′ by colouring v1 and v2
such that χ′(v1) �= χ′(v2). Then the hypergraph induced by χ′ (denoted by H′′)
has the set of vertices V (H′)− v1 − v2 and its set of edges is E(H′) − e, where
H′ is the hypergraph induced by χ. Further, it has a proper 2-colouring iff H′

has one.

We denote the probability of an event X by Pr[X ] and the expected value of a
random variable y by E[y]. We now state the Asymmetric form of the Lovász
Local Lemma [5] that is one of the most powerful tools of the probabilistic
method.

Lemma 5 (Asymmetric Local Lemma). Let E = A1, . . . , Am be m (typi-
cally bad) events in a probability space, where event Ai occurs with probability
pi and is mutually independent of events in E −Di, for some Di ⊆ E. Then, the
probability that none of these m events occur is positive provided that

–
∑

k:Ak∈Di
pk ≤ 1

4 . for all i.

In the application of the Local Lemma to colouring a k-uniform hypergraph, we
consider a random 2-colouring of its vertices. With each hyperedge e, we associate
the event (denoted by Ae) that e is monochromatic. One can easily verify that Ae
is mutually independent of all other events except those in De = {Af |f∩e �= ∅}.
Clearly, |De| ≤ 1 + (Δ − 1)k. Since Pr[Ae] = 1/2k−1 for all edges e, the local
lemma implies that the probability of not having any monochromatic edge is
positive if Δ ≤ 2k

8k .
We will denote by BIN (n, p) the sum of n independent Bernoulli random

variables, each equal to 1 with probability p and 0 otherwise. The following
inequality, called Chernoff’s bound (see [2]), is used to bound the probability of
the sum deviating from its expected value np:

Pr(|BIN (n, p)− np| > t) < 2e−((1+ t
np )ln(1+ t

np )− t
np )np (1)

3 Randomized Algorithm

We assume that the vertices are labelled {1, . . . , n}. We first provide a random-
ized algorithm to obtain a proper 2-colouring and then show that it can be
easily derandomized. The randomized algorithm works in three phases. In the
first phase, we randomly colour a vertex vi, unless it is frozen using one of the
rules described below. These freezing rules are imposed to ensure that the Lo-
cal Lemma can be applied to prove that the partial colouring obtained in the
first phase extends to a proper colouring. We shall also show that with proba-
bility near 1, the connected components of the induced hypergraph are small in
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size. We post-process the random colouring in the following way : identify those
uni-coloured edges that contain at least two nice vertices. For every such uni-
coloured edge, we choose a pair of nice vertices and assign them different colours.
By Remark 4, the hypergraph induced by this partial colouring (denoted by H1)
is still properly 2-colourable and we shall show that it has small components,
with high probability.

In the second phase, we reapply the procedure of the first phase to each
component of H1 separately. We use very similar freezing rules and do identical
post-processing to that in Phase 1. We show again that the partial colouring
extends to proper colouring using the Local Lemma. We denote the induced
hypergraph at the end of phase 2 by H2 and as before, each of its component is
very small with high probability.

Finally, in the third phase, we apply brute force to explicitly compute a proper
completion for the partial colouring of each component of H2. This is possible
in poly-time as the size of each component is very small.

Forthwith the details. To ensure that we can apply the Local Lemma to show
that our partial colouring extends to a proper colouring, we introduce a random
variable He for each edge e as given below:

He =
∑

f :e∩f �=∅
Pr[Af |partial colouring]

Note that if He lies below 1/4 at the end of a phase for every edge e, then the
asymmetric form of the Local Lemma can be applied to conclude that the partial
colouring extends to a proper 2-colouring. It will be more convenient to think of
He as being a sum of k random variables - one for each vertex v contained in
edge e. Formally, He =

∑
v∈eHv − (|e| − 1)Pr[Ae|partial colouring], where Hv

is given by
Hv =

∑

f :v∈f
Pr[Af |partial colouring]

Thus, Hv ≤ 1/(4k) ensures that our partial colouring extends to a proper
colouring. The key technique in our procedure is to control Hv, for each vertex
v. A vertex v is considered bad if Hv exceeds a prescribed upper bound bi for
Phase i. Whenever a vertex v turns bad, we freeze all uncoloured vertices in each
edge containing v. If this were the only freezing done, then the probability of v
turning bad would be substantial and our freezing would be widespread. Indeed,
the probability that a specific edge e containing v is monochromatic is 1/2k−1.
So, the probability that v turns bad is at least 1/2k−1. To deal with this, recall
that Hv is a sum of conditional probabilities. The intuition is if each of these
probabilities in the sum is small, thenHv is concentrated and the probability that
it turns bad is extremely small provided the threshold bi is appropriately chosen.
In particular, for each of the first two phases, we specify a lower bound on the
number of vertices remaining uncoloured in a uni-coloured edge. If edge e attains
this lower bound, we call e naughty and freeze all of its uncoloured vertices. This
freezing of naughty edges ensures that the conditional probabilities that appear
in the sum for Hv remain small, and reduces the probability of a vertex becoming
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bad to well below 2−k. Unfortunately, there is considerable freezing done due
to naughty edges. However, as we shall see, the post-processing step allows us
to ignore all but a vanishingly small proportion of this second kind of freezing.
This is the basic structure of our random colouring procedure in each phase. We
fix constants β, α1 and α2 such that 1/2 < α2 < β < α1 < ε for reasons that
will become clear from subsequent discussion. For Phase 1, b1 = 2−k

β−1 and for
Phase 2 b2 = 1/(8k). The lower bound used for freezing uncoloured vertices in
naughty edges in Phase i will be kαi , i = 1, 2.

With this intuitive description behind us, we are ready to give the formal
description of the basic random colouring procedure parameterized with t1, the
threshold for detecting naughty edges and t2, the threshold for detecting bad
vertices:

RANDCOLOUR(F , t1, t2);
Input: Hypergraph F s.t. ∀e ∈ E(F) |e| > t1, ∀v ∈ V (F) Hv ≤ t2.
Returns a partial colouring and the induced hypergraph F ′ such that ∀e ∈
E(F ′) |e| ≥ t1, ∀v ∈ V (F ′) Hv ≤ 2t2.

– Main loop: For each vertex vi ∈ V .
• If vi is frozen, skip colouring it and go back to the main loop
∗ Colour vi uniformly at random and then do the following:

1. If some uni-coloured edge e has only t1 uncoloured vertices re-
maining, freeze every uncoloured vertex in e.

2. If for some vertex v, Hv exceeds t2, freeze all uncoloured vertices
in uni-coloured edges containing v.

– Post-processing: For every uni-coloured edge containing two nice vertices,
colour one of them red and the other blue.

Note that the main loop of RANDCOLOUR runs |V (H)| times. To determine
if an edge is naughty or a vertex is bad, we need to only look at edges containing
the vertex that got coloured in that iteration. Thus, each loop takes O(k.Δ2)
time. Summing this up,

Remark 6. The running time of RANDCOLOUR is O(kΔ2 · |V (H)|).

We make another remark that is useful to get the intuition behind our post-
processing step.

Remark 7. Every uni-coloured edge at the end of Phase i contains at least kαi >√
k uncoloured vertices and satisfies at least one of the following conditions:

1. it is naughty
2. for every uncoloured vertex v in it, v ∈ g for some edge g that is naughty or

contains a bad vertex.

Let us call a uni-coloured edge bad if it intersects with at least
√
k other naughty

edges. Intuitively, we expect bad edges to occur with small probability. The
following fact points out that our post-processing step deals effectively with
naughty edges that are not bad and are far from both bad edges and vertices.
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Proposition 8. Consider a uni-coloured edge e. If e is at distance at least 4
from every bad edge and bad vertex, then e has two nice vertices, provided k is
larger than a certain constant.

Proof. Consider a uni-coloured edge f that intersects e. Remark 7 implies the fol-
lowing: if f is not naughty then it must be bad or it is at distance at most 2 from
a bad vertex. As e is at distance at least 4 from every bad edge/vertex, f must be
naughty. This shows that every uni-coloured edge that intersects e isnaughty. Since
e cannot be bad, there are at most

√
k uni-coloured edges intersecting e. Hence for

large k satisfying kαi −
√
k ≥ 2, we conclude that e has 2 nice vertices.

Thus, Remark 4 implies that all uni-coloured edges that are not within distance
3 of any bad vertex or bad edge, do not remain uni-coloured after post-processing
and hence are not part of the induced hypergraph returned by RANDCOLOUR.
We will see later in the analysis of our algorithm in Section 4 that this obser-
vation is very helpful in bounding the size of components of the hypergraph
returned by RANDCOLOUR. Lemma 12 and 14 in the next section imply that
the component size at the end of Phase i is si with high probability, where
s1 = 26k(cε/kε+1/2) · log(n + m), s2 = 26k(cε/kβ+1/2) · log(s1) and n, m are
respectively the number of vertices and edges of the hypergraph. The constant
cε depends on ε and is chosen according to Lemma 14.

Using RANDCOLOUR as our key sub-routine, the entire 3-phase algorithm
is described below.

2-COLOUR(H, α1, α2, β, ε)

– Phase 1 : H1 = RANDCOLOUR(H, kα1 , 2−k
β−1). If the largest component

of H1 is larger than s1 then repeat.
– Phase 2 : Enumerate the components of H1 as C1, . . . , Cj .
• For every connected component Ci
∗ Hi2 = RANDCOLOUR(Ci, kα2 , 1/16k).
· Case 1. 26k ≤ log(n+m)/ log log(n+m). If the largest compo-

nent ofHi2 is larger than s2, then repeat call to RANDCOLOUR.
· Case 2. 26k > log(n+m)/ log log(n+m). If there are any uni-

coloured edges remaining, repeat call to RANDCOLOUR.
– Phase 3 Let H2 = ∪ji=1Hi2.
• If there are uni-coloured edges left in H2, then
∗ Colour each connected component C of H2 in turn, by considering

all 2|V (C)| colourings.

Proposition 9. Every partial colouring produced at the end of Phase 1 or Phase
2 can be completed to a proper 2-colouring.

Proof. Let H′
1 be the hypergraph induced at the end of random colouring in

Phase 1 just before the post-processing step. Consider any edge f and any vertex
u in f . It is simple to verify that colouring u at most doubles the probability
that f becomes monochromatic. Hence, freezing done due to bad vertices ensures
that for every vertex v, Hv is at most 2−k

β

which is less than 1/4k for large k.
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Hence, He < 1/4 for all edges e in H′
1. This ensures that the second condition of

the Local Lemma is satisfied for each event Ae. Thus H′
1 has a proper colouring.

Recalling Remark 4, we see colouring a pair of nice vertices in a uni-coloured
edge differently, does not increase the probability of any event Ae. Thus, H1

has a proper colouring. Using Remark 3, the partial colouring at the end of
Phase 1 extends to a proper 2-colouring. A very similar argument applied to
each connected component of H1 shows that each partial colouring obtained at
the end of Phase-2 also has a proper completion.

Our aim in the next section is to show the result given below:

Theorem 10. With high probability, 2-COLOUR produces a proper
2-colouring of hypergraph H in time polynomial in the size of H.

4 Analysis of 2-COLOUR

We have already noted in Remark 6 that RANDCOLOUR runs in poly-time.
Further Case 1 and Case 2 handled in Phase 2 of 2-COLOUR ensures that either
the size of every component of H2 is at most s2 or no uni-coloured edge is left
at end of Phase 2. Thus Phase 3 of 2-COLOUR also runs in poly-time. Hence,
to prove Theorem 10 it is sufficient to show the following:

Lemma 11. Every call from 2-COLOUR to RANDCOLOUR succeeds with
probability at least 1/2.

To prove Lemma 11, we simply need to show that the probability that the
induced hypergraph returned by RANDCOLOUR has large components is less
than a half. One way to do this would be to establish the following:

Claim. E[Xi] < 1/2, for i = 1, 2.

where,Xi denotes the number of components of size at least si of the hypergraph
Hi. Lemma 11 follows from the above claim by a simple application of Markov’s
inequality.

Instead of bounding directly the expected value of Xi, we will define another
integer valued random variable Yi, such that Xi ≤ Yi. Bounding the expected
value of Yi turns out to be more convenient. But we need to introduce a few
more notions before we can define Yi.

Consider an auxiliary graph Gi associated with Hi in the following way. Each
node of Gi corresponds to either a vertex or a hyperedge of hypergraph Hi. Two
nodes of Gi are connected by an arc if their distance from each other in Hi is
at least 4 and at most 10. Every rooted tree Ti of Gi is called a (4, 10)-tree of
Hi. We call a (4, 10)-tree bad if every node of the tree corresponds to either a
bad edge or a bad vertex generated in Phase i. Let Yi be the number of bad
(4, 10) trees of Hi of size si · 2−6k. The following lemma establishes the desired
relationship between Xi and Yi (i.e. Xi ≤ Yi).
Lemma 12. If Hi has a component C of size s, then there is a bad (4, 10)-tree
of size at least s/26k, whose set of nodes is contained in V (C) ∪ E(C).
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Proof. Let T be a maximal bad (4, 10)-tree formed from vertices and edges of
C. Let C1 be the sub-hypergraph in the component that includes all edges that
are within distance 6 from T . We show that there cannot be any vertex or edge
outside of C1 in C and the result follows from that by recalling that the degree
of any vertex is at most 2k−k

ε

.
Suppose the contrary is true. Then, let b be a edge that is at minimal distance

(at least 7) in C from T . Consider a minimal path P in C from b to T . Consider
a node u in P at distance 7 from T . We have following possibilities:

– u is a bad edge, in which case one can add u to T .
– u is not bad. Recalling Proposition 8 and our post-processing step in RAND-

COLOUR, there is a node u′ that corresponds to either a bad vertex or bad
edge at distance at most 3 from u. Hence u′ is at distance at least 4 and at
most 10 from T . We can grow T by adding u′.

Thus, in each case our assumption that T is maximal is contradicted if there
exists any edge outside of C1.

Now, to estimate the expected value of Yi we need to calculate the probabilites
of certain events. We denote the events of any edge e becoming naughty and bad
in phase i by N i

e and Bie respectively. Let the event that a vertex v becomes bad
in phase i be denoted by Biv. We now estimate the probabilities of these events
below (detailed calculations are in the appendix).

Proposition 13. Let 1/2 < α2 < β < α1 < ε < 1. Then for sufficiently large
k, the following probability bounds hold:

1. Pr[B1
e ] ≤ 2−k

ε+1/2+kα1+1/2+
√
k log k+1 for any edge e.

2. Pr[B1
v ] ≤ 2e−2kα1−kβ−log k−1 ≤ 2−20.5kα1

, for any vertex v.
3. Pr[B2

e ] ≤ 2−k
β+1/2+kα2+1/2+

√
k log k+1 for any edge e.

4. Pr[B2
v ] ≤ 2e−2kα2−3 log k−6 ≤ 2−20.5kα2

, for any vertex v.

Using the bounds on probability of relevant events, we calculate the expected
number of bad (4, 10)-trees in each phase of 2-COLOUR in the lemma below
(see Appendix for a proof).

Lemma 14. There exists a constant cε for i = {1, 2} such that the expected
number of bad (4, 10)-trees in Hi of size (cε/kδi+1/2) · log(ni + mi) is less than
1
2 , where δ1 = ε and δ2 = β and ni, mi are respectively the number of vertices
and edges in the largest component of Hi.

Proof (of Lemma 11 and Theorem 10). Combining Lemma 12 and Lemma 14
with Markov’s inequality yields the bound on the size of the components of the
hypergraph induced at the end of Phase 1 (i.e. H1). The argument for analyzing
Phase 2 when Case 1 holds is very similar, just noting that each component Ci
of H1 now has size at most 26kcε log(n+m). In Case 2, we have

26k > log(n+m)/ log log(n+m) (2)
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Consider any component C of H1. Let XB be the random variable representing
the total number of bad vertices and bad edges generated by phase 2 for C.
Clearly, (2) and bounds from proposition 13 imply

E[XB] ≤ |C| · 2−0.5kβ+1/2
≤ 26kcε log(n+m)× 2−0.5kβ+1/2

= o(1) (3)

since β + 1/2 > 1. Markov’s inequality implies that with probability tending to
one, the random colouring procedure of Phase 2 will not generate bad vertices
and bad edges. The post-processing done at the end of Phase 2 thus ensures that
no uni-coloured edges remain at the end of Phase 2.

Hence, the expected number of times that Phase 1 is run is at most 2 and that
Phase 2 is run is at most 2(n + m). Moreover, each run of Phase 1 and Phase
2 takes poly-time. One can verify that in Case 1, the size of each component is
small enough to ensure that brute force search can be completed in polynomial
time. In Case 2, it follows from the previous discussion any completion of the
partial colouring of Phase 2 is proper.

5 Derandomization

Proof (of Theorem 1). We adapt the method of conditional expectations (due to
Erdös and Selfridge [6]). In Phase 1 of 2-COLOUR, when we consider assigning
a colour to a vertex v, we compute the colour that minimizes the expected
number of bad (4, 10)-trees of size �1 = (cε/kε+1/2) log(n+m) that would arise
if the colouring is randomly completed as prescribed in Phase 1. This colour
is then assigned to v. The number of such bad trees that we need to take into
consideration is bounded from above by (n+m)·210(k−kε)�1 ·4�1 . Since ε > 1/2, it
gets easily verified that the number of such bad trees is O((n+m)1+δ) for every
δ < 1 when k is growing function of n. Otherwise it is O(nc) for some constant
c. As shown in Lemma 14, the expected number of such bad (4, 10)-trees at the
beginning of Phase 1 is less than a half. The deterministic variant of Phase 1
hence produces no bad trees and so H1 has no large components.

If 26k ≤ log(n+ m)/ log log(n +m), we apply a similar procedure to deran-
domize Phase 2 by considering trees of size �2 = (cε/kβ+1/2) log log(n+m). The
rest of the method and argument is same as above. For larger k, when colouring
a vertex v in a component C of H1, we assign v the colour that minimizes the
expected number of bad vertices and edges of C. Using the argument given in
the proof of Lemma 11, we conclude that Phase 2 generates no bad vertices or
edges. Thus, no edge at the end of Phase 2 is uni-coloured.
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Appendix

Proof of Proposition 13

Proof. We consider a set Se of
√
k edges {e1, . . . , e√k} that intersect an edge e.

Let Vei be the set of those vertices of ei that are not contained in any edge in
Se\{ei}. Since H is linear, |Vei | ≥ k−

√
k+1, for all i. If ei is to become naughty,

the first k− kαi −
√
k vertices in Vei that get coloured, receive the same colour.

The actual vertices in Vei that get coloured in any instance by RANDCOLOUR
may depend on the freezing caused by colouring in the rest of the hypergraph.
Nevertheless, every instance of RANDCOLOUR that makes ei naughty, makes
a sequence Li of k − kαi −

√
k independent colour assignments to some vertices

in Vei . Since Vei ∩ Vej = ∅ for i �= j, every call to RANDCOLOUR makes all
edges in Se naughty with probability at most 2(−k+kα1+

√
k)

√
k. We have at most

(Δ · k)
√
k = (2k−k

ε · k)
√
k-many choices for Se. Combining everything yields the

first bound of our proposition.
We now compute Pr[B1

v ]. Let nv,i represent the number of edges containing v
and having i vertices uncoloured with k − i vertices coloured the same. Let n′

v,i

be a random variable that is defined in the following way:

n′
v,i =

∑

e:v∈e
xie

where, for every edge e, xie is a Bernoulli random variable that takes value 1 with
probability 2−k+i+1. Since our hypergraph is linear, the edges containing v only
intersect each other at v. Thus, using sequences of colour assignments for each
edge as before in the first part, one can show that Pr[nv,i ≥ N ] ≤ Pr[n′

v,i ≥ N ]
for every number N . Further, one can easily verify E[n′

v,i] = Δ · 2−k+i+1 =
2i+1−kε

. Since n′
v,i is the sum of independent and identically distributed random

variables, the classical result of Chernoff says that it is concentrated around its
mean value. We re-write Hv in the following way:
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Hv =
∑

i:kα1 ≤ i≤ k

Hv,i

where
Hv,i = 2−i+1 × nv,i

If Hv ≥ 2−k
β

, then for some i, we have Hv,i ≥ 2−kβ

k and so

nv,i ≥
2i−1−kβ

k
= E[n′

v,i] · 2k
ε−kβ−log k−2

Since, n′
v,i = BIN (Δ, p) for p = 2−k+i+1, we get

Pr
[
nv,i ≥

2i−1−kβ

k

]
≤ Pr

[

|BIN (Δ, p)−Δp| ≥ Δp ·
(
2k

ε−kβ−log k−2 − 1
)
]

(4)

Recalling that Δp = 2i+1−kε

, we apply Chernoff’s bound from (1) to the RHS
of (4)

Pr
[
nv,i ≥

2i−1−kβ

k

]
≤ 2exp

(

− 2k
ε−kβ−log k−2(kε − kβ − 2)

(
2i+1−kε)

)

(5)

Noting that our freezing ensures that i ≥ kα1 , we get finally

RHS of (5) ≤ 2exp
(
− (kε − kβ − 2)2k

α1−kβ−log k−2
)

(6)

Recalling our assumption that β < α1 < ε, we see that (6) directly yields the
second bound of our Proposition for large k.

To obtain the probability bounds for events in the second phase of the algo-
rithm, we introduce another notation. Let Hi represent the subgraph induced by
those monochromatic edges at the end of Phase 1 that have exactly i uncoloured
vertices left. Note that the degree of Hi denoted by Δi is at most 2i−k

β

, since
Hv ≤ 2−k

β

for all vertices v at the end of phase 1.
Consider

√
k second phase naughty edges e1, . . . , e√k intersecting edge e,

where edge ej had ij uncoloured vertices at the beginning of phase 2. Applying
a similar argument as before for computing Pr[B1

e ] and observing that there are
at most k

√
k ways of choosing the

√
k-tuple (i1, . . . , i√k) where kα1 ≤ ij ≤ k for

each j, we get

Pr[B2
e ] ≤ k

√
k ×

√
k∏

j=1

2−ij+k
α2+

√
k · (Δijk) ≤ 2(−kβ+kα2+2 log k+1)

√
k

giving us our third bound.
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Let niv,j be the number of monochromatic edges containing vertex v that have
i uncoloured vertices at the end of Phase 1 and have j ≤ i uncoloured vertices
at the end of Phase 2. As in the argument for bounding Pr[B1

v ], we introduce a
random variable n

′,i
v,j for each niv,j such that Pr[niv,j ≥ N ] ≤ Pr[n

′,i
v,j ≥ N ] for

every number N . Like before, each n
′,i
v,j is a sum of identical and independent

Bernoulli random variables and hence, is concentrated around its mean. Clearly,
E[n

′,i
v,j] = Δi · 2−i+j = 2j−k

β

. Let nv,j,2 =
∑k

i=kα1 n
i
v,j i.e. the number of edges

through v that have j uncoloured vertices at end of phase 2. As before, define
H2
v,j = 2−j+1 ·nv,j,2, so that Hv at end of phase 2 is simply

∑k
j=kα2 H

2
v,j . Thus,

Hv ≥ 1/8k implies that for some i, j,

niv,j ≥
2j−1

8k3
= E[n

′,i
v,j ] ·

2k
β−3

8k3

Applying Chernoff’s bound as we did for computing the second bound of the
proposition,

Pr[njv,i ≥
2j−1

8k3
] ≤ 2e−2kβ−3 log k−6·E[n

′,j
v,i]

Plugging E[n
′,j
v,i] ≥ 2k

α2−kβ

, we get our desired bound.

Proof of Lemma 14

Proof. Let X i
� denote the random variable that is equal to the number of bad

(4, 10)-trees of size � at end of Phase i. In the following discussion, we shall drop
the superscript i denoting the Phase in which events occur. Consider T to be a
(4, 10)-tree of size � with nodes n1, . . . , n�. Further, let BT denote the event that
T turns bad at the end of Phase i. We first want to compute Pr[BT ]. For T to
turn bad, each edge and vertex of the hypergraph comprising it has to become
bad. These events are not independent as freezing done due to a vertex (an edge)
becoming bad (naughty) affects the probabilities of other vertex/edge becoming
bad/naughty. But event Bv (Be) is determined by just exposing colours assigned
to a set of vertices at distance 1 (2) from v (e) inHi. Let this set be denoted by Vv
(Ve). For two edges e and f , it is easily verified that sets Ve∩Vf �= ∅ implies that
the distance between e and f is less than 4. Similarly one can verify that sets Vnj

and Vnk
are disjoint for every pair of nodes nj , nk in T as distance between nj

and nk is at least 4 in Hi. For each node n in T , let B′
n denote the auxiliary event

that n turns bad when just vertices in Vn are randomly coloured. Our previous
observation implies that the auxiliary events associated with nodes of a (4, 10)-
tree are independent of each other. Further, Pr[BT ] ≤ Pr[B′

n1
∩B′

n2
∩· · ·∩B′

n�
].

Thus, using the bounds obtained for probabilities in Proposition 13, one gets
the following:

Pr[BiT ] ≤ 2−0.5�(kδi+1/2) (7)

where δ1 = ε and δ2 = β. We find out an upper bound on N� i.e. the possible
number of such trees of size �. There are 4� ways of choosing an unlabelled tree
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of size � (see [7]). The root of our bad tree can be chosen in ni+mi ways. We fix
an unlabelled tree and the root of our bad tree and then choose the remaining
nodes of the tree in a breadth-first fashion. Each node can then be chosen in at
most (2k−k

ε

)10 · k ways. Thus, the total number of choices for a (4, 10)-bad tree
of size � is at most

N� = (ni +mi)× 4� × (210(k−kε) · k10)�−1 (8)

Combining (7) and (8) for sufficiently large k we have,

E[X i
�] ≤ (ni +mi) · 2(−0.5kδi+1/2+10k+2)� (9)

Taking � = cε · log (ni + mi)), for large k one gets that E[X i
�] < 1/2, since

δi + 1/2 > 1 and cε is a constant that just depends on ε.
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Abstract. In this paper we compare two methods for generating finite
families of random subsets according to some sequence of independent
random variables ζ1, . . . , ζn distributed uniformly over the interval [0, 1].
The first method called uniform split uses ζi values straightforwardly to
determine points of division of [0, 1] into subintervals. The second method
called binary split uses ζi only to perform subsequent divisions of already
existing subintervals into exact halves. We show that the variance of
lengthes of obtained intervals in the first method is approximately 1

n2

and that the variance of lengthes of obtained intervals in the second
method is approximately 1

n2 ( 1
ln 2 − 1).

The uniform split is used in the Chord peer-to-peer protocol while
the binary split is used in the CAN protocol. Therefore our analysis
applies to this protocols and shows that CAN has a better probabilistic
properties than Chord. We propose also a simple modification of the
Chord protocol which improves its statistical properties.

1 Introduction

We investigate the problem of splitting a given interval into a finite number of
nonoverlapping subintervals that appears in some peer-to-peer protocols. Split-
ting is done according to a sequence of random values ζ1, . . . , ζn distributed
uniformly in [0, 1], and some fixed split method.

In this paper we present an analysis of two split methods. The first among
them is rather straightforward. The family of subintervals is composed of all
nonoverlapping intervals defined by the set {0, 1} ∪ {ζ1, . . . , ζn}. This method
corresponds to the sequential splitting by adding points – for a new point ζi we
select an interval (ζj , ζk] such that ζj < ζi ≤ ζk and divide it into two parts:
(ζj , ζi] and (ζi, ζk]. We call this method uniform split. It is well known that this
method has significant flaws in terms of subset length uniformity. Note that
the uniform split corresponds to the process of adding a nodes in the Chord
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peer-to-peer protocol (see [12] and [9]). It is well known, and our calculation
confirms this fact, that the capacity of Chord nodes’ areas (intervals) is a ran-
dom variable with large variation. Now let us recall that amount of data and
the number of requests passed via node in Chord is proportional to the length
of its area. Hence, large variation of area size introduces a discrepancy between
nodes’ workload.

The second method called binary split is based on the following idea: if ζi
values are used only to determine which existing interval is to be split, the
splitting point is chosen always in the middle of selected interval. We show in
Section 2 that the uniformity of interval lengths is significantly better than in the
uniform split case. Binary split corresponds to a sequential process where each
ζi determines an existing interval to split in two halves. The process starts with
whole interval [0, 1]. ζ1 obviously splits it into [0, 0.5] and (0.5, 1], but ζ2 may
either make it [0, 0.25], (0.25, 0.5] and (0.5, 1] or [0, 0.5], (0.5, 0.75] and (0.75, 1]–
depending on which initial interval ζ2 falls in; and so on for all ζi for 1 < i ≤ n.
The resulting family consists of n+1 nonoverlapping intervals with lengths from
the set { 1

2k : k ≤ n+ 1}. The binary split corresponds to the process of adding
nodes in CAN peer-to-peer protocol (see [11]). In the last section of this paper
we shall propose a small modification of the classical Chord protocol which is
based on the binary split and which has better probabilistic properties than the
original one.

The authors wish to express thanks to referees for their helpful suggestions
concerning the presentation of this paper.

1.1 Notation

We denote the real numbers and integers by R and Z, respectively. Let X be a
random variable. We denote its expected value, variance and standard deviation
by E [X ], var[X ] and std[X ], respectively.

Let f be a complex function. We denote the residuum of the function f(z)
at the point a by Res [f(z)|z = a] (see [1]). The imaginary unit is denoted by i,
the real and imaginary parts of the complex number z are denoted by ,(z) and
-(z), respectively.

1.2 Arbitrary Split Method

Let Pn be any randomized method of generating a random set of n points
from the interval [0, 1]. The set Pn(ω) defines a sequence (xPn(ω)

1 , . . . , x
Pn(ω)
n+1 )

of lengths of consecutive intervals. By definition xPn(ω)
1 + . . .+x

Pn(ω)
n+1 = 1, hence

1
n+1 (xPn(ω)

1 + . . .+ x
Pn(ω)
n+1 ) = 1

n+1 . Let

var[Pn] = E

[
1

n+ 1

n+1∑

i=1

(xPn

i −
1

n+ 1
)2
]
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and std[Pn] =
√

var[Pn]. We may treat the number std[Pn] as a measure
of non-uniformity of distribution of points from a random set of cardinality n
generated by process Pn. It is easy to check that

var[P ] =
1

n+ 1

(

E

[
n+1∑

i=1

(xPn

i )2
]

− 1
n+ 1

)

. (1)

Let us fix some subset a = {a1, . . . , an} of [0, 1], and let us now choose some
random point ζ ∈ [0, 1] according to the uniform distribution in [0, 1]. Then there
exists an unique subinterval I generated by points of a such that ζ ∈ I. We call
this interval a randomly uniformly chosen interval. Let us recall the following
basic fact:

Theorem 1. Let Pn be an arbitrary method of generation of a random subset
{a1, . . . , an} of the interval [0, 1] . Then the number

ELRI[Pn] = E

[
n+1∑

i=1

(xPi )2
]

(2)

is the expected value of the length of randomly chosen interval.

Proof. Let I1(ω), . . . In+1(ω) be the sequence of intervals generated by the set
P(ω). Let ζ be a random number from the uniform distribution on [0, 1] and let
L(ω, ζ) be the length of this interval Ii(ω) that ζ ∈ Ii(ω). Then we have

ELRI[Pn] =
∫

Ω×[0,1]

L(ω, x)(dP × dλ)(ω, x)

=
∫

Ω

(∫ 1

0

L(ω, x)dx
)

dP (ω)=
∫

Ω

(
n+1∑

i=1

|Ii(ω)| · Pr(x∈Ii(ω))

)

dP (ω)

=
∫

Ω

(
n+1∑

i=1

|Ii(ω)|2
)

dP (ω) = E

[
n+1∑

i=0

(xPi )2
]

. ��

1.3 The Uniform Split

Let us consider a sequence X1, . . . , Xn of independent uniformly distributed in
[0, 1] random variables. They generate a random subset {X1, . . . , Xn} of the
interval [0, 1] and we denote this method by unifn and call it uniform split (see
[8]). The set {X1, . . . , Xn} induces a partition of [0, 1] into n subintervals whose
lengths, taken in proper order, will be denoted by x1, . . . , xn+1. Then for any
t1 ≥ 0, . . . , tn+1 ≥ 0 we have

Pr(x1 ≥ t1, . . . , xn+1 ≥ tn+1) = (1− (t1 + . . .+ tn+1))n+, (3)

where (a)+ = max{a, 0} (see Feller [3]).
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Let us consider the random variable x1, i.e. the length of the first interval.
From equation (3) we see that Pr(x1 ≥ t) = (1− t)n for t ∈ [0, 1]. Therefore the
density of the variable x1 equals ϕ(t) = (1− (1− t)n)′ = n(1− t)n−1. Notice also
that the remaining variables x2, . . . , xn+1 have the same density as x1.

Theorem 2. ELRI[unifn] = 2
n+2

Proof. The result follows from the following direct calculations:

ELRI[unifn] = E

[
n+1∑

i=1

x2
i

]

= (n+ 1)E
[
x2

1

]
= (n+ 1)

∫ 1

0

x2ϕ(x)dx =

(n+ 1)n
∫ 1

0

x2(1− x)n−1dx =
2

n+ 2
.

Remark 1. We used the identity
∫ 1

0
x2(1 − x)n−1dx = 2

n(n+1)(n+2) which can
be proved by induction on n or can be evaluated by the use of the Euler beta
function

∫ 1

0 x
a−1(1− x)b−1dx = Γ (b)Γ (b)

Γ (a+b) .

From Theorem 1, Theorem 2 and Equation (1) we get:

Corollary 1. var[unifn] = n
(1+n)2(2+n) .

2 The Binary Split

Let us fix a natural number n. Let us consider the following method of generation
of a random subset of [0, 1] of cardinality n. We start from an empty set of points.
Suppose we already have set Ak of points from [0, 1] and a new point ak+1 is to
be added. We choose a random point y ∈ [0, 1] and select an interval I generated
by points from the set Ak such that y ∈ I. Then we define ak+1 as the the middle
point of the interval I and put Ak+1 = Ak∪{ak+1}. We stop this process after n
steps. We call this method the binary split and we denote this method by binn.

Our goal is to calculate the value of var[binn]. Let us start with putting f0 = 1
and fn = ELRI[binn] for n > 0.

Lemma 1. For all n ∈ N we have

fn+1 =
1

2n+1

n∑

k=0

(
n

k

)

fk. (4)

Proof. Let us consider the sequence (ξ1, . . . , ξn, ξn+1) of independent random
variables uniformly distributed in the interval [0, 1] defined on a probabilistic
space Ω and let ω ∈ Ω. At the beginning the number ξ1(ω) splits [0, 1] into two
equal parts: [0, 0.5] and (0.5, 1]. Let us now define A = {i > 1 : ξi(ω) ≤ 0.5}
and B = {i > 1 : ξi(ω) > 0.5}. Then the variables {ξi : i ∈ A} can only split
the [0, 0.5] interval while variables from the set {ξi : i ∈ B} can only split the
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(0.5, 1]. Note that {2ξi : i ∈ A} split the interval [0, 1], hence E[(2ξi)i∈A] = f|A|.
A similar observation is true for the sequence (2ξi − 1)i∈B. Therefore we have

fn+1 =
∑

A⊆{2,...,n+1}

(
1
4
f|A| +

1
4
f|B|

)(
1
2

)n

=
1

2n+2

n∑

k=0

(
n

k

)

(fk + fn−k) =
1

2n+1

n∑

k=0

(
n

k

)

fk. ��

Let

Ln =
∞∏

j=n

(1− 1
2j

).

It is easy to calculate that L1 � 0.2888 and easy estimations shows that the
inequalities 1 − 4

2n < Ln < 1 − 1
2n holds for each n ≥ 1. We shall express

numbers fn in terms of numbers Ln.

Lemma 2. fn =
∑
m≥0(

1
2 )m(1− (1

2 )m)nLm+1.

Proof. Let us consider the exponential generating function

x(t) =
∑

n≥0

fn
tn

n!

of the sequence (fn)n≥0. From equation (4) we get

x′(t) =
∑

n≥0

fn+1
tn

n!
=
∑

n≥0

1
2n+1

n∑

k=0

(
n

k

)

fk
tn

n!
(5)

=
1
2

∑

n≥0

(
n∑

k=0

(
n

k

)

fk

)
(t/2)n

n!
, (6)

hence the function x(t) satisfies the following functional equation

2x′(2t) = x(t)et,

i.e. x′(t) = 1
2x(

t
2 )e

t
2 . If we put X(t) = x(t)e−t then we obtain a slightly simpler

equation

X ′(t) =
1
2
X

(
t

2

)

−X(t),

which can be solved explicitly. Namely we have

X(t) =
∑

n≥0

tn

n!
(−1)n

n∏

k=1

(

1−
(

1
2

)k
)

.

Since x(t) = X(t)et we obtain

fn =
n∑

k=0

(
n

k

)

(−1)k
k∏

j=1

(

1−
(

1
2

)j
)

.
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The above formula is hard to be calculated accurately because it contains
large coefficients with alternating signs. Therefore we need to transform it into
a more suitable form. We put into the Euler partition formula (see [7])

∞∏

k=0

1
1− qkz =

∑

n≥0

zn
∏n
k=1(1− qk)

values z = qa+1 and q = 1
2 , and get

1
∏∞
k=a+1(1− (1

2 )k)
=
∑

n≥0

(1
2 )(a+1)n

∏n
k=1(1 − (1

2 )k)
.

After multiplying both sides of this equality by L1 we get

a∏

j=1

(

1− 1
2j

)

=
∑

n≥0

(
1
2

)(a+1)n

Ln+1,

and hence we obtain

fn =
n∑

k=0

(
n

k

)

(−1)k
∑

m≥0

(
1
2

)(k+1)m

Lm+1 =

=
∑

m≥0

Lm+1

(
1
2

)m n∑

k=0

(
n

k

)

(−1)k
((

1
2

)m)k

=

=
∑

m≥0

(
1
2

)m(

1−
(

1
2

)m)n

Lm+1,

which proves the lemma. ��

Remark 2. From Lemma 2 we may deduce that fn+1 < fn for each n.

Let us consider now the following function

ϕn(x) =
(

1
2

)x (

1−
(

1
2

)x)n

defined on the interval [0,∞). The function ϕn has the global maximum at point
log2(n+1) and ϕn(log2(n+1)) = 1

ne+o(
1
n ). Notice that

∑
m≥0(

1
2 )m(1−(1

2 )m)n =
∑

m≥0 ϕn(m). Moreover,
∫∞
0 ϕn(x)dx = 1

(1+n) ln 2 . From these observations we
deduce that ∑

m≥0

(
1
2
)m(1− (

1
2
)m)n = O(

1
n

). (7)

Lemma 3. fn =
∑
m≥0

1
2m (1 − 1

2m )n + o( 1
n ).
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Proof. The proof is done by a simple estimation. Let us first show the following
approximation

log2
√
n∑

m=0

1
2m

(1− 1
2m

)n = o(
1
n

).

This fact follows immediately from monotonicity of the function ϕn on the in-
terval [0, log(n+ 1)]. Namely,

ϕn(log2

√
n) <

1√
ne

√
n
,

so
log2

√
n∑

m=0

1
2m

(1 − 1
2m

)n ≤ log2

√
n√

ne
√
n
≤ 1
e
√
n

and 1
e

√
n = o( 1

n ).
Observe that if k > log2

√
n then Lk > 1− 4√

n
, so we have

(1− 4√
n

)
∑

m>log2
√
n

1
2m

(1− 1
2m

)n ≤
∑

m>log2
√
n

1
2m

(1− 1
2m

)nLm+1

and from equation (7) we obtain
∣
∣
∣
∣
∣
∣

∑

m>log2
√
n

1
2m

(1− 1
2m

)n −
∑

m>log2
√
n

1
2m

(1− 1
2m

)nLm+1

∣
∣
∣
∣
∣
∣
≤ C

n
√
n

= o(
1
n

),

which proves the lemma. ��

Lemma 4.
∑

k≥0
1
2k (1− 1

2k )n =
∑n
k=0

(
n
k

)
(−1)k 1

1−( 1
2 )1+k

Proof. The proof follows from following transformations:

∑

k≥0

1
2k

(1− 1
2k

)n =
∑

k≥0

(
1
2k

)
n∑

l=0

(
n

l

)

(−1)l
1

2kl
=

n∑

l=0

(
n

l

)

(−1)l
∑

k≥0

(
1
2
)kl+k =

n∑

l=0

(
n

l

)

(−1)l
1

1− (1
2 )1+l

. ��

Theorem 3. The sequence fn satisfies

fn =
1

n+ 1

(
1

ln 2
+ ω(log2(n+ 1)) + η(n)

)

+O(
1
n2

),

where ω is a periodic function with period 1 such that |ω(x)| < 1.42602 · 10−5

and |η(x)| < 6.72 · 10−11.
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In the proof of this theorem we use a method of the treatment of oscillating
sums attributed to S.O. Rice by D.E. Knuth (see [7]).

Proof. Let us, for simplicity, denote

sn =
n∑

k=0

(
n

k

)

(−1)k
1

1− (1
2 )1+k

and let us consider the following function

f(z) =
1

1− (1
2 )1−z

with complex argument z. Then f is a meromorphic function with single poles
at points

zk = 1 +
2πk
ln 2

i,

where k ∈ Z, i is the imaginary unit and

sn =
n∑

k=0

(
n

k

)

(−1)kf(−k).

Let B(x, y) = Γ (x)Γ (y)/Γ (x + y) be the Euler beta function. The function
B(n+ 1, z) has single poles at points 0,−1, . . . ,−n and

Res [B(n+ 1, z)|z = −k] = (−1)k
(
n

k

)

.

(see [7] for details). Notice that the function f is holomorphic on the half-plane
,(z) < 0.5. Therefore

sn =
n∑

k=0

Res [B(n+ 1, z)f(z)|z = −k] . (8)

Let us consider a big rectangle Ck with end-point ±k± (2k+1)πi/ ln 2, where
k is a natural number. It is quite easy to check that

lim
k→∞

∮

Ck

B(n+ 1, z)f(z)dz = 0

(in proof of this fact the equality f(1 + (2k + 1)πi/ ln 2) = 1/2 plays a crucial
role). Therefore, using Cauchy Residue Theorem (see [1]), we get

sn = −
∑
{Res [B(n+ 1, z)f(z)|z = zk] : k ∈ Z}. (9)

Further, it can be easily checked that

Res [B(n+ 1, z)f(z)|z = 1] = − 1
(n+ 1) ln 2

. (10)
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Fig. 1. Singular points of the function B(4, z)f(z) and the contour of integration C5

This first residue gives us the first part of the approximation of the number sn.
Generally, we have

Res [B(n+ 1, z)f(z)|z = zk] = −
Γ (1 + n)Γ (1 + 2kπi

ln 2 )
Γ (2 + n+ 2kπi

ln 2 ) ln 2
.

Notice that if x ∈ R then
∣
∣
∣
∣
Γ (n+ 1)Γ (1 + ix)
Γ (2 + n+ ix)

∣
∣
∣
∣ =

n!
√

(12 + x2)(22 + x2) · · · ((n+ 1)2 + x2)
≤

1
n+ 1

· 1
√

(1 + x2

12 )(1 + x2

22 ) · · · (1 + x2

n2 )
.

Let a = 2π
ln 2 . It can be checked numerically that

∞∑

k=2

1
√∏100

m=1(1 + (ka/m)2)
≈ 2.32781 · 10−11.

Therefore

|
∑
{Res [B(n+ 1, z)f(z)|z = zk] : |k| ≥ 2}| ≤ 6.72 · 10−11

n+ 1
(11)

for all n ≥ 100. Next, we use the following well known approximation formula

Γ (z + a)
Γ (z + b)

= za−b
(

1 +
(a− b)(a+ b− 1)

2z
+O(

1
z2

)
)

,
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which holds when |z| → ∞ and | arg(z + a)| < π to expressions

Γ (1 + n)
Γ (1 + n+ 1± 2πi

ln 2 )
,

and we obtain

Γ (1 + n)
Γ (1 + n+ 1± 2πi

ln 2 )
=

(2π2 + iπ ln 2 + (n+ 1) ln2 2)
(
cos 2πi ln(n+1)

ln 2 ∓ i sin 2πi ln(n+1)
ln 2

)

(n+ 1)2 ln2 2
+O(

1
n2

).

After noticing that Γ (1± 2πi
ln 2 ) ≈ 3.1766 · 10−6∓ 3.7861 · 10−6 · i and some simple

calculations we finally get
∑
{Res [B(n+ 1, z)f(z)|z = zk] : |k| = 1} = (12)

10−6

n+ 1
(a · cos(2π log2(n+ 1))− b · sin(2π log2(n+ 1))) +O(

1
n2

),

where a ≈ 9.166 and b ≈ 10.924. Putting together Equations (9), (10), (11) and
(12) we obtain the thesis of the theorem. ��
From the last Theorem and Equation (1) we obtain

Corollary 2

var[binn] =
1

(n+ 1)2

(
1

ln 2
− 1 + ω(log2(n+ 1)) + η(n)

)

+O(
1
n3

),

where ω and η are the function from Theorem 3.

Notice that 1
ln 2 − 1 ≈ 0.4427, therefore std[binn] ≈ 0.665

n , hence std[binn] is
significantly smaller than the value std[unifn] ≈ 1

n (see Corollary 1). From this
we conclude that the binary split process generates a more uniform distribution
of random points in the interval [0, 1] than the uniform one.

Remark 3. The main influence on the asymptotic behavior of the sequence (fn)
is played by the three main poles of the function f(z) = (1− (1

2 )1−z)−1: z0 = 1,
z1 = 1 + 2πi

ln 2 and z−1 = 1 − 2πi
ln 2 . The first one, located at point 1, is responsible

for the component 1
(n+1) ln 2 . The next two poles are responsible for relatively

small oscillations of the sequence fn. The size of oscillations is relatively small
because -(1 + 2πi/ ln2) ≈ 10 and the function Γ decreases rapidly when the
imaginary part of a number grows.

Remark 4. Some aspects of the binary split model, namely the properties of the
length of the first node, were investigated P. Flajolet (see [4]) and later by P.
Kirchenhofer and H. Prodinger (see [6]) in their analyses of properties of the R.
Morris probabilistic counter (see [10]). In their investigations a fluctuation factor
of the form ω(log2 n) appears, too.
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3 Discussion

Let Pn be any randomized method of generating random subsets of interval [0, 1]
of cardinality n. Let

CV[Pn] =
std[Pn]
E [Pn]

denotes the coefficient of variation of Pn. The number CV[Pn] is a measure of
dispersion of lengths of intervals generated by the method Pn. We have proved
that CV[unifn] � 1 and CV[binn] � 0.665. Therefore the random subsets gen-
erated by the binary split methods has smaller dispersion than subsets generated
by the uniform method.

The length of intervals in the uniform split with n elements varies between
1
n2 and ln(n)

n . To be more precise let us consider the following two random vari-
ables min(Pn) = min{xPn

i , . . . , xPn
n+1}, max(Pn) = max{xPn

i , . . . , xPn
n+1}. It fol-

lows almost directly from Equation (3) that E [min(unifn)] = 1
n2 . Moreover

E [max(unifn)] ∼ lnn
n + γ

n (see [2]). These observations were done by several
authors working with P2P protocols–see e.g. [5].

Let mo = M0 = 1 and mn = E [min(binn)] and Mn = E [max(binn)] for
n > 0. Using similar arguments as in Lemma 1 we may show that

mn+1 =
1

2n+1

n∑

i=0

(
n

i

)

min(mi,mn−i),

Mn+1 =
1

2n+1

n∑

i=0

(
n

i

)

max(Mi,Mn−i).

Numerical calculations show that 0.4
ln lnn

1
n ≤ mn < Mn ≤ 2.2 ln lnn

n for each n ≥ 5,
however we do not have a precise mathematical proof of this fact. This shows
that the length of intervals in the binary split is much better concentrated near
its medium value 1

n than in the uniform split.

4 Conclusion

Our mathematical analysis was motivated by the problems arising in computer
science. It is well known that the capacity of Chord (see [12] and [9]) nodes’ areas
(intervals) is a random variable with large variation. Our calculation of σ(unifn)
confirms this fact. Now let us recall that amount of data and number of requests
passed via node in Chord is proportional to the length of its area. Hence, large
variation of area size introduces a discrepancy between nodes’ workload.

This problem can be partially solved by a very simple modification of the
original Chord protocol.The modification is based on binary split method which
can be easily embedded into Chord’s protocol. Namely, we need to modify only
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one of Chord’s procedure, namely the procedure join. The original ,,join” proce-
dure accepts a new node at an arbitrarily chosen position ζi. In the modification
we can use ζi only to determine which interval the new node P will split upon
arrival. Then the target interval is slitted into two halves and the node currently
responsible for the interval will keep roughly half of the resources and P takes
over the responsibility for the rest.

In other words, instead of using random protocol address, the new node ran-
domly and uniformly picks a point and joins the Chord protocol precisely in
the middle of the interval that is controlled by the node responsible for chosen
point. The method described above can be treated as Chord protocol with a one
dimensional CAN’s split method (see [11]).

In reality Chord is a dynamic structure; nodes both leave and join the net-
work. It is possible to modify the structure of remaining nodes after a single
node leaves the system in such a way that after this modification we shall ob-
tain a division generated by the binary split method, however, this is a quite
complicated procedure. Our proposition is to ignore this fact.

We have made a lot of numerical experiments for checking what happens when
we use the binary split only in the ,,join” procedure. Figure 2 contains a summary
of one experiment. In this experiment we have build a Chord structure based
on the binary split method with 105 nodes and later we successively removed
one randomly chosen node in the ,,normal way” and add one node using the
binary split regime 2 · 105 times. We observed that afer the initialization phase
the variable CV[P ] increase, but later its value stabilize and in the stable regime
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Fig. 2. Experiment with 105 nodes
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we have CV[P ] ≈ 0.85. This coefficient of variation is bigger than the coefficient
of variation of the binary split but it is less than the coefficient of variation of
the uniform split. However, this behavior requires and still awaits for precise
theoretical explanation.
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The Cover Time of Random Digraphs

Colin Cooper1 and Alan Frieze2,�

1 Department of Computer Science, King’s College, University of London,
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Abstract. We study the cover time of a random walk on the random
digraph Dn,p when p = d log n

n
, d > 1. We prove that whp the cover time

is asymptotic to d log
(

d
d−1

)
n log n.

1 Introduction

Let D = (V,E) be a strongly connected digraph with |V | = n, and |E| = m.
For v ∈ V let Cv be the expected time taken for a simple random walk Wv =
(Wv(t), t = 0, 1, . . . on D starting at v, to visit every vertex of D. The cover
time CD of D is defined as CD = maxv∈V Cv.

For connected undirected graphs, the cover time is well understood, and has
been intensely studied. It is an old result of Aleliunas, Karp, Lipton, Lovász
and Rackoff [2] that CG ≤ 2m(n − 1). It was shown by Feige [8], [9], that
for any connected graph G, the cover time satisfies (1 − o(1))n lnn ≤ CG ≤
(1+o(1)) 4

27n
3. As an example of a graph achieving the lower bound, the complete

graph Kn has cover time determined by the Coupon Collector problem. The
lollipop graph consisting of a path of length n/3 joined to a clique of size 2n/3
gives the asymptotic upper bound for the cover time.

In a sequence of papers we have investigated the cover time of various classes
of random graph. The main results of these papers can be summarised as follows:

– [4] If p = d lnn/n and d > 1 then whp CGn,p ∼ d ln
(

d
d−1

)
n lnn.

– [7] Let d > 1 and let x denote the solution in (0, 1) of x = 1−e−dx. Let Xg be
the giant component of Gn,p, p = d/n. Then whp CXg ∼

dx(2−x)
4(dx−lnd)n(lnn)2.

– [5] If Gn,r denotes a random r-regular graph on vertex set [n] with r ≥ 3
then whp
CGn,r ∼ r−1

r−2n lnn.
– [6] If Gm denotes a preferential attachment graph of average degree 2m then

whp
CGm ∼ 2m

m−1n lnn.

In this paper we turn our attention to random directed graphs. Let Dn,p be
the random digraph with vertex set V = [n] where each possible directed edge
� Supported in part by NSF grant CCF0502793.

M. Charikar et al. (Eds.): APPROX and RANDOM 2007, LNCS 4627, pp. 422–435, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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(i, j), i �= j is included with probability p. It is known that if np = d lnn + ω
where ω = (d − 1) lnn → ∞ then Dn,p is strongly connected whp. (If ω as
defined tends to −∞ then whp Dn,p is not strongly connected). We discuss the
covertime of Dn,p for p at or above the strong connectivity threshold.

Theorem 1. Suppose that np = d lnn where d−1 is at least a positive constant.
Then whp

CDn,p ∼ d ln
(

d

d− 1

)

n lnn.

Note that if d = d(n)→∞ with n then we have CDn,p ∼ n lnn.
Our analysis is based on Lemma 1 below, which is proved in its current state

in [7]. In order to apply this lemma we need to have estimates of (i) the steady
state π(v), v ∈ V of our walk and (ii) the mixing time. For an undirected graph
G, (i) is trivial, we just take π(v) = deg(v)/2m where deg denotes degree and
m is the number of edges in G. There is no such simple formula for digraphs
and the main technical task for us is to find good estimates. We summarise our
result concerning the steady state as follows:

Theorem 2. Suppose that np = d lnn where d−1 is at least a positive constant.
Then whp

πv ∼
deg−(v)
m

∀v ∈ V

where deg−(v) is the in-degree of v and m is the number of edges of Dn,p.

Note that if d = d(n)→∞ with n then the steady state distribution is asymp-
totically uniform.

Once we know the steady state distribution, it is basically plain sailing. We
can plug into the program from the previously cited papers.

The next section describes Lemma 1. Section 3 deals with estimating the
steady state distribution. We then estimate the cover time asymptotically in
Section 4.

There is not room for complete proofs of every statement within the page
limit. A full version of the paper can be obtained from
http://www.math.cmu.edu/ af1p/Dnp.pdf.

2 Main Lemma

In this section D denotes a fixed strongly connected digraph with n vertices. A
random walk Wu is started from a vertex u. Let Wu(t) be the vertex reached
at step t, let P be the matrix of transition probabilities of the walk and let
P

(t)
u (v) = Pr(Wu(t) = v). We assume the random walkWu on G is ergodic with

steady state distribution π.
Let

d(t) = max
u,x∈V

|P (t)
u (x)− πx|,
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and let T be such that, for t ≥ T

max
u,x∈V

|P (t)
u (x) − πx| ≤ n−3. (1)

Fix two vertices u, v. Considering the walkWv, starting at v, let rt = Pr(Wv(t)
= v) be the probability that this walk returns to v at step t = 0, 1, ... . Let

RT (z) =
T−1∑

j=0

rjz
j (2)

and
λ =

1
KT

(3)

for some sufficiently large constant K.
An almost identical lemma was first proved in [5]. For t ≥ T let At(v) be the

event that Wu does not visit v in steps T, T + 1, . . . , t.

Lemma 1. Suppose that

(a) For some constant θ > 0, we have

min
|z|≤1+λ

|RT (z)| ≥ θ.

(b) T 2πv = o(1) and Tπv = Ω(n−2).

Let
pv =

πv
RT (1)(1 +O(Tπv))

, (4)

where RT (1) is from (2).
Then for all t ≥ T ,

Pr(At(v)) =
(1 + O(Tπv))

(1 + pv)t
+ o(e−λt/2). (5)

3 Estimating the Steady State

3.1 Two Useful Lemmas

We first give a simple lemma concerning the degree sequence of Dn,p. It can
easily be proven by the use of the first and second moment method. Let deg+

denote out-degree and deg− denote in-degree.
We deal with two cases. In Case (a) we have d = ω(n)→∞ and in Case (b)

we have d > 1 a fixed constant.

Lemma 2. Let ε1 = ω−1/3, ca = 1− ε1, Ca = 1 + ε1, cb = d′/2 and Cb = d′′ + 1
where d′ < d′′ are the two roots of x ln(e/x) = 1− lnn/np. Then,
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(a) If np = ω lnn then for all v ∈ V , deg+(v), deg−(v) ∈ Ia = [canp,Canp],
with probability ρa = 1−O(n−K) for any K > 0.

(b) If np = d lnn where d = O(1) then with probability 1 − n−ψ where ψ =
ψ(d) > 0:
1. Simultaneously, for all v ∈ V , deg+(v), deg−(v) ∈ Ib = [cbnp,Cbnp]
2. For k ∈ Ib there are ≤ 2(nep/k)kn1−d vertices v with deg−(v) = k.
3. Let k∗ = (d− 1) lnn. There are ∼ (nep/k∗)k

∗
n1−d = nγd+o(1) vertices v

with deg−(v) = k∗, where γd = (d− 1) ln(d/(d− 1)).

Let D± be the events that in- or out-degrees are within the bounds specified in
Lemma 2. Let D = D+ ∩ D−. Refining this, for a set of vertices S, or for cases
(a), (b) of Lemma 2 we let D±

a (S),D±
b (S) be the same conditions restricted to

the vertices in S or the relevant case. Also, we will often drop suffices and use
the constants c, C.

Lemma 3. Let BI denote the binomial random B(n − 1, p) |B(n−1,p)∈I
1 where

I = [cnp, Cnp], where c < 1 < C are constants such that ρ, the probability that
B(n− 1, p) ∈ I = 1− o(1/n). For ξ = X,Y, Z let W ξ

0 = 1 and let

WX
t =

B0−θ∑

i=1

AXi
B0

, WY
t =

B0−θ∑

i=1

AYi
Bi

, WZ
t =

B0−θ∑

i=1

AZi
Bi

+
θ∑

j=1

AZj
cnp

.

where the Bi, i ≥ 0 are independent copies of BI , the Ai, i ≥ 1 are independent
copies of W ξ

t−1, and θ is a fixed non-negative integer. Then for |λ| ≤M , M > 1,
Mt = o(np), sufficiently large n, and ξ = X,Y, Z,

E(eλW
ξ
t ) ≤ exp

{

λ+
Lξ(5 + θ)|λ|t

cnp

}

, (6)

where LX = 1, LY = LZ = M .

Proof is omitted. �

We will apply Lemma 3 as follows. Let (6) be written as E(eλWt) ≤ eλ+γ|λ|, and
recall that |λ| ≤M . By the Markov Inequality,

Pr(Wt ≤ 1−A) ≤ e−M(A−γ) (7)
Pr(Wt ≥ 1 +B) ≤ e−M(B−γ). (8)

We next give a brief outline of our approach to approximating the stationary
distribution π. Iterating the equation π = πP , k times gives π = πP k. For fixed
y this gives πy =

∑
x∈V πxP

(k)
x (y). By bounding P (k)

x (y) from above and below
by values independent of x, i.e. P (k)

x (y) ∼ θy we obtain πy ∼ θy.
1 We will use the notation Z |E to denote random variable Z conditioned on the

occurrence of the event E .
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3.2 Lower Bounds on the Stationary Distribution

To bound P (k)
x (y) from below, we consider random walks between x and y con-

sisting of simple directed (x, y)-paths of length k. There are three cases;

Case I: np = d lnn, where d ≥ 1 constant or d = ω →∞ and ω ≤ n3/10.
Case II: n3/10 ≤ ω ≤ n3/5.
Case III: ω ≥ n3/5.

Most of the work is involved in the proof of the first case.

Lower Bounds for Case I

Lemma 4. Whp,

πv ≥ (1 − o(1))
deg−(v)
m

for all v ∈ V,

where m is the number of edges in Dn,p.

Proof. Let

� =
⌊

2
3

lognp n
⌋

. (9)

Fix x ∈ V and using Breadth First Search construct the sets X0 = {x} ,
X1, . . . , X� where Xi+1 = N+(Xi) \ (X0 ∪ · · · ∪Xi) for 0 ≤ i < �. Here N+(S)
is the set of out-neighbours of set S.

Let X =
⋃�
i=0Xi and let TX denote the BFS tree constructed in this manner.

If w ∈ Xi+1 is the out-neighbour of more than one vertex of Xi, we only keep
the first edge into w for TX .

Given X and y, (y = x is allowed) we define Y0 = {y} , Y1, . . . , Y� where
Yi+1 = N−(Yi) \ (X ∪Y0 ∪ · · · ∪Yi) for 0 ≤ i < �. If w ∈ Yi−1 is the in-neighbour
of more than one vertex of Yi, we only keep the first edge into w for TY . Let
Y =

⋃�
i=0 Yi and let TY denote the BFS tree constructed in this manner.

Observe that

D+ implies |X | ≤ (Cnp)� ≤ n2/3+o(1). (10)
D− implies |Y | ≤ (Cnp)� ≤ n2/3+o(1). (11)

For u ∈ Xi let Pu denote the path from x to u in TX and

αi,u =
∏

w∈Pu
w �=u

1
deg+(w)

≤ Pr(Wx(i) = u)

and for v ∈ Yi let Qv denote the path from v to y in TY and

βi,v =
∏

w∈Qv

w �=y

1
deg+(w)

≤ Pr(Wv(i) = y). (12)
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Given Dn,p we have

P (2�+1)
x (y) ≥ Z = Z(x, y) =

∑

u∈X�
v∈Y�

α�,uβ�,v
1uv

deg+(u)
(13)

where 1uv is the indicator for the existence of the edge (u, v) and we take
1uv

deg+(u)
= 0 if deg+(u) = 0.

Let C = C(x, y) denote Xi, Yi, 0 ≤ i ≤ � and the collection of edge sets
(Xi−1 : Xi), 1 ≤ i ≤ � in TX (resp. (Yi : Yi−1), 1 ≤ i ≤ � in TY ). We have, with
q = 1− p,

E(Z | C) =
∑

u∈X�
v∈Y�

α�,uβ�,v

n−1∑

k=1

(
n− 1
k

)

pkqn−1−k k

n− 1
1
k

=
(1 + o(1))

n

(
∑

u∈X�

α�,u

)(
∑

v∈Y�

β�,v

)

. (14)

We will show that the distribution of C is such that for εX , εY = o(1),

Pr

(
∑

u∈X�

α�,u < 1− εX
∣
∣
∣
∣D

+

)

= o(n−2), (15)

Pr

(
∑

v∈Y�

β�,v < (1 − εY )
deg−(y)
m

∣
∣
∣
∣D

−

)

= o(n−2). (16)

Let
εX =

1
ln ln lnn

.

Now for each v ∈ Xi and j > i there is a unique path v = vi, vi+1, . . . , vj from
v to Xj in TX . For such a path, let

γi,j;v,vj =
j−1∏

k=i

1
deg+(vk)

.

Now consider the equation
∑

u∈X�

α�,u =
∑

u∈X�

γ0,�;x,u =
∑

w∈N+
D(x)

∑

u∈X�,w

γ1,�;w,u

deg+(x)
(17)

where X�,w = {u ∈ X� : the path from x to u in TX goes through w ∈ X1} and
N±
D (x) is the set of in/out-neighbours of x in TX .
This leads us to claim that given D+,
∑

u∈X�

γ0,�;x,u (and hence
∑

u∈X�

α�,u) dominates the random variable Ŵ X
� defined below.

(18)
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Let ν = n− n2/3+o(1) (see (10)). Let ŴX
0 = 1 and let

ŴX
t =

B0−B′
0∑

i=1

Ai
B0

where (i) B0 has the distribution BI , (ii) B′
0 is the number of successes for B0 in

the first n2/3+o(1) trials (o(1) as in (10)) and (iii) the Ai are independent copies
of ŴX

t−1.
We can use induction to verify (18): Going back to (17), given D+, deg+(x) is

distributed asB0 and γ�,1;w,u dominates ŴX
�−1. We sum from 1 to B0−B′

0 in order
to account for the out-neighbours of u ∈ X�−t which are in X0 ∪X1 ∪ · · ·X�−t.
We rely here on the tree structure and the fact that our BFS construction of TX
only checks edges of the form (a, b) where b has not yet been placed in X to give
us the claimed independence.

Note that

Pr(B′
0 ≥ 100) ≤ ρ−1(n2/3+o(1))100p100 ≤ n−3. (19)

In generating ŴX
� we will qs2 sample B′

0 at most o(n2) times and so if WX
t is

defined as in Lemma 3 with θ = 100 then

Pr(WX
� ≥ ŴX

� ) = o(n−2).

Thus for any value σ,

Pr

(
∑

u∈X�

α�,u ≥ σ | D+

)

≥ Pr(WX
� ≥ σ) − o(n−2). (20)

Using (7) with M = 10/(εXc) we have

Pr

(
∑

u∈X�

α�,u ≤ 1− εX/2
∣
∣
∣
∣D

+

)

≤ Pr(WX
� ≤ 1− εX/2)

≤ ρ−1
∑

k∈I

(
n− 1
k

)

pkqn−1−kPr

(
k−100∑

i=1

Ai ≤ k(1− εX/2)

)

= o(n−2).

So,

Pr

(

∃x, y :
∑

u∈X�

α�,u ≤ 1− εX/2
)

≤

n2Pr

(
∑

u∈X�

α�,u ≤ 1− εX/2
∣
∣
∣
∣D

+, x = 1, y = 2

)

+ Pr(D+) = o(1). (21)

This completes the proof of (15).
2 An event En occurs quite surely (qs) if Pr(¬En) = O(n−K) for any constant K > 0.
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We next consider the proof of (16). Now for each v ∈ Yi and j < i with unique
path v = vi, vi−1, . . . , vj from v to Yj in TY , let

γi,j;v,vj =
i−1∏

k=j

1
deg+(vk)

.

Consider the equation
∑

v∈Y�

β�,v =
∑

v∈Y�

γ�,0;v,y =
∑

w∈N−
D (y)∩Y1

∑

v∈Y�,w

γ�,1;v,w

deg+(w)
(22)

where Y�,w = {v ∈ Y� : the path from v to y in TY goes through w ∈ Y1}.
This leads us to claim that given D− and D+(X),

∑

v∈Y�

γ�,0;v,y (and hence
∑

v∈Y�

β�,v) dominates the random variable ŴY
� (23)

which is defined as follows: Let ŴY
0 = 1 and for 1 ≤ t ≤ �,

ŴY
t =

B0−B′
0∑

i=1

Ai
Bi
, (24)

where (i) B0 has the distribution BI , (ii) B′
0 is the number of successes for B0 in

the first n2/3+o(1) trials (see (11)), (iii) Bi, i = 1, 2, . . .B0 −B′
0 are independent

with distribution BI , and (iii) the Ai are independent copies of ŴY
t−1.

We can use induction to verify (23): Going back to (22), deg+(w) is distributed
as BI and γ�,1;v,w dominates ŴY

�−1. B
′
0 accounts for in-neighbours of u ∈ Y�−t

that are in X ∪Y0∪· · ·∪Y�−t. To justify the independence of the Bi, given D−∩
D+(X), we observe that given Y0, Y1, . . . , Y�−t, the out-degrees of the vertices in
Y�−t−1 are independent and distributed as BI .

We can replace B′
0 by 100 as we did for WX . In the case where np = d lnn, d

constant, we make the following adjustment. Let ζ = 1/ ln lnn and let a vertex
y be normal if at most ζ0 = �12/(ζ2d)� of its in-neighbours have out-degrees
which are not in the range [(1− ζ)np, (1 + ζ)np]. We show next that

Pr(∃ a vertex which is not normal) = o(1). (25)

Indeed

Pr(∃ a vertex which is not normal) ≤o(1) + n

Cbnp∑

s=cbnp

(
s

ζ0

)

(2e−ζ
2np/3)ζ0

=o(1) +O((lnn)n−3).

Let Ny be the event that vertex y is normal.
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We continue by proving, that conditional on D− ∩ Ny, that with probability
1− o(n−2)

∑

v∈Y�

β�,v ≥ (1− εY )
deg−(y)
np

. (26)

where εY is defined below.
For this calculation we will condition on a fixed value s for B0 = |N−(y)∩Y1|

and that Bi, i = 1, 2, . . . , B0 are the out-degrees of the in-neighbours
w1, w2 . . . , ws of y in Y1.

Furthermore, deg−(y)− s is dominated by B(n2/3+o(1), p) and so with proba-
bility 1−O(n−3) we have deg−(y) ≤ s+ 100 and so we can replace deg−(y) by
s in (26).

For np = d lnn, d constant, let εY = 2ζ and M = 10/(εY c). For np = ω lnn,
ω →∞ let εY = 1/ω1/3 and M = 1. Then,

Pr

(
∑

v∈Y�

β�,v ≤ (1− εY )
s

np

∣
∣
∣
∣D

−,Ny

)

≤ 2Pr

(
s−ζ0∑

i=1

Ai
(1 + ζ)np

≤ (1− εY )
s

np

)

≤ 2Pr

(
s−ζ0∑

i=1

Ai ≤ (1− εY /2)s

)

≤ 2 exp
{

−Ms

((

1− 105M(�− 1)
cnp

)

(1− ζ0/s)− (1− εY /2)
)}

≤ 2e−MεY s/3

= o(n−3).

So,

Pr

⎛

⎝∃x, y :
∑

v∈Y�

β�,v ≤ (1 − εY /2)
deg−(y)

np

⎞

⎠ ≤

n2Pr

⎛

⎝
∑

v∈Y�

α�,v ≤ 1 − εY /2
∣
∣
∣
∣D

+, x = 1, y = 2

⎞

⎠+ Pr(D+) + Pr(D−) + nPr(¬N2)=o(1).

(27)

Using (14), (21) and (27) we see that with whp, ∀x, y, C(x, y) is such that

E(Z | C) ≥ (1− o(1))
1
n

deg−(y)
np

= (1− o(1))
deg−(y)
m

.

We next consider the concentration of (Z | C).
For u ∈ X�, and |Y�| = n2/3+o(1), from (19) we have,

Pr(|N+(u) ∩ Y�| ≥ 100 | D−(Yi), i < �) ≤ n−3.
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We write Z =
∑
u∈X�

Zu where

Zu =
α�,u

deg+(u)

∑

v∈Y�

β�,v1uv.

Conditional onD−(Yi), i < � and |N+(u)∩Y�| ≤ 100 we have Zu ≤ 100/(cnp)2�+1.
Let Ẑu = (cnp)2�+1Zu/100, then for u ∈ X� the Ẑu are independent random
variables, and 0 ≤ Ẑu ≤ 1. Let Ẑ =

∑
u∈X�

Ẑu. By the Hoeffding inequality we
see that,

Pr(|Ẑ −E(Ẑ)| ≥ 4
√

npE(Ẑ)) = o(n−4).

However Z = 100Ẑ/(cnp)2�+1, and we conclude that, with probability 1−o(1/n),
for all x, y ∈ V ,

|Z −E(Z)| ≤
400
√

np E(Ẑ)

(cnp)2�+1
= O

(
1

n7/6+o(1)

)

. (28)

It follows that whp

P (2�+1)
x (y) ≥ (1− o(1))

deg−(y)
m

∀x, y. (29)

Finally, for any y ∈ V we have

πy =
∑

x∈V
πxP

(2�+1)
x (y) ≥ (1− o(1))

deg−(y)
m

∑

x∈V
πx = (1− o(1))

deg−(y)
m

, (30)

completing the proof of Lemma 4 �

Lower Bounds for Cases II, III

Lemma 5. Whp,

πv ≥
1− o(1)

n
for all v ∈ V.

Proof is omitted. �

At this point we have proved that the expression in Theorem 2 is a lower bound
for the steady state.

Upper Bound on Mixing Time. We next show that the mixing time T as
defined in (1) satisfies

T = o(� lnn) = o((lnn)2). (31)

Define
d̄(t) = max

x,x′∈V
|P (t)
x − P

(t)
x′ | (32)

be the maximum over x, x′ of the variation distance between P
(t)
x and P

(t)
x′ .

Equation (29) implies that
d̄(2�+ 1) = o(1). (33)
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Lemma 20 of Chapter 2 of Aldous and Fill [1] proves that

d̄(s+ t) ≤ d̄(s)d̄(t) and max
x
|P (t)
x − πx| ≤ d̄(t)

and so (31) follows immediately from (33).

3.3 Upper Bounds on the Stationary Distribution

We will use the following values: Here η > 0 is a sufficiently small constant and
Λ = lognp n.

�0 = (1 + η)Λ, �1 = (1 − 10η)Λ, �2 = 11ηΛ,
�3 = (1− η/10)Λ, �4 = ηΛ/20, �5 = 9ηΛ/10.

Case 1: np ≤ nδ where 0 < δ � η is a Positive Constant. We begin
with a lemma that will help simplify our calculations.

Lemma 6. Suppose that np ≤ nδ where δ ) 1. Then whp S ⊆ V, |S| ≤ s0 =
1
2 lognp n implies that S contains at most |S| edges.

Proof. The expected number of sets S with more than |S| edges can be
bounded by

s0∑

s=3

(
n

s

)(
s2

s+ 1

)

ps+1 ≤
s0∑

s=3

(e2np)ssep = o(1). ��

Fix x, y and let Xi, 0 ≤ i ≤ �3 be the set of vertices that are reachable from x
by a walk of length i. These sets are slightly larger than the Xi of Lemma 3.2
etc. in that we allow them to overlap. Let

X∗(x) =
�3⋃

i=0

Xi.

For 1 ≤ i ≤ �1 let

X̃i =

{

a ∈ Xi \
i−1⋃

k=0

Xk : ∃b ∈ Xj and j ≤ i such that (a, b) is an edge

}

and let X̃ =
⋃�1
i=�4

X̃i.

Lemma 7. Whp,

(a) For all x ∈ V , we have that for each z ∈ X∗ has at most 100/η in-neighbours
in X∗.

(b) For all x ∈ V , we have |X̃i| ≤ n2δ−10η(Cnp)i +O(lnn) for �4 ≤ i ≤ �1.
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Proof
(a) Let T = min {t ≤ �3 : |Xt+1| > Cnp|Xt|} if such t exist and equal to �3 + 1
otherwise. Let ζ be the number of in-neighbours of z in

⋃T
i=1Xi. ζ is stochasti-

cally dominated by B((Cnp)�3 , p). Hence if r = 100/η

Pr(ζ ≥ r) ≤ (Cnp)r�3pr ≤ nr(δ−η/10) ≤ n−4.

Now T = �3 + 1 with probability 1− o(n−1) and part (a) of the lemma follows.
(b) Assuming that i ≤ T we have |Xi| ≤ (Cnp)i. Given this and �1 ≤ T we see
that |X̃i| is dominated by B(n1−10η+o(1)(Cnp)i, p) and the result follows from
Chernoff bounds. �

We say that a vertex z ∈ Xi, i ≤ �4 is special if it has two in-neighbours in⋃
j<iXj or if it has x as an out-neighbour. It follows from Lemma 6 that whp

there can be at most one special vertex for a given x.

Lemma 8. Whp,

πv ≤ (1 + o(1))
deg−(v)
m

for all v ∈ V.

Proof is omitted. �

4 The Cover Time

We see immediately from (31) that Condition (b) of Lemma 1 is satisfied.
We will show shortly that if D holds then

RT (1) = 1 + o(1). (34)

If |z| ≤ 1 + λ, then as λ = 1/KT we have

RT (z) ≥ 1−
T∑

t=1

rt|z|t ≥ 1− (1 + λ)T
T∑

t=1

rt = 1− o(1)

and Condition (a) of the Lemma is also satisfied. So for v ∈ V0,

pv = (1 + o(1))
deg−(v)

n
.

Proof of (34): We first observe that because the minimum out-degree of Dn,p

is Ω(d lnn) we have for any x, y

Pr(Wv(t) = y | Wv(t− 1) = x) = O

(
1

d lnn

)

. (35)

The expected number of returns to v ∈ V by Wv is therefore O(T/d lnn). Thus
if d ≥ (lnn)2 we are done immediately.

If d ≤ (lnn)2 then a simple first moment calculation shows that whp for every
vertex v ∈ V , there is at most one edge from a vertex in N+(v) to {v}∪N+(v) or
from a vertex inN+(N+(v)) to {v}∪N+(v)∪N+(N+(v)). Thus with probability
1−O(1/(lnn)2, x =Wv(2) satisfies dist(x, v) ≥ 3 and then the probability of a
return to v is O(T/(lnn)3).
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4.1 Upper Bound on the Cover Time

For np = d lnn, d constant, let t0 = (1 + ε)d ln
(

d
d−1

)
n lnn. For np = d lnn

d = d(n) → ∞ let t0 = (1 + ε)n lnn. Here ε → 0 sufficiently slowly so that all
claimed inequalities below are valid.

Let TG(u) be the time taken by the random walk Wu to visit every vertex of
D. Let Ut be the number of vertices of G which have not been visited by Wu at
step t. We note the following:

Cu = E(TG(u)) =
∑

t>0

Pr(TG(u) ≥ t), (36)

Pr(TG(u) ≥ t) = Pr(TG(u) > t− 1) = Pr(Ut−1 > 0) ≤ min{1,E(Ut−1)}.(37)

Recall that Av(t), t ≥ T denotes the event that Wu(t) did not visit v in the
interval [T, t]. It follows from (36), (37) that for all t ≥ T ,

Cu ≤ t+ 1 +
∑

s≥t
E(Us) ≤ t+ 1 +

∑

v

∑

s≥t
Pr(As(v)). (38)

Assume first that d(n)→∞. If v ∈ V and t( T then

Pr(As(v)) ≤ (1 + o(1)) exp
{

− (1− o(1))s
n

}

+ o(e−s/T ). (39)

Plugging (39) into (38) we get

Cu ≤ t0 + 1 + 2n
∑

s≥t0

(

exp
{

− (1− o(1))s
n

}

+ o(e−s/T )
)

(40)

≤ t0 + 1 + 3n2 exp
{

− (1− o(1))t0
n

}

+ o(nTe−t0/T )

= (1 + o(1))t0.

Now assume that d is constant. For v ∈ V we have

pv ≥ (1− o(1))
deg−(v)

m
.

Then in place of (40) we find, using the bounds in Lemma 2 (b1),

Cu ≤ t0 + 1 +
2 + o(1)
nd−1

Cnp∑

k=cnp

(nep

k

)k ∑

s≥t0

(

exp
{

− (1− o(1))ks
m

}

+ o(e−s/T )
)

= (1 + o(1))t0,

where we have used the fact that (nep(d − 1))/(kd))k is maximized at k =
np(d− 1)/d.



The Cover Time of Random Digraphs 435

4.2 Lower Bound on the Cover Time

Let t1 = (1 − ε)d ln
(

d
d−1

)
n lnn. Let V ∗ =

{
v : deg−(v) = k∗

}
where k∗ =

(d− 1) lnn. Let V † denote the set of vertices in V ∗∗ that have not been visited
by Wu by time t1. We show that E(|V †|) → ∞ and E(|V †|2) ∼ E(|V †|)2 and
then use the Chebychev inequality to show that V † �= ∅ whp.
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Abstract. We initiate a systematic study of eigenvectors of random
graphs. Whereas much is known about eigenvalues of graphs and how
they reflect properties of the underlying graph, relatively little is known
about the corresponding eigenvectors. Our main focus in this paper is
on the nodal domains associated with the different eigenfunctions. In the
analogous realm of Laplacians of Riemannian manifolds, nodal domains
have been the subject of intensive research for well over a hundred years.
Graphical nodal domains turn out to have interesting and unexpected
properties. Our main theorem asserts that there is a constant c such that
for almost every graph G, each eigenfunction of G has at most 2 nodal
domains, together with at most c exceptional vertices falling outside
these primary domains. We also discuss variations of these questions
and briefly report on some numerical experiments which, in particular,
suggest that there are almost surely no exceptional vertices.

1 Introduction

Let G be a graph and let A be its adjacency matrix. The eigenvalues of A turn
out to encode a good deal of interesting information about the graph G. Such
phenomena have been intensively investigated for over half a century. We refer
the reader to the book [13, Ch. 11] for a general discussion of this subject and
to the survey article [9] for the connection between eigenvalues and expansion.
Strangely, perhaps, not much is known about the eigenvectors of A and how
they are related to the properties of G. However, in many application areas
such as machine learning and computer vision, eigenvectors of graphs are being
used with great success in various computational tasks such as partitioning and
clustering, for example see the work of Shi and Malik [17], Coifman, et al. [4,5],
Pothen, Simon and Liou [14] and others. For all we know, the success of these
methods has not yet been given a satisfactory theoretical explanation and we
hope that our investigations will help to shed some light on these issues as well.

There is, on the other hand, a rich mathematical theory dealing with the
spectrum and eigenfunctions of Laplacians. We will not go into this area at
any depth and refer the reader who wants to get an impression of the size and
depth of this theory to Chapter 8 in Marcel Berger’s monumental panorama
of Riemannian Geometry [2]. Suffices it to say that the adjacency matrix of a
graph is a discrete analogue of the Laplacian (we mention a bit more about
� Research supported by NSF CAREER award CCF-0644037.
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other analogues below). The only facts the reader should know are that the
(geometric) Laplacian has a discrete spectrum and that its first eigenfunction is
the constant function. This is analogous to the fact that the first eigenvector of
a finite connected graph is a positive vector and in particular, if the graph at
hand is d-regular, then its first eigenvalue is d with the all-ones vector as the
corresponding eigenvector.

One of the classical questions about eigenfunctions of the Laplacian concerns
their nodal domains. We will only discuss this concept in the realm of graphs
and refer the interested reader to [2] for further information about the geometric
seting. So what are nodal domains? Let G be a finite connected graph. It is well-
known that every eigenfunction f but the first takes both positive and negative
values. These values induce a partition of the vertex set V (G) into maximal
connected components on which f does not change its sign. These are f ’s nodal
domains. Let us stay a bit inaccurate here and state that a classical theorem
of Courant (see, for example, [3]) says that if we arrange the eigenvalues of G
as λ1 ≥ λ2 ≥ . . . with corresponding eigenfunctions f1, f2, . . ., then fk has at
most k nodal domains. We refer the reader to [7] for a full account of Courant’s
theorem for graphs.

Definition 1. Let G = (V,E) be an n-vertex graph and let f : V → R be an
eigenfunction of G. We say that f has a zero crossing on the edge xy ∈ E if
f(x)f(y) ≤ 0. Let Zf ⊂ E be the set of all edges on which f has a zero crossing.
The connected components of the graph Gf = (V \ {x : f(x) = 0}, E \ Zf) are
called the nodal domains of f .

We remark that one of the basic techniques for spectral partitioning involves
splitting a graph according to its nodal domains (see, e.g. [20]) as a special case.

The main focus of our research is the following problem.

Question 1. How many nodal domains do the eigenfunctions of G tend to have
for G that comes from various random graph models?

To get some initial idea, we started our research with a numerical experiment the
outcomes of which were quite unexpected. It turns out that for graphs sampled
from the random graph space G(n, 1

2 ) all eigenfunctions have exactly two nodal
domains. The same experimental phenomenon was observed for several smaller
values of p > 0 in the random graph model G(n, p), provided that n is large
enough. Even more unexpected were the results obtained for random regular
graphs. Some of these results are shown in Fig. 1. We found that quite a few of
the first eigenvectors have just two nodal domains, and only then the number of
nodal domains starts to grow.

It is also of interest to investigate similar questions for the so-called combina-
torial Laplacian of random graphs. In the regular case there is no difference, of
course, but for G(n, p) it turns out that the picture changes slightly. The typical
picture is that all eigenfunctions except for a small number at the very end of
the spectrum still have exactly two nodal domains. However, a small number of
eigenfunctions at the low end of the spectrum have three nodal domains. In Fig. 2
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d = 3 d = 4 d = 5

Fig. 1. The number of nodal domains in a random d-regular 300 vertex graph. There
are y nodal domains corresponding to the x’th eigenvector (eigenvalues are sorted). For
each d we show the average and standard deviation of 100 random graphs.

number of vertices

Fig. 2. The probability in G(n, 1
2 ) that the last eigenvector of the Laplacian has three

nodal domains. For each n 500 experiments were carried out.

we see that in a constant fraction of the graphs in G
(
n, 1

2

)
the last eigenvector

has three nodal domains.
Our main theorem for G(n, p) partly establishes this observed phenomenon.

Theorem 1. For every p ∈ (0, 1
2 ], if G ∼ G(n, p), then almost surely it holds

that every eigenfunction of G has at most two primary nodal domains, along with
at most O(1/poly(p)) other vertices. In particular, almost surely every eigenfunc-
tion of G has at most O(1/poly(p)) nodal domains.

1.1 Overview of Our Approach

Our basic approach is fairly straightforward, although it requires a subtle reduc-
tion to some nontrivial machinery. Given G ∼ G(n, p) and an eigenfunction f of
G, we first partition V (G) = Pf ∪Nf ∪Ef where Pf ,Nf are the largest positive
and negative nodal domains, respectively, and Ef is a set of exceptional vertices.

Next, we show that if Ef is large, then we can use the eigenvalue condition,
combined with upper estimates on the eigenvalues ofG(n, p) to find a large subset
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S of coordinates for which ‖f |S‖2 is smaller than one would expect for a random
unit vector f ∈ Sn−1. The last step is to show that the probability that some
eigenfunction has small 2-norm on a large set of coordinates is exponentially
small, and then to take a union bound over all such subsets.

The problem is that the final step seems to require finding very strong upper
bounds on ‖A−1‖ (i.e. lower bounds on the smallest singular value of A) for a
random discrete matrix A. Although there has been a great deal of progress in
this direction [12,11,15,18,16,6], (see also the survey [19]), when A is symmetric,
the known bounds are far too weak. Thus it is crucial that we reduce to proving
upper bounds on ‖A−1‖ when A is a random non-symmetric, rectangular ±1
Bernoulli matrix. In this case, we can employ the optimal bounds of [11,12] which
also yield the exponential failure probability that we require. This reduction
takes place in Theorem 6.

In Section 3.1, we show that it is possible to get significantly better control
on the nodal domains of G(n, p) if we could get slightly non-trivial bounds on
the �∞ norms of eigenfunctions. This is a possible avenue for future research.

1.2 Preliminaries

Notation 1.1. We denote by G(n, p) a random graph with n vertices, where
each edge is chosen independently with probability p. For any vertex x ∈ V (G)
we denote the set of its neighbors by Γ (x).

Notation 1.2. For any eigenvector f of a graph G and any subset S ⊆ V (G)
we denote f(S) =

∑
y∈S f(y), and particularly, for every x ∈ V we denote

f(Γ (x)) =
∑

y∼x f(y).

Definition 2. For p ∈ [0, 1], we define the random variable Xp by

Xp =

{
p− 1 with probability p
p with probability 1− p.

In particular, EXp = 0.

Definition 3. Let Mm×k(p) be the m× k matrix whose entries are independent
copies of Xp, and let M sym

k (p) be the symmetric k× k matrix whose off diagonal
entries are independent copies of Xp, and and whose diagonal entries are p.

Unless otherwise stated, throughout the manuscript, all eigenvectors are assumed
to be normalized in �2.

2 Spectral Properties of Random Matrices

We now review some relevant properties of random matrices.

Theorem 2 (Tail bound for symmetric matrices). If A ∼ M sym
k (p), then

for every ξ > 0
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Pr
(
‖A‖ ≥ (2

√
p(1− p) + ξ)

√
k
)
≤ 4e−ξ

2k/8

Here ‖A‖ stands for the �2 operator norm of A.

Proof. Füredi and Komlós prove in [8] that the expected value of the largest
magnitude eigenvalue of A is 2

√
p(1− p)

√
k. Alon, Krivelevich and Vu prove in

[1] (see also [10]) that the probability that the largest eigenvalue of A exceeds its
median by ξ

√
k is at most 2e−ξ

2k/8, and so is the probability that the smallest
eigenvalue of A is smaller than its median by ξ

√
k. As usual, the expected value

of the first and last eigenvalues differs from the median by at most O(1), hence

Pr
(
‖A‖ ≥ (2

√
p(1− p) + ξ)

√
k
)
≤ 4e−(1−o(1))ξ2k/8

We also need a similar bound for A ∼Mm×k(p) whose proof is standard.

Theorem 3 (Tail bound for non-symmetric matrices). For any m ≥ k,
if A ∼Mm×k(p) then

Pr
(
‖A‖ ≥ a1

√
m
)
≤ e−a2m

where a1, a2 are some absolute constants.

First, we need a subgaussian tail bound.

Lemma 1. For every 0 ≤ p ≤ 1
2 ,

EetXp ≤ e(1−p)
2t2/2 .

Proof. Let us look at the Taylor expansion of both sides of the above inequality.
The left hand side:

EetXp = pe−t(1−p) + (1 − p)etp

=
∞∑

i=0

[(
p(1 − p)2i + (1 − p)p2i

) t2i

(2i)!
+
(
(1 − p)p2i+1 − p(1 − p)2i+1

) t2i+1

(2i + 1)!

]

≤
∞∑

i=1

[
(1 − p)2it2i

(2i)!
+ p(1 − p)

(
p2i − (1 − p)2i

) t2i+1

(2i + 1)!

]

≤
∞∑

i=0

(1 − p)2it2i

(2i)!

and the right hand side:

e(1−p)
2t2/2 =

∞∑

i=0

(1− p)2it2i
2ii!

.

The inequality follows from noticing that for every i ≥ 0, (2i)! ≥ 2ii!.

Proof (Proof of Theorem 3). Take a 1
3 -net N1 ⊆ Sk−1 and a 1

3 -net N2 ⊆ Sm−1.
We can assume that the nets are symmetric in the sense that if x ∈ N1 (resp.
y ∈ N2) then −x ∈ N1 (resp. −y ∈ N2), since this only increases their size by at
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most a factor of 2. Let x ∈ N1 and y ∈ N2, and calculate Pr (〈y,Ax〉 > t
√
m).

Using Markov’s inequality we get

Pr
(
〈y,Ax〉 > t

√
m
)

= Pr
(
eλ〈y,Ax〉 > eλt

√
m
)
≤ Eeλ〈y,Ax〉

eλt
√
m

and by Lemma 1 we have

Eeλ〈y,Ax〉 =
k∏

i=1

m∏

j=1

EeλAijxiyj ≤
k∏

i=1

m∏

j=1

e(1−p)
2λ2x2

iy
2
j/2 = e(1−p)

2λ2/2

since
∑

i,j x
2
i y

2
j = 1. Writing λ = t

√
m

(1−p)2 yields

Pr
(
〈y,Ax〉 > t

√
m
)
≤ e−

t2m
2(1−p)2

and therefore

Pr
(
∃x ∈ N1, y ∈ N2 : |〈y,Ax〉| > t

√
m
)
≤ e−

t2m
2(1−p)2 |N1||N2| ≤ e

− t2m
2(1−p)2 9k+m

(this is true since by the choice of N1, N2, it holds that ∃x ∈ N1, y ∈ N2 :
|〈y,Ax〉| > t

√
m ⇐⇒ ∃x ∈ N1, y ∈ N2 : 〈y,Ax〉 > t

√
m).

Let x ∈ Sk−1 and y ∈ Sm−1 be any two vectors. By successive approximation,
we can find sequences {xi} ⊆ N1 and {yi} ⊆ N2 such that x =

∑
i≥1 αixi

and y =
∑
i≥1 βixi where |αi|, |βi| ≤ 3−i+1. Hence if |〈yi, Axj〉| ≤ t

√
m for all

xj ∈ N1, yi ∈ N2, then

|〈y,Ax〉| ≤
∑

i,j≥1

3−i−j+2|〈yi, Axi〉| ≤ O(t)
√
m

as well. Thus choosing t = O(1) large enough finishes the proof.

Theorem 4 (Tail bound for eigenvalues of G(n, p)). For any p ∈ (0, 1
2 ], let

A be the adjacency matrix of G(n, p) and λ1, . . . , λn its eigenvalues. Then for
every i ≥ 2 and every ξ > 0

Pr
(
|λi| ≥ (2

√
p(1− p) + ξ)

√
n
)
≤ exp(−ξ2n/32)

Proof. Füredi and Komlós prove in [8] that E (maxi≥2 |λi|) = 2
√
p(1− p)√n(1+

o(1)), and here too we get a tail bound from [1], so that for every ξ > 0

Pr
(
|λi| ≥ (2

√
p(1− p) + ξ)

√
n
)
≤ exp(−ξ2n/32)

We now state the following theorem from [12] (Theorem 3.3; a slight generaliza-
tion of [11]), specialized to the case of the sub-gaussian random variables Xp.
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Theorem 5. [12] For any p ∈ (0, 1
2 ], δ > 0, n ≥ 1, and N = (1 + δ)n, suppose

that Q ∼ MN×n(p). Then there exist constants α = α(p, δ), β = β(p) > 0 such
that for all sufficiently large n, and every fixed w ∈ RN , we have

Pr
[
∃v ∈ Sn−1 s.t. ‖Qv − w‖2 ≤ α

√
N
]
≤ exp(−βN)

Remark 1. Strictly, speaking the results in [12] only apply for symmetric random
variables (and thus only to X 1

2
in our setting). But the stated bound requires

three components in [12]: (1) An exponential tail bound on the operator norm,
which we prove in Theorem 3, (2) a Paley-Zygmund derived small-ball probabil-
ity estimate, and (3) a Berry-Esséen-type small-ball probability estimate. Both
(2) and (3) can be proved by hand for the variables Xp; these are standard
estimates which we expound upon in the full version.

The next result follows from taking a union bound in the preceding theorem.

Corollary 1. Under the setup of Theorem 5, there exist α = α(p, δ), β = β(p) >
0 such that for all sufficiently large n, and every fixed w ∈ RN , we have

Pr
[
∃c ∈ R, ∃v ∈ Sn−1 s.t. ‖Qv − cw‖2 ≤ α

√
N
]
≤ exp(−βN)

Proof. We may assume that ‖w‖2 = 1. Since ‖Qv‖2 ≤ N always, it suffices
to prove the bound for c ∈ [−2N, 2N ]. Take a 1-net M on [−2N, 2N ] with
|M | ≤ 4N , so applying Theorem 5 for every point in M and taking a union
bound we get that

Pr
(
∃c ∈M s.t. ∃v ∈ Sn−1 s.t. ‖Qv − cw‖2 ≤ α

√
N
)
≤ exp (−βN + ln (4N))

But now for any c′ ∈ [−2N, 2N ], let c ∈ M be such that |c − c′| ≤ 1. For any
matrix Q and v ∈ Sn−1

‖Qv − c′w‖2 ≤ ‖Qv − cw‖2 + ‖ (c′ − c)w‖2 ≤ ‖Qv − cw‖2 + 1 .

3 Nodal Domains

First, we will show that the �2 mass of an eigenvector cannot become very small
on a large subset of vertices.

Theorem 6 (Large mass on large subsets). For every p ∈ (0, 1
2 ] and every

ε > 0, there exist values α = α(ε, p) > 0 and β = β(p) > 0 such that if
G ∼ G(n, p), and S ⊆ [n] is a fixed subset with |S| ≥ (1

2 + ε)n, then for n large
enough,

Pr [∃a non-first eigenfunction f of G satisfying ‖f |S‖2 < α] ≤ exp(−βn).
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Proof. Let A be the adjacency matrix of G = (V,E), and let f : V → R be a
non-first eigenfunction of G with eigenvalue λ. Assume that α ≤ 1

2 , and fix a
subset S ⊆ V with |S| ≥ (1

2 + ε)n.
For every x ∈ S, the eigenvalue condition λf(x) = f(Γ (x)) implies that

∣
∣
∣
∣
∣
∣

∑

y∈V
Axyf(y)

∣
∣
∣
∣
∣
∣
≤ |λf(x)|.

Or equivalently,
∣
∣
∣
∣
∣
∣

∑

y∈V
(p−Axy)f(y)− p

∑

y∈V
f(y)

∣
∣
∣
∣
∣
∣
≤ |λf(x)|.

Squaring the preceding inequality and summing over all x ∈ S yields

∑

x∈S

∣
∣
∣
∣
∣
∣

∑

y∈V
(p−Axy)f(y)− p

∑

y∈V
f(y)

∣
∣
∣
∣
∣
∣

2

≤ |λ|2 · ‖f |S‖22. (1)

In particular, if we define M = pJ − A, where J is the n × n all ones matrix,
and let B be the |S| × n sub-matrix of M consisting of rows corresponding to
vertices in S, then (1) implies that ‖Bf −pf̄1‖2 ≤ |λ| · ‖f |S‖2, where f̄ = 〈f,1〉.

Furthermore, if we decompose B = [P Q] where P contains the columns
corresponding to vertices in S, and Q the others, then clearly P ∼M sym

|S| (p) and
Q ∼M|S|×(n−|S|)(p). Because Bf = P (f |S) +Q(f |S), we can write

‖Q(f |S)− pf̄1‖2 ≤ ‖Bf − pf̄1‖2 + ‖Pf |S‖2 ≤ |λ| · ‖f |S‖2 + ‖P (f |S)‖2 (2)

Now, since f is a non-first eigenfunction, by Theorems 4 and 2, there exist
constants C = C(p), β′ = β′(p) > 0 such that

Pr
[
|λ|+ ‖P‖ ≥ C

√
n
]
≤ exp(−β′n)

for some β′ = β′(p) > 0.
If we assume that |λ| + ‖P‖ ≤ C

√
n and also ‖f |S‖2 < α ≤ 1

2 , then a =
‖f |S‖2 ≥ 1

2 . In this case, (2) implies that

‖Q( 1
af |S)− p

a f̄1‖2 ≤ 2C
√
nα.

Thus, letting k = n − |S|, if we can show that for any δ ≥ 4ε
1−2ε > 0, there

exists α, β > 0 (with β depending only on p) such that for n large enough,

Pr
Q∼Mk(1+δ)×k(p)

[
∃v ∈ Sk−1, ∃c ∈ R s.t. ‖Qv − c1‖2 ≤ 2Cα

√
n
]
≤ exp(−βn),

then we are done. But this is precisely the content of Corollary 1.
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We record the following simple corollary.

Corollary 2. For every p ∈ (0, 1
2 ], there exist values α = α(p) > 0 and ε = ε(p)

with 0 < ε < 1
2 such that if G ∼ G(n, p), then almost surely, for every subset

S ⊆ V (G) with |S| ≥ (1
2 + ε)n we have ‖f |S‖2 ≥ α.

Proof. We need to take a union bound over all subsets S ⊆ [n] with |S| ≥
(1
2 + ε)n. But for every value β = β(p) from Theorem 6, there exists an ε < 1

2
such that the number of such subsets is o(exp(−βn)), hence the union bound
applies.

We fix now some p ∈ (0, 1
2 ] and consider G(V,E) ∼ G(n, p) and any non-first

eigenfunction f : V → R of G with eigenvalue λ. By Theorem 4, we have |λ| =
Op(
√
n) almost surely, and thus we assume this bound holds for the remainder of

this section. Let Pf and Nf be the largest positive and negative nodal domains
of f . We refer to the set Ef = V \ (Pf ∪ Nf ) as the set of exceptional vertices.

Lemma 2. If D1, . . . , Dm are the nodal domains in Ef , then almost surely m =
O(log n) and |Di| = O(log n) for every i ∈ [m].

Proof. Consider e.g. the positive nodal domains P1, P2, . . . , Ps in Ef . Then se-
lecting one element from every Pi yields an independent set of size s, hence
almost surely s = O(log n). Furthermore, since each Pi has no edges to Pf , al-
most surely one of the two sets has size at most O(log n), hence in particular
|Pi| = O(log n) for each i ∈ [s]. Similar statements hold for the negative nodal
domains in Ef .

Next we show that it is impossible to find too many exceptional vertices of small
magnitude.

Lemma 3. There exists some values k ≥ 1 and α > 0 such that almost surely
there do not exist x1, . . . , xk ∈ Ef with |f(xi)| ≤ α for every i ∈ [k].

Proof. Suppose, to the contrary, that such x1, . . . , xk ∈ Ef exist, and let Γ =(⋃k
i=1 Γ (xi)

)
\ Ef . Then by Lemma 2, and properties of random graphs, we

have |Γ | ≥ [1 − (1 − p)k]n −Ok,p(
√
n) almost surely. Choose k large enough so

that |Γ | ≥ (1
2 + ε + ε′)n where ε = ε(p) is the constant from Corollary 2 and

ε+ ε′ < 1/2.
For each i ∈ [k], let Di be the nodal domain of xi with respect to f . Using the

eigenvalue condition, for every i ∈ [k], we have |f(Γ (xi))| ≤ α|λ| = α ·Op(
√
n).

Every neighborhood Γ (xi) has non-trivial intersection with only of Pf or Nf ,
hence grouping terms by sign, we have

∑

x∈Γ (xi)

|f(x)| ≤
∣
∣
∣f
(
Γ (xi) ∩ (Pf ∪ Nf )

)
+ f
(
Γ (xi) ∩ Ef \Di

)∣
∣
∣+ |f(Di)|

≤ |f(Γ (xi))|+ |Di|
≤ α ·Op(

√
n) +O(log n),
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where we have used the estimate on |Di| from Lemma 2 which holds almost
surely. In particular,

k∑

i=1

∑

x∈Γ (xi)

|f(x)| ≤ kα ·Op(
√
n) +O(k logn). (3)

Now let Γ ′ = {x ∈ Γ : |f(x)| ≤ c√
n
} for some c > 0 to be chosen momentarily.

Using (3), we see that |Γ \ Γ ′| ≤ kα·Op(n)
c , hence choosing c = O(kα/ε′) large

enough, we have |Γ ′| ≥ (1
2 + ε)n. On the other hand, we have ‖f |Γ ′‖∞ ≤ c√

n
,

hence ‖f |Γ ′‖2 ≤ c = O(kα/ε′). Now choosing α > 0 small enough, by Corollary
2, such a set Γ ′ and eigenvector f having small 2-norm on Γ ′ almost surely do
not exist, completing the proof.

Corollary 3. Almost surely every eigenfunction f of G has |Ef | = Op(1).

Proof. From the Perron-Frobenius theorem, we know that the first eigenvector
has constant (positive) sign, and hence exactly one nodal domain. So consider a
non-first eigenvector f . If |Ef | is sufficiently large, then since ‖f‖2 = 1, we can
find x1, . . . , xk ∈ Ef with |f(xi)| ≤ α for every i ∈ [k], where k and α are as in
the lemma. Hence |Ef | = Op(1) almost surely.

3.1 �∞ Bounds and Nodal Domains

A more careful analysis of the preceding arguments shows that almost surely
every eigenfunction of G(n, p) has at most O(1/poly(p)) exceptional vertices.
In this section, we show that if one can obtain a slightly non-trivial bound on
‖f‖∞ for eigenfunctions f of G(n, p), then almost surely all eigenfunctions of
such graphs have at most O(log 1

p ) exceptional vertices, and e.g. at most one
exceptional vertex for p ∈ [0.21, 0.5]. First, we pose the following.

Question 2. Is it true that, almost surely, every eigenfunction f of G(n, p) has
‖f‖∞ = o(1)?

A positive answer to this question yields more precise control on the nodal
domains of G(n, p).

Theorem 7. Suppose it holds almost surely that, for every eigenvector f of G ∼
G(n, p), we have ‖f‖∞ = o(1) as n → ∞, then almost surely every eigenvector
has at most kp = � 1

log2(1/(1−p))
� exceptional vertices.

In order to prove the preceding theorem, we need the following strengthening of
Theorem 6. In particular, we require that the subset of vertices S is allowed to
depend, in a limited way, on the randomness of G(n, p).

Theorem 8. For every p ∈ (0, 1
2 ], and ε > 0, there exist values α = α(ε, p) > 0

and β = β(p) > 0 such that the following holds. Suppose G ∼ G(n, p) and A is
the adjacency matrix of G. Suppose further that S ⊆ [n] is a (possibly) random
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subset of the vertices of G such that S is fixed by conditioning on the rows of A
indexed by a set T ⊆ [n] with |T | = o(n). Then for all sufficiently large n, with
probability at most exp(−βn) there exists a non-first eigenfunction f of G with
‖f |S‖2 < α‖f |V \T ‖2 for some S ⊆ V with |S| ≥ (1

2 + ε)n.

Proof. Let A be the adjacency matrix of G = (V,E), and let f : V → R be a
non-first eigenfunction of G with eigenvalue λ. Let S ⊆ V be a possibly random
subset with |S| ≥ (1

2 + ε)n. Let T ⊆ [n] be such that |T | ≤ o(n) and S is
determined after conditioning on the values of A in the rows indexed by T .
Assume, furthermore, that ‖f |S‖2 < α‖f |T ‖2.

Again, for every x ∈ S, the eigenvalue condition λf(x) = f(Γ (x)) implies
that ∣

∣
∣
∣
∣
∣

∑

y∈V \T
Axyf(y) +

∑

y∈T
Axyf(y)

∣
∣
∣
∣
∣
∣
≤ |λf(x)|.

Or equivalently,
∣
∣
∣
∣
∣
∣

∑

y∈V \T
(p−Axy)f(y)− p

∑

y∈V \T
f(y) +

∑

y∈T
Axyf(y)

∣
∣
∣
∣
∣
∣
≤ |λf(x)|.

Squaring the preceding inequality and summing over all x ∈ S \ T yields

∑

x∈S\T

∣
∣
∣
∣
∣
∣

∑

y∈V \T
(p−Axy)f(y)− p

∑

y∈V \T
f(y) +

∑

y∈T
Axyf(y)

∣
∣
∣
∣
∣
∣

2

≤ |λ|2 · ‖f |S‖22 (4)

If we define M = pJ−A, let B be the |S\T |×|V \T | sub-matrix of M consisting
of rows corresponding to vertices in S \T and columns corresponding to vertices
in V \ T , and let g = f |V \T

‖f |V \T ‖2
, then (4) implies that

‖Bg − cfwT ‖2 ≤ 2|λ| · α

where wT ∈ R|S\T | is a vector which depends only on the rows of A indexed by T
and cf ∈ R is some constant depending on f . Note that we have used the fact that
‖f |S‖2 ≤ α‖f |V \T ‖2. Furthermore, B and S are independent random variables
conditioned on T . From this point, the proof concludes just as in Theorem 6.

Proof (Proof of Theorem 7). Our goal is to show that almost surely |Ef | ≤ kp
for every non-first eigenfunction f with associated eigenvalue λ. Suppose, to
the contrary, that |Ef | > kp, and let U ⊆ Ef have |U | = kp + 1. Consider
Γ =

⋃
x∈U Γ (x). By properties of random graphs, it holds that

|Γ | ≥ [1− (1 − p)kp+1]n−Op(kp
√
n logn) ≥

(
1
2

+ εp

)

n−Op(
√
n logn),
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for some εp > 0. Thus for n large enough, we may assume that indeed |Γ | ≥(
1
2 + εp

)
n. Furthermore, as in Lemma 3, we have.

∑

x∈U

∑

y∈Γ (x)

|f(y)| ≤ (kp + 1)|λ| · ‖f‖∞ +O(kp logn). (5)

By Theorem 4, we have |λ| = Op(
√
n) almost surely, and thus we assume this

bound holds for the remainder of the proof.
Now let Γ ′ = {x ∈ Γ : |f(x)| ≤ c√

n
} for some c = c(n) > 0 to be chosen

momentarily. Using (5), we see that |Γ \ Γ ′| ≤ O(kp
√
n)|λ|·‖f‖∞
c . Under the as-

sumption |λ| · ‖f‖∞ = o(
√
n), we can choose c = o(1) so that |Γ \ Γ ′| = o(n), in

which case we may assume that for n large enough, |Γ ′| ≥
(

1
2 + ε′p

)
n for some

ε′p > 0. We also have ‖f |Γ ′‖2 = o(1), hence also ‖f |Γ ′‖2 = o(1) · ‖f |V \U‖2, since
‖f |U‖2 ≤ |U | · ‖f‖∞ = o(1).

Let y(n) = o(n) be an upper bound on the size of |Γ \ Γ ′|, and consider

U = {W ⊆ Γ : |W | ≥ |Γ | − y(n)}.

Then, we have |U| ≤
(
n

y(n)

)
, Γ ′ ∈ U , and the members of U can be enumerated

U = U1, U2, . . . in such a way that Ui is completely determined by the rows of
the adjacency matrix of G corresponding to the vertices in U . We can thus apply
Theorem 8 to each Ui to obtain, for some β = β(p) > 0,

Pr[∃U s.t. ‖f |Γ ′‖2 = o(1) · ‖f |V \U‖2

and

|Γ ′| ≥ (1
2 + ε′p)n] ≤

(
n

kp + 1

)(
n

y(n)

)

exp(−βn),

and the latter quantity is o(1) since y(n) = o(n).
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Abstract. We prove a lower bound for swapping the order of Arthur and
Merlin in two-round Merlin-Arthur games using black-box techniques.
Namely, we show that any AM-game requires time Ω(t2) to black-box
simulate MA-games running in time t. Thus, the known simulations of
MA by AM with quadratic overhead, dating back to Babai’s original
paper on Arthur-Merlin games, are tight within this setting. The black-
box lower bound also yields an oracle relative to which MA-TIME[n] �
AM-TIME[o(n2)].

Complementing our lower bounds for swapping Merlin in MA-games,
we prove a time-space lower bound for simulations that drop Merlin
entirely. We show that for any c <

√
2, there exists a positive d such that

there is a language recognized by linear-time MA-games with one-sided
error but not by probabilistic random-access machines with two-sided
error that run in time nc and space nd. This improves recent results that
give such lower bounds for problems in the second level of the polynomial-
time hierarchy.

1 Introduction

Interactive protocols extend the traditional, static notion of a proof by allowing
the verifier to enter into a conversation with the prover, wherein the goal is to
convince the computationally limited verifier of a claim’s validity in a probabilis-
tic sense. Such an allowance affords the power to prove membership in what we
believe to be significantly more difficult languages: Traditional polynomial-time
proof systems (with a deterministic verifier) capture the class of languages recog-
nizable in nondeterministic polynomial time, whereas interactive protocols have
been shown to capture the entire class of languages recognizable in polynomial
space [1, 2].

A particularly interesting subclass of interactive protocols is the class of
public-coin protocols in which the number of communication rounds between the
prover and the verifier is bounded by a constant— We know such protocols as
Arthur-Merlin games. For example, graph nonisomorphism, which is not known
to be in NP, has a two-round Arthur-Merlin game [3]. In fact, any language that
has an Arthur-Merlin game with a constant number of rounds can be decided
by an Arthur-Merlin game with only two rounds [4, 5]. Thus, there are at most
� Supported by NSF Career award CCR-0133693 and Cisco Systems Distinguished

Graduate Fellowship.

M. Charikar et al. (Eds.): APPROX and RANDOM 2007, LNCS 4627, pp. 449–463, 2007.
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two classes of languages recognized by Arthur-Merlin games, determined by the
order in which the parties act: Those recognized by two-round games where the
prover (Merlin) acts first, MA, and those recognized by two-round games where
the verifier (Arthur) acts first, AM.

We know that the latter type of game is at least as powerful as the former:
Any MA-game can be transformed into an AM-game recognizing the same lan-
guage. Thus, we can prove at least as many languages when Arthur goes first
as when Merlin goes first. This transformation does come at a cost, though: We
must allow for some polynomial factor more time to verify the prover’s claim in
the resulting AM-game than in the original MA-game. For example, in Babai’s
transformation [4], one first reduces the error probability of the MA-game to ex-
ponentially small (by taking the majority vote of parallel trials) and then applies
a union bound to show that, since the probability of proving an invalid claim is
so small, switching the parties’ order does not give the prover an unfair advan-
tage. Since the error reduction necessitates verifying a number of trials of the
MA-game that is linear in the number of bits sent by Merlin, this transformation
incurs a quadratic-time overhead in general.

1.1 Time Overhead and MA Versus AM

Motivated by recent results in time-space lower bounds for probabilistic machines
[6, 7], the main goal of this paper is to investigate the polynomial-time overhead
needed in any such MA-to-AM transformation, and, in particular, whether or
not it can be made subquadratic. We answer this question in the negative for
a broad class of simulations, encompassing all currently known transformations:
black-box simulations. Informally, a simulation is black-box if its outcomes are
determined only by some number of calls to a given subroutine; In the case
where we wish to simulate MA, this subroutine is the underlying predicate of an
arbitrary MA-game.

Theorem 1 (Main Result). For any time-constructible t, there is no black-
box simulation of MA-games running in time t by AM-games running in time
o(t2).

Babai’s simulation of MA by AM is indeed black-box, since it makes its decision
by the majority vote of a linear number of trials of the MA-game. The same holds
for all other known simulations, such as those using pseudorandom generators
[8] and those using extractors [9]. Thus, Theorem 1 implies that those with a
quadratic overhead (such as Babai’s) are optimal within this setting; No tweaking
or optimization of other known techniques—even by improvements to extractor
or pseudorandom generator parameters—can possibly yield better performance.

We point out that the black-box restriction on the lower bound is the best one
can hope for without solving a (seemingly) much more difficult open problem:
An unrestricted (non-black-box) version of Theorem 1 would imply a time hier-
archy for both MA and AM. For example, the known simulation of MA by AM
guarantees that any language with a linear-time MA-game also has a quadratic-
time AM-game; On the other hand, a non-black-box lower bound would provide
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such a language that has no subquadratic-time AM-game, witnessing a hierar-
chy for AM. Therefore, removing the black-box restriction would be at least as
hard as solving the long-standing open problem of proving a fully-uniform time
hierarchy for Arthur-Merlin games [10].

Theorem 1 allows the construction of a relativized world in which linear-time
MA-games can solve a language that subquadratic-time AM-games cannot.

Corollary 2. There exists an oracle relative to which there is a language recog-
nizable by a linear-time MA-game but not by any subquadratic-time AM-game.

As far as we know, these results are the first to compare the running-time of
MA-games to equivalent AM-games. Santha compared the power of MA and
AM by showing that there is an oracle relative to which AM is not contained in
MA [11], but this result does not concern the overhead of the opposite inclusion.
Canetti et al. gave a lower bound for black-box samplers [12], which implies
that the error reduction in Babai’s simulation (or in Goldreich and Zuckerman’s
simulation via extractors [9]) cannot be done more efficiently in this setting;
However, amplification is not the only black-box technique through which we
can simulate MA—for example, one can use pseudorandom generators [8]—so
this does not even suffice to lower bound all known techniques (while our result
does).

1.2 Time-Space Lower Bounds and MA Versus BPP

As mentioned in Sect. 1.1, the lower bound of Theorem 1 is motivated by our
investigation of lower bounds on the time required by a probabilistic, polynomial-
time verifier to solve problems without the help of the prover (i.e., BPP). Since
Boolean satisfiability is in NP but is widely held to require exponential time to
solve probabilistically (with bounded error), we strongly expect the verifier to
be severely handicapped by the prover’s absence. Despite this, a nontrivial lower
bound for satisfiability on probabilistic machines has eluded the community so
far.

However, progress has been made in proving concrete lower bounds for such
hard problems by restricting the machines solving them to use a small amount
of space. For example, a recent line of work gives a time lower bound of n1.759 for
deterministic machines to solve satisfiability in subpolynomial (no(1)) space [6,
13, 14]. However, for probabilistic machines, we only know of such lower bounds
for problems in the second level of the polynomial-time hierarchy: Diehl and
Van Melkebeek proved a time lower bound of n2−o(1) for subpolynomial-space
probabilistic machines to solve QSAT2, the problem of verifying the validity
of a quantified Boolean formula with one quantifier alternation [6]. We bring
these lower bounds closer to satisfiability by deriving time-space lower bounds
for simulations of MA by probabilistic machines.1

1 This was independently discovered by Emanuele Viola and Thomas Watson [personal
communication].
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Theorem 3. For every constant c <
√

2, there exists a constant d > 0 such that
there is a language recognized by a linear-time MA-game with one-sided error
that cannot be recognized by probabilistic machines with two-sided error running
in time O(nc) and space O(nd).

Theorem 3 follows as a corollary to the quadratic time-space lower bound for
QSAT2 on probabilistic machines by Diehl and Van Melkebeek. This is because
a time-nc probabilistic algorithm for linear-time MA-games yields a time-nc

2

probabilistic algorithm for linear-time in the second level of the polynomial-time
hierarchy; Thus, a lower bound of n2−o(1) for QSAT2 implies one of n

√
2−o(1) for

the class linear-time MA-games. The argument requires some additional techni-
cal steps to achieve the lower bound for one-sided error MA-games.

At first glance, it may seem strange that we don’t already have a lower bound
for SAT; After all, the lower bound for QSAT2 seems as though it should imply a
lower bound for SAT since the two are intimately connected. Indeed, this is true
in the deterministic setting: Similar to the above case of MA, a deterministic
lower bound of n2 for QSAT2 implies one of n

√
2 for SAT. However, this is not

necessarily the case when we consider probabilistic machines. The main culprit is
that the known arguments one uses to construct an algorithm for QSAT2 from
one for SAT utilize the simulation of MA by AM; By Theorem 1, this carries
at least a quadratic-time overhead by black-box techniques. In this manner, we
only know how to translate a probabilistic algorithm for SAT running in time nc

into one for QSAT2 running in time n2c2 ; Thus, an n2 lower bound for QSAT2

gives nothing for SAT. In order to obtain a lower bound for SAT on probabilistic
machines by this line of argument, we require either a stronger lower bound for
QSAT2 or a subquadratic simulation of MA by AM. Recalling Theorem 1, the
latter is impossible to achieve with any known simulation. As such, the class MA
is currently as close to NP as we can stretch the lower bound for QSAT2.

1.3 Techniques

The proof of Theorem 1 is inspired by recent work of Viola [7], where he proves a
quadratic-time lower bound for black-box simulations of BPP in the second level
of the polynomial-time hierarchy. Viola’s result involves a technique inspired by a
switching lemma of Segerlind, Buss, and Impagliazzo [15]—later improved upon
by Razborov [16]—which uses random restrictions that set very few variables.

The lower bound for BPP yields the interesting corollaries that black-box
simulations of standard two-sided error AM- or MA-games by one-sided error
games of the respective type require a quadratic-time overhead. This is because
the two-sided error games contain BPP, while the one-sided error games are
(by definition) contained in the second level of the polynomial-time hierarchy.
However, since the transformation to the second level requires a quadratic-time
overhead for both classes, this does not rule out a linear-overhead, black-box
simulation of MA by AM in the standard two-sided error model. Therefore,
something more is needed.

Our proof can be summed up as follows: First, we transform the setting from
AM-games into systems of disjunctive normal-form (DNF) formulas. Notice that
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we can view the behavior of an AM-game after the verifier sends his message
as a nondeterministic computation where each guess corresponds to a possi-
ble prover’s message. The black-box setting enforces that the outcome after
the nondeterministic guess is determined by some number of trials k(n) of the
underlying predicate of the MA-game being simulated. Thus, by the standard
polynomial-time hierarchy-to-circuit connection [17], the result of the game after
the verifier’s move can be viewed as the output of an exponential-size, depth-two
OR-of-ANDs circuit with bottom fan-in k— i.e., a k-DNF.

Next, we show that the ideas underlying the switching lemma of
Segerlind et al. [15, 16] and its adaptation by Viola [7] present us with a di-
chotomy for any such k-DNF: Either (i) its terms are spread out over the input
variables and it accepts very often on random inputs, or (ii) its terms are focused
on a small set of variables whose influence is therefore elevated above the rest.
Our proof takes advantage of this dichotomy by constructing two distributions
on the outcomes of MA-games: One that generates mostly “no” instances and
one that generates mostly “yes” instances. We show that, for small k, if a k-DNF
is of type (i), then it accepts on most instances of the “no” distribution; If the
k-DNF is of type (ii), then it depends (with non-negligible probability) on too
few variables to discern the difference between the “yes” and “no” distributions.

We conclude by showing that this means the verifier’s actions either put the
prover in a position to wrongfully convince the verifier of false claims or prevent
the prover from helping the verifier separate fact from fallacy with bounded
error— either case is a failure. Therefore, the number of trials k made by the
AM-game cannot be small, which leads to the lower bound.

2 Black-Box Lower Bound

This section begins by precisely defining the models and promise problems to
which our lower bound arguments apply.

2.1 Black-Box Model and the ∃-ApprMaj Problem

We define the class of languages recognizable by a time-bounded AM-game. For
any time bound t, we say that a language L ∈ AM-TIME[t] if there exists a
deterministic Turing machine V that takes three inputs and runs in time t(n)
such that for any x,

x ∈ L⇒ Pr
|z|=t(n)

[∃y ∈ {0, 1}t(n) such that V (x, y, z) = 1] ≥ 2/3 (1)

x /∈ L⇒ Pr
|z|=t(n)

[∃y ∈ {0, 1}t(n) such that V (x, y, z) = 1] ≤ 1/3, (2)

where n = |x| and the probabilities are taken over the uniform distribution.
Similarly, the class of languages recognized by MA-games bounded by time

t, MA-TIME[t], are the languages L where there is a deterministic, time t(n)
Turing machine V such that for any x,
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x ∈ L⇒ ∃y ∈ {0, 1}t(n) : Pr
|z|=t(n)

[V (x, y, z) = 1] ≥ 2/3 (3)

x /∈ L⇒ ∀y ∈ {0, 1}t(n) : Pr
|z|=t(n)

[V (x, y, z) = 1] ≤ 1/3. (4)

An AM- or MA-game has one-sided error if the acceptance probability in the
case that x ∈ L (i.e., the right-hand side of (1) or, respectively, (3)) is replaced by
1 in the above definitions. The resulting classes are referred to as AM-TIME1[t]
and MA-TIME1[t], respectively.

We often refer to the Turing machine V as the underlying predicate, the string
x as the problem input, y as the prover’s message, and z as the verifier’s message.
The machine model we consider is that which allows random-access to the input
and worktape (although our lower bounds hold for any fixed reasonable model),
and our results assume that any time-bounds involved are constructible.

We now precisely define the notion of a black-box simulation. This is meant
to capture any method of showing that MA is contained in AM by the design
of a “modular” AM-game, into which one can plug any MA-game’s underlying
predicate V as a subroutine (i.e., it is oblivious to the MA-games it simulates2).
Such a simulation uses only the results of queries to V to decide an answer and
is indifferent to the computational details of how these answers are obtained: It
should arrive at the right answer provided only that V satisfies the promise of an
MA-game given by conditions (3) and (4). Therefore, a black-box AM-simulation
of MA is an AM-game that solves the promise problem of whether or not a given
subroutine satisfies (3) or (4) on input x.

We cast this promise problem as one on the (exponentially long) characteristic
vector of the given subroutine on a fixed x. To do so, we first define the promise
problem ApprMaj corresponding to the acceptance condition of a probabilistic
computation with bounded error. This allows us to define the desired promise
problem ∃-ApprMaj as one on matrices, where each row corresponds to a possible
prover message, and each column corresponds to a possible verifier message.

Definition 4. ApprMaj is the promise problem on Boolean strings where

ApprMajY = {r | at least 2|r|/3 bits of r are set to 1},
ApprMajN = {r | at most |r|/3 bits of r are set to 1}.

∃-ApprMaj is the promise problem on Boolean matrices where

∃-ApprMajY = {M | at least one row of M belongs to ApprMajY },
∃-ApprMajN = {M | every row of M belongs to ApprMajN}.

Thus, the definition of an AM-game that efficiently black-box simulates MA
fitting our intuition is one that solves ∃-ApprMaj on appropriately-sized matrices
with few queries. We charge the simulation t time units for each query, where t

2 We point out the difference to a relativizing inclusion, where we can have a different
simulation for each oracle.
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is the running-time of the simulated MA-game, to capture the fact that a black-
box simulation must calculate the bits of the ∃-ApprMaj instance on the fly by
running trials of the MA-game.

Definition 5. We say that an AM-game black-box q-simulates MA-games run-
ning in time t(n) if there is a polynomial p(n) and an oracle machine S such
that for any input M ∈ {0, 1}2t×2t

,

M ∈ ∃-ApprMajY ⇒ Pr
|z|=p(n)

[∃y ∈ {0, 1}p(n) such that SM (y, z) = 1] ≥ 2/3

M ∈ ∃-ApprMajN ⇒ Pr
|z|=p(n)

[∃y ∈ {0, 1}p(n) such that SM (y, z) = 1] ≤ 1/3,

where S queries M in at most q(n) locations.
We say that an AM-game running in time t′(n) black-box simulates MA-

games running in time t(n) if there is an AM-game that black-box q-simulates
such MA-games for q = t′/t and p = t′.

We prove the lower bound of Theorem 1 by showing that any AM-game black-
box q-simulating MA-games running in time t must have q = Ω(t); Therefore,
the running time of such a simulation must be at least Ω(t2). In fact, the other
computational aspects of the AM-simulation, such as the bounds on the mes-
sage lengths or the running-time of the underlying predicate V , turn out to be
irrelevant to the number of required queries. Therefore, we simplify the situation
by proving the query lower bound via a lower bound on the bottom fan-in of
depth-3 circuits for ∃-ApprMaj (where by bottom fan-in we mean the fan-in of
the gates adjacent to the input literals). In particular, the circuits we consider
have the same correspondence to AM-games as standard constant-depth circuits
have to the polynomial-time hierarchy [17].

Definition 6. An AM-circuit is a depth-3 circuit with literals as inputs (vari-
ables or their complements) whose output gate is an oracle gate for ApprMaj and
each depth-2 subcircuit is an OR of AND’s (i.e., a DNF); Furthermore, we are
guaranteed that the input to the ApprMaj gate formed by the depth-2 subcircuits
on any input X is either in ApprMajY or ApprMajN .

The aforementioned connection to AM-games is given by the following
proposition.

Proposition 7. If an AM-game black-box q-simulates MA-games running in
time t, then there is a family of AM-circuits with bottom fan-in q computing
∃-ApprMaj on matrices of size 2t × 2t.

2.2 Proof of the Main Result

Proposition 7 allows us to prove Theorem 1 by showing a lower bound on the
bottom fan-in of AM-circuits for ∃-ApprMaj.
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Theorem 8. Any AM-circuit solving ∃-ApprMaj on 2t×2t matrices has bottom
fan-in Ω(t).

As outlined in Sect. 1.3, the main idea behind the proof of Theorem 8 stems
from an analysis of the k-DNF subcircuits of an AM-circuit on different input
distributions. For an AM-circuit with bottom fan-in k to compute ∃-ApprMaj,
Definition 6 requires most of its k-DNF subcircuits to accept when the input is
drawn from a distribution producing mostly “yes” instances of ∃-ApprMaj and
most to reject when the input is drawn from a distribution producing mostly
“no” instances. By a union bound, a nontrivial fraction of the subcircuits output
the correct answer most of the time for both the “yes” and “no” distributions.
We construct specific “yes” and “no” distributions such that any k-DNF with
k = o(t) cannot do both at the same time; Therefore, such an AM-circuit for
∃-ApprMaj cannot exist.

We begin by defining the distributions producing mostly “yes” instances and
“no” instances of ∃-ApprMaj that we use to prove the lower bound.

Definition 9. Let Dn×mN be the distribution on n × m matrices obtained by
assigning each entry independently to 1 with probability 1/6 and 0 with probability
5/6.

Furthermore, let Dn×mY be the distribution on n × m matrices obtained by
choosing one row uniformly at random and setting each entry within this row to
1, while the remaining entries are set as in Dn×mN .

When n and m are clear from context, we simply use DY and DN .

Notice that the distribution DY always generates instances in ∃-ApprMajY ,
while DN generates instances in ∃-ApprMajN with high probability when m =
Ω(log n) (by the Chernoff bound).

Proposition 10. There exists a constant α > 0 such that for large enough n
and m ≥ α logn,

Pr
M∈Dn×m

Y

[M ∈ ∃-ApprMajY ] = 1 and Pr
M∈Dn×m

N

[M ∈ ∃-ApprMajN ] ≥ (1− 1/n).

To analyze the relationship between the probability that a given k-DNF ϕ ac-
cepts on DY and the probability that it accepts on DN , we introduce a “lazy”
procedure, Eval, that tries to evaluate ϕ(M) (see Fig. 1). Given ϕ, input M ,
and a parameter s, Eval attempts to reduce the problem of evaluating a k-DNF
to that of evaluating a (k − 1)-DNF by querying the values of a set of variables
that cover the terms of ϕ (a cover, or hitting set, of a DNF ψ is a subset Γ of
the variables such that each term of ψ contains at least one variable in Γ ). Eval
then restricts ϕ appropriately to obtain a (k − 1)-DNF ϕ′, whose evaluation on
the remaining variables is the same as the evaluation of ϕ, and recurses. How-
ever, Eval is “lazy” in the sense that it refuses to query more than s variables
at each step; If at any step it becomes impossible to achieve the above term-size
reduction in such few queries, Eval simply gives up and outputs the current sub-
formula. Thus, Eval has three possible outputs: 0, 1, or a restriction of ϕ that
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has a large minimum cover. We point out that if Eval outputs 0, then ϕ(M) = 0,
and if Eval outputs 1, then ϕ(M) = 1; However, the converse does not hold in
either case due to Eval’s laziness.

Procedure Eval(ϕ, M, s)
If ϕ ≡ 0, output 0.
Else if ϕ ≡ 1, output 1.
Else if every cover of ϕ has size greater than s, output ϕ.
Else
Γ ← a cover of ϕ of size at most s.
Query the variables in Γ to obtain the partial assignment Γ (M).
ϕ′ ← ϕ|Γ (M).
Eval(ϕ′, M, s).

Fig. 1. The “lazy” procedure, Eval

Our proof requires the cover size s to balance two desires: (i) We need s large
enough so that if Eval outputs a formula ψ, then ψ is almost certainly satisfied by
an input from DN , and (ii) we need s small enough so that Eval has not queried
many variables when it arrives at a 0/1 answer. Property (i) ensures that the
non-Boolean output case of Eval cannot happen very often for ϕ a k-DNF in an
AM-circuit computing ∃-ApprMaj on DN , so the output of Eval(ϕ,M, s) almost
always matches the evaluation of ϕ(M) when M ∈ DN . Property (ii) guarantees
that the event of Eval(ϕ,M, s) answering either 0 or 1 depends very weakly on
most rows, which is not enough for Eval to distinguish the one-row difference
between samples from DY and DN . Therefore, if ϕ behaves well on DN and
outputs 0 most of the time, then Eval(ϕ,M, s) not only outputs 0 most of the
time for M ∈ DN by (i), but also for M ∈ DY by (ii), so ϕ rejects too often
on DY .

We first quantify the effect of property (i) on the correctness of Eval on DN .

Lemma 11. If ϕ is a k-DNF, then

Pr
M∈DN

[Eval(ϕ,M, s) �= 0] ≤ PrM∈DN [ϕ(M) = 1]

1− e−
s

k6k
.

The proof begins by showing that any DNF ψ output by Eval must have many
variable-disjoint terms due to its large cover size. These terms present too many
independent events that must align in order for ψ to reject reliably on DN .

Lemma 12. Let ϕ be a k-DNF. Then

Pr
M∈DN

[ϕ(M) = 0|Eval(ϕ,M, s) /∈ {0, 1}] ≤ e−
s

k6k .

Proof. Suppose that Eval outputs some formula ψ. Notice that ψ �≡ 0 is a re-
striction of ϕ, so it is a k′-DNF for k′ ≤ k. Thus, a term of ψ is satisfied by
DN with probability at least 1/6k. We claim that ψ must have more than s/k
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variable-disjoint terms Γ . The lemma follows if this is the case, since the events
that a term in Γ is satisfied are independent, so

Pr
M∈DN

[ψ(M) = 0] ≤ Pr
M∈DN

[Each clause in Γ is not satisfied]

≤ (1− 1/6k)s/k ≤ e−
s

k6k .

To prove the claim, consider a maximal set Γ of variable-disjoint terms of ψ.
There are at most |Γ |k variables in these terms, and they must form a cover
of ψ; If they do not, then there is a term t that is not covered by the variables
of Γ , i.e., t does not contain any of the variables in Γ . Thus, Γ ∪ {t} is a set
of variable-disjoint terms, which contradicts the maximality of Γ . Furthermore,
since ψ is a formula output by Eval, it cannot have a cover of size at most s.
Therefore, we have that |Γ |k > s, so |Γ | > s/k as claimed. ��

Thus, since the formulas on which Eval does not give a 0/1 output are very
likely to accept DN by Lemma 12, Eval cannot give such an output often on a
formula ϕ that largely rejects DN . Therefore, Eval must correctly output 0 for
ϕ on most of these instances despite its laziness, yielding Lemma 11.

We now turn to quantify the effect of property (ii) on the relationship between
Eval’s behavior on DY and DN .

Lemma 13. Let ϕ be a k-DNF. Then for any δ ≥ sk
n ,

Pr
M∈DY

[Eval(ϕ,M, s) = 0] ≥ (1− sk

δn
)
(

Pr
M∈DN

[Eval(ϕ,M, s) = 0]− δ
)

.

Proof. Recall that when the formula ϕ passed to Eval has small cover size, Eval
reduces the term size of ϕ by one to obtain ϕ′ (since Γ is a cover of ϕ). Therefore,
Eval can make at most k recursive calls on a k-DNF. At each such call, Eval
queries at most s variables, for a total of at most sk variables queried during
the entire run. Different outcomes for the sample M cause Eval to form different
subformulas ϕ′ with (possibly) different covers, so the variables queried by Eval
follow some probability distribution determined by the input distribution. We
show that most variables, and in fact most rows, are queried with very small
probability.

For a fixed k-DNF ϕ, s, and δ > 0, define B as

B
.= {i| Pr

M∈DN

[Eval(ϕ,M, s) queries row i] ≥ δ}, (5)

the set of rows queried by Eval with probability at least δ. Since any individual
run of Eval queries at most sk variables, we have that

∑

i

Pr
M∈DN

[row i is queried by Eval(ϕ,M, s)] ≤ sk.

Therefore, B cannot be too large:

|B| ≤ sk

δ
. (6)
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So (5) and (6) tell us that, for most rows i, Eval queries a variable in row i with
very small probability when δ > sk

n .
We would like to isolate the cases of DY that choose a row outside of B to

set to 1. Towards this end, define Di
Y to be the distribution on n×m matrices

where each entry in row i is assigned 1 and each other entry is assigned 0 with
probability 5/6 (and 1 otherwise). Then sampling M from DY is equivalent to
choosing i ∈ {1, . . . , n} at random and sampling M from DiY . This allows us to
divide the probability that Eval rejects on inputs from DY into cases by row.
Discarding the rows in B, we have

Pr
M∈DY

[Eval(ϕ,M, s) = 0] ≥
∑

i/∈B
Pr

M∈Di
Y

[Eval(ϕ,M, s) = 0]/n. (7)

Now consider how Eval(ϕ,M, s) differs when M is drawn from DN and when
it is drawn from DiY where i /∈ B. Notice that the only time that Eval queries
variables which are distributed differently in DN and DiY is when it queries a
variable in row i. We know that this happens with probability less than δ under
DN by (5); This is also the case under DiY , since the distribution is identical to
DN outside of row i. Thus, the outcome of Eval on DN and DiY can be different
on at most a δ fraction of inputs for i /∈ B,

Pr
M∈Di

Y

[Eval(ϕ,M, s) = 0] ≥ Pr
M∈DN

[Eval(ϕ,M, s) = 0]− δ. (8)

The lemma follows by combining (6), (7), and (8). ��

The two properties captured by Lemma 11 and Lemma 13 formalize the contra-
dictory dichotomy that allows us to prove Theorem 8.

Proof (of Theorem 8). Let n = m = 2t and C be an AM-circuit with bottom fan-
in k purported to solve ∃-ApprMaj. Without loss of generality, we assume that
9/10 of C’s DNF subcircuits accept on M ∈ ∃-ApprMajY while 9/10 reject on
M ∈ ∃-ApprMajN—this can be achieved by näıve amplification while increasing
the bottom fan-in by only a constant factor.

Consider sampling M from DY or DN and a random depth-2 subcircuit ϕ
connected to the output gate of C. Then by Proposition 10,

Pr
M∈DY ,ϕ∈UC

[ϕ(M) = 1] ≥ 9
10

and Pr
M∈DN ,ϕ∈UC

[ϕ(M) = 0] ≥ 9
10

(1− 1
n

) > 5/6

for large enough n. Therefore, the probability that a random subcircuit is correct
on most instances of DY is greater than 1/2 (and similarly for DN ):

Pr
ϕ∈UC

[ Pr
M∈DY

[ϕ(M)=1] > 2/3] > 1/2 and Pr
ϕ∈UC

[ Pr
M∈DN

[ϕ(M)=0] > 2/3] > 1/2.

Thus, by a union bound, there is a k-DNF ϕ∗ where

Pr
M∈DY

[ϕ∗(M) = 0] ≤ 1/3 and Pr
M∈DN

[ϕ∗(M) = 1] ≤ 1/3. (9)
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Our proof proceeds by showing that such a k-DNF ϕ∗ cannot exist when
k = o(log n). By Lemma 11, we have that

Pr
M∈DN

[Eval(ϕ∗,M, s) = 0] ≥ 1− 1/
(
3(1− e−

s

k6k )
)
. (10)

Plugging (10) into Lemma 13 gives

Pr
M∈DY

[Eval(ϕ∗,M, s) = 0] ≥ (1− sk

δn
)

︸ ︷︷ ︸
(∗)

⎛

⎜
⎝1− 1/

⎛

⎜
⎝3 (1− e−

s

k6k )
︸ ︷︷ ︸

(∗∗)

⎞

⎟
⎠− δ

⎞

⎟
⎠ . (11)

We claim that for small enough k, we can set δ and s so that the right-hand side
of (11) is at least 1/2. Since Eval outputs 0 no more often than ϕ∗(M) = 0, this
contradicts that PrM∈DY [ϕ∗(M) = 0] ≤ 1/3 (from (9)), completing the lower
bound for such k.

All that remains is to find the largest k so that we can choose δ and s ap-
propriately. In order for the right-hand side of (11) to be large enough, we need
(∗) and (∗∗) to be close to 1 and δ to be small. The condition on (∗) requires
s = O( δnk ), while the condition on (∗∗) requires s = Ω(k6k). Choosing δ to be
a small constant, say, δ = 1/100, we see that such a setting is possible when
k26k = O(n)— i.e., when k = c logn for small enough c. ��

2.3 Remarks on Theorem 1

We now highlight a few details of the preceding analysis. First, notice that the
time complexity of the simulated MA-game’s verification procedure V enters into
the running-time of the AM-simulation only when accounting for the resources
needed to compute each query in the black-box setting of Definition 5— The cir-
cuit lower bound of Theorem 8 depends solely on the dimensions of the instance
of ∃-ApprMaj, which correspond to the number of bits sent by the prover and
verifier in the MA-game.

Additionally, notice that the only place that the number of columns m in
the instance of ∃-ApprMaj (corresponding to the number of bits flipped by the
verifier in an MA-game) enters into the proof is in Proposition 10, where a lower
bound on m is needed to ensure that the distribution DN behaves properly.
Thus, Theorem 8 actually gives a lower bound of Ω(n) for n ×m instances of
∃-ApprMaj, where m ≥ α logn for α as defined in Proposition 10. This implies
that the black-box lower bound of Theorem 1 holds even when simulating MA-
games where the verifier flips very few bits.

The above two observations show that the crucial factor in determining the
number of queries needed by an AM-game black-box simulating MA is the num-
ber of bits sent by the prover. We point out that this behavior is shared by the
known simulations of MA by AM (such as Babai’s).

Furthermore, the instances produced by DY satisfy an even stricter promise
than ∃-ApprMajY , since every bit in some row is set to 1. This corresponds
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to the promise on the “yes” side fulfilled by MA-games with one-sided error.
Therefore, Theorem 1 holds even for simulations of the weaker class of time-t
MA-games with one-sided error.3

Finally, we take a moment to compare our techniques to those of Viola’s [7].
Our approach is similar in that it uses ideas inspired by recent small-restriction
switching lemmas [15, 16] to show that k-DNF’s behave similarly enough on
certain “yes” and “no” instances of the problem in question. In the setting of
normal depth-3 circuits that Viola considers (for the problem ApprMaj), it is
sufficient to give an argument that explicitly constructs a “yes” instance rejected
by one particular depth-2 subcircuit (in the case where the top gate is AND)
assuming that the subcircuit behaves correctly on “no” instances. However, one
incorrect subcircuit is insufficient to fool an AM-circuit (as required by our
setting), since the top gate only rejects if most subcircuits reject. Our approach
addresses this issue via the aforementioned probabilistic construction of the bad
“yes” instances. By producing instances that are independent of the specific
subcircuits they are designed to fool, we simultaneously violate many more of
them than we could by an explicit construction.

The bounded error of the AM-circuit setting also leads to a quantitatively
better statement of the lower bound than in the Viola’s standard depth-3 setting:
The latter result states that no depth-3 circuit can compute ApprMaj with small
bottom fan-in unless it is very large; In contrast, Theorem 8 states that no AM-
circuits with small bottom fan-in can compute ∃-ApprMaj, regardless of their
size.

3 Future Work

The most compelling open problem related to this work is determining whether
or not a subquadratic-overhead simulation of MA by AM is at all possible—
i.e., to either prove a general quadratic lower bound for the overhead of any
simulation of MA by AM or to use some non-black-box technique to actually
achieve a subquadratic AM-simulation. Either case yields something interesting:
In the former case, one gets a hierarchy for MA and AM (see Sect. 1.1); In the
latter case, one makes progress towards time-space lower bounds for SAT on
probabilistic machines (see Sect. 1.2).

Furthermore, we ask if there are any common restrictions on the verifier that
a non-black-box approach could take advantage of to allow a subquadratic sim-
ulation of a restricted class of MA-games. Especially interesting is the case of
a space-bounded verifier: A subquadratic AM-simulation that exploits the ver-
ifier’s space bound could also be used to achieve time-space lower bounds for
SAT on probabilistic machines.

Another direction is to extend the black-box lower bound to relationships
between other complexity class inclusions where the best known simulation has
3 Since the usual definition of an MA-game has two-sided error and applies the same

bound to the message bits and the time bound of the verification procedure, we
chose not to draw any of these distinctions in Theorem 1.
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quadratic overhead. In particular, inclusions that proceed by amplifying the
error of a probabilistic computation to exponentially small seem particularly
amenable, since we already know that the amplification cannot be done faster
in a black-box manner [12]. We propose finding black-box lower bounds for the
overhead of inclusions such as MA ⊆ PP, ⊕ · BPP ⊆ BP · ⊕P, etc. The latter is
particularly interesting, since it applies to the time-overhead of the collapse of
the polynomial-time hierarchy to BP ·⊕P in Toda’s Theorem [18]; It is currently
unknown how to achieve such a collapse with sublinear factor increase in time
per alternation, which could yield new time-space lower bounds for counting
problems.
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Substructures in Bipartite-Graph-Like
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Abstract. We investigate the property of k-uniform k-partite (directed)
hypergraphs with colored edges of being free of a fixed family of forbidden
induced substructures. We show that this property is not testable with
a number of queries polynomial in 1/ε , presenting proofs for the case
of two colors and k = 3, as well as the case of three colors and k = 2
(edge-colored bipartite graphs). This settles an open question from [1],
implying that the polynomial testability proof for two colors and k = 2
cannot be extended to these structures.

1 Introduction

The domain of combinatorial property testing deals with promise problems which
are relaxed versions of decision problems: One is given a property of combinato-
rial structures of a certain type, and for such a structure, must determine using
as few queries as possible whether the structure satisfies the property or is far
from satisfying it. The distance of structures from satisfying a property is mea-
sured by the fraction ε of bits in the representation of the structure that one
must modify in order to reach a structure satisfying the property. For example,
a graph with n vertices is ε-far from a property of graphs if one must add or
remove at least ε

(
n
2

)
edges to obtain a graph satisfying the property. A prop-

erty is said to be testable if one can solve the above-mentioned promise problem
with probability at least 2/3 by querying only a constant number of places in
the input structure, which is independent of the size of the structure and may
depend only on the distance parameter ε of the relaxed decision problem.

The study of property testing began with the paper of Blum, Luby and Ru-
binfeld [2]; the notion of property testing was first given a formal definition by
Rubinfeld and Sudan in [3]. Goldreich, Goldwasser and Ron first investigated
properties of combinatorial structures, and specifically testing properties in the
dense model for graphs, in [4]. Surveys of results in the field can be found in [5]
and [6].

When considering a testable property, one wishes to tightly bound its query
complexity q(ε), that is the dependence of the number of queries necessary for
testing an input for the property, on the distance parameter ε.
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Many graph properties have been shown to be testable using the celebrated
Szemerédi Regularity Lemma ([7]; see [8, Chapter 7] for a detailed exposition of
the lemma, its proof and an example of its use). Applying it, one can partition
large enough graphs in a way conductive to proving the testability of many
types of properties (see [9] and more recently [10]); these upper bounds apply,
essentially, to bipartite graphs as well. The drawback of using the lemma is the
severely high dependence on the distance parameter ε of the number of queries
necessary for testers – a tower function in 1/ε or worse. Recently, the Regularity
Lemma has been extended to the case of k-uniform hypergraphs, implying similar
upper bounds for testing non-induced sub-hypergraph freeness and (see [11], [12],
[13] and the discussion in [14]); Ishigami, in the yet-unpublished [15], presents
a different variant of a hypergraph regularity lemma which may allow for the
application of the bounds also to testing induced sub-hypergraph freeness. There
is a significant gap between the upper bounds on the number of queries in these
results, and known lower bounds on testing forbidden substructures, which have
a mild super-polynomial dependence on 1/ε (see below for details).

Less abundant for properties of this type are hardness results; thus there is
often a significant gap between the best known lower and upper bounds for the
query complexity of a property (see below).

In [1], Alon, Fischer and Newman prove that every property of bipartite graphs
characterized by a set of forbidden induced subgraphs is polynomially testable
(improving upon a result from [16]). Two open questions put forth at the conclu-
sion of [1] are whether similar results may be obtained for graphs with colored
edges, or for structures of higher dimensions.

In this article we will add to the known lower bound results on testing by
considering the case of edge-colored bipartite graphs and the case of k-partite
k-hypergraphs. We will prove a lower bound result for testing properties of such
structures characterizable by finite sets of forbidden substructures.

These types of properties, which are closed under the taking of induced sub-
structures, have known positive results regarding their testing in graphs (e.g.
[10], although [9] suffices for the types of properties we consider); such results
seem to extend naturally to colored graphs, and with the use of the versions of
the regularity lemma for hypergraphs (mentioned above) extend to hypergraphs
as well. Thus it is of interest to provide lower bounds for testing such properties,
even if the bounds are not known to be tight.

Alon proved in [17] that it is impossible to test a graph for containing a copy of
some (not necessarily induced) subgraph with polynomially-many queries in 1/ε ,
if this subgraph is non-bipartite, e.g. an odd cycle. Alon and Shapira extended
this result in [14], finding super-polynomial lower bounds for testing digraphs
for containing copies of certain other digraphs (e.g. directed cycles of length 3
or more). In [18], Alon and Shapira proved that the property of general (non-k-
partite) k-uniform hypergraphs of being free of a forbidden induced hypergraph
is not, in most cases, polynomially testable. The ideas of the constructions in
[17] and [14] will be of use to us in proving our two lower bounds.
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This paper is organized as follows. In Section 2 we provide exact definitions
of our terms, discuss the relations between matrices, bipartite graphs, k-graphs
and tensors, and recall results regarding canonical testing. In Section 3 we state
our two lower-bound results, for colored bipartite graphs and for k-graphs, and
give a sketch of their proof. The two theorems, Theorem 1 and Theorem 2, are
proven in Section 4 and Section 5 respectively.

2 Preliminaries

2.1 ‘Generalizations’ of Bipartite Graphs

A matrix over {0, 1} can be thought of as a bipartite graph G = (U, V,E), with
U = {u1, . . . , un}, V = {v1, . . . , vn} and E(G) = {(ui, vj) ∈ U×V |M(i, j) = 1}
— that is, a bipartite graph whose vertices are ordered, with edges between the
pairs whose corresponding matrix cell has value 1.

A colored bipartite graph is a tuple G = (U, V, col), where col is a function
assigning to each edge one out of a finite set of colors {0, . . . , σ − 1}. We assume
w.l.o.g.that colored bipartite graphs have the complete set of edges U ×V , since
we can interpret one of the edge colors as ‘no edge’. We shall refer to graphs
for which the set of colors is of cardinality σ as σ-colored; specifically, simple
bipartite graphs are considered to be 2-colored.

A k-uniform k-partite (uncolored) hypergraph is a tuple G = (V1, . . . , Vk, E)
with the Vi being sets of vertices and E ⊆

∏k
i=1 Vi the set of the hyperedges.

We shall refer to k-uniform k-partite hypergraphs as k-graphs for short.
A σ-colored bipartite graph G can also be thought of as an adjacency matrix

M of dimensions (|V1|, |V2|), with cell values M(i, j) = col(i, j) ∈ {0, . . . , σ − 1}.
Similarly, a k-graph can be thought of as a k-dimensional adjacency tensor T
over {0, 1}, in which T (v1, . . . , vk) = 1 if (v1, . . . , vk) ∈ E(G) and 0 otherwise.

The conceptual similarity between colored matrices and colored bipartite
graphs, as well as between binary k-dimensional tensors and k-graphs will be
used implicitly throughout the sections discussing these structures. However,
these are not equivalent structures: The coordinates of matrices and tensors are
ordered. Thus, when we refer to ‘submatrices’ of a bipartite graph’s adjacency
matrix, we are still referring to subgraphs — the submatrix coordinates may be
selected irrespectively of the order of coordinates in the adjacency matrix, i.e.
we allow row and column permutations of the submatrices. The same applies to
k-graphs and their ‘subtensors’.

2.2 Properties and Testers

A property P of (colored) bipartite graphs is a set of such graphs which is
closed under graph isomorphism. Similarly, a property of matrices, considered
as (colored) bipartite graph adjacency matrices is a set of matrices closed under
permutations of the coordinates along each of the two axes.

A bipartite graph G with n vertices in each part is ε-far from satisfying a
property P if G differs from every G′ ∈ P with n vertices in each part by at
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least εn2 edges, i.e. One needs to modify the values of at least εn2 cells in its
corresponding colored matrix to reach the colored matrix corresponding to G′.

The notions of a property and of ε-distance are defined in a similar fashion
also for (uncolored) k-graphs — we consider k-graphs of leg n, that is, with
dimensions (n, n, . . . , n), and the k-graph or the tensor is said to be ε-far from
satisfying the property if one must modify (in this case, add or remove) more
than εnk of the possible hypergraph edges or of the tensor cells.

An ε-tester for a property P of colored bipartite graphs is an algorithm which,
for a graphG with n vertices, is given the leg n, makes a certain number of queries
of the colors of edges — queries of the type col (v1, v2) for some pair (v1, v2) –
and distinguishes with high probability (e.g. 2/3 ) between the case of G being
in P and the case of G being ε-far from P . The number of queries may only
depend on ε. Testers for k-graph properties are defined similarly — a tester is
given the leg n (the size of each of the k vertex sets), is able to make queries
of whether (v1, . . . , vk) ∈ E or not, and must distinguish as described above
between k-graphs in P and k-graphs which are ε-far from P .

An ε-tester is one-sided if it identifies all members of P as such with proba-
bility 1, and all ε-far graphs (resp. matrices) as such at least with some constant
non-zero probability (e.g. 2/3).

A property P is polynomially testable if there exists some polynomial p(x)
such that for every ε, there exists an ε-tester for the property P making p(1/ε)
queries.

3 Overview of the Results

3.1 A Lower Bound for Colored Bipartite Graphs

Theorem 1. There exists a 2-colored bipartite graph H with two vertices per
part, such that an ε-tester of 3-colored bipartite graphs for being free of having
H as an induced subgraph, performs no less than (c/ε)c·log( c/ε ) queries for some
global constant c — provided the tester is either one-sided, or works indepen-
dently of the size of the input.

We note that failure of the bound to apply to two-sided error testers whose oper-
ation might depend on the size of the input is not merely a technical issue specific
to our results; see Subsection 5.2 below for some more discussion regarding this
point.

Our argument for proving this theorem is based on the construction of a
hard-to-test bipartite graph, as per the following:

Lemma 1. There exists a (2, 2) bipartite graph F such that for every ε and for
every n > 16(c/ε )−c·log( c/ε ), there exists a 3-colored bipartite graph G which is
ε-far from being free of F , and yet the fraction of (2, 2) subgraphs of G which
are copies of F is no more than (c/ε )−c·log( c/ε ) for some global constant c.

This lemma will be proven by a sequence of constructions described in the fol-
lowing:
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Construction Task List

T1. A colored matrix can represent 4-partite digraphs, with the representation
preserving the distributions of induced substructures in the digraph. Specif-
ically, submatrices of the representation will correspond to induced sub-
graphs of the digraphs on certain vertices.

T2. One may construct 4-partite digraphs which have only four ordered pairs
of vertex sets between which edges are present (four ‘edge layers’), and in
which induced directed 4-cycles are super-polynomially rare.

These constitute a proof of a rougher, weaker version of Lemma 1: For one, we
will have used many more than 3 colors — the representation of a digraph will
not be at all terse; also, we will have used numerous forbidden submatrices, as
a submatrix of the digraph representation will also contain information about
edges other than those constituting a 4-cycle. We will then proceed to refine our
construction:

T3. One may construct digraphs as described in Task List Item 2, with the ad-
ditional constraint that the first three edge layers are identical.

T4. One may construct 4-partite digraphs as described in Task List Item 3, with
the additional constraint that the edge layers are symmetric with respect
to a relevant ordering of the vertices in each part.

T5. The construction for Task List Item 4 can be shown to satisfy the additional
constraint that no two vertices are connected in all four edge layers.

These refinements of the construction will reduce the number of possible edge
configurations of two vertex indices j1, j2 to just three; consequently, we will only
need 3 colors for the matrix representation of the digraph. It will be shown that
the existence of a 4-cycle involving vertices (j1, j2, j3, j4) determines precisely
the edge configuration for each of the pairs (j1, j2), (j2, j3), (j3, j4) and (j4, j1).
This in turn implies that we do not require more than one forbidden matrix (up
to permutations) to constrain the represented 4-partite digraphs to be cycle-free.
Lemma 1 will follow.

To use the construction of Lemma 1 in the proof of Theorem 1, we will finally
argue that a tester cannot essentially do much better than sample submatrices
of the matrix and check them for forbidden submatrices within the sample.

3.2 A Lower Bound for k-Graphs and Tensors

Theorem 2. There exists a 3-graph H with leg 2, such that every ε-tester of
3-graphs for being free of copies of H as an induced 3-graph, performs no less
than (c/ε )c·log( c/ε ) queries for some global constant c — provided that the tester
is either one-sided, or works independently of the size of the input.

4 The Lower Bound for Colored Bipartite Graphs

In this section we present the details of the proof of Theorem 1. We will be
limiting our digraphs to have edges only between certain pairs of subsets of the
vertices. Specifically,
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Definition 1. A cyclic k-partite digraph G = (V1, . . . , Vk, E) is a k-partite di-
graph in which every edge in E extends from Vi to V(imod k)+1 for 1 ≤ i ≤ k.

4.1 Task List Item 1: Representing Cyclic k-Partite Digraphs by
Colored Matrices

The edges of a cyclic k-partite digraph can be decomposed into k bipartite graphs
between the ordered pairs of cycle-consecutive parts. The edge relation between
each of these ordered pairs can be seen as an n×n binary adjacency matrix (with
n being the number of vertices in each part), in which a cell is set to 1 when an
edge is present and to 0 otherwise. This leads to the following representation:

Definition 2. Let G = (V1, . . . , Vk, E) be a cyclic k-partite digraph, with k ver-
tex sets of size n each, where Vi={vi,1, . . . , vi,n}. The colored matrix representa-
tion of G, denoted CM(G), is the matrix of leg n, each of whose cells has one of
22k colors, corresponding to all possible combinations of the following 2k binary
values: For M = CM(G), each cell M(j1, j2) has a distinct color bit for each one
of the k edges (v1,j1 , v2,j2), . . . , (vk−1,j1 , vk,j2 ), (vk,j1 , v1,j2), and another bit for
each one of the k edges (v1,j2 , v2,j1), . . . , (vk−1,j2 , vk,j1 ), (vk,j2 , v1,j1). Each bit is
set to 1 if its respective edge exists, and to 0 otherwise.

The forbidden submatrices. Our lower bound construction will utilize cyclic
4-partite digraphs which are far from not containing a directed square (a 4-
cycle), yet have few copies of it. We shall choose a directed cycle of length four,
and consequently set henceforth k = 4. The reason for this choice is that four is
the first even length of such a hard-to-test subgraph, as has been described in
[14]. Our matrix representations CM(·) therefore have cells in 22k = 256 possible
colors. We demonstrate later how the number of colors can be progressively
reduced to the minimum of 3.

A choice of a cell (j1, j2) yields information about the edges in all four layers;
choosing a 2× 2 submatrix with coordinates (j1, j3)× (j2, j4) yields information
about several directed 4-cycles, one of which is C = (v1,j1 , v2,j2 , v3,j3 , v4,j4).
We note that for every 4-cycle of G there is a choice of j1, . . . , j4 such that
C as defined above corresponds to that cycle. Thus we only need to forbid
2× 2 matrices that witness the existence of the four edges of the directed cycle
C associated with a given submatrix. There are many possible colored 2 × 2
submatrices witnessing the existence of their C, since the existence of any of the
rest of the (k/2)2 · 2k− k = 28 edges represented in the submatrix cells does not
affect the presence of C. Hence, the forbidden submatrices are the 228 matrices
in which the four color bits for the edges of C are set.

Note that in some cycles of G it may be the case that j1 = j3 and/or j2 = j4.
We refer to such cycles as degenerate; our construction and our arguments below
will only involve graphs with no degenerate cycles.

For every copy of a (non-degenerate) 4-cycle in G, there exists exactly one
leg-2 forbidden submatrix in CM(G) (recall that we are disregarding row and
column permutations). This is true despite the fact that it is possible to infer
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the existence of a 4-cycle also from other submatrices of CM(G). In other words,
a selection of a leg-2 submatrix of CM(G), and a check of whether its C exists,
corresponds to a selection of four vertices in the four parts of G and a check of
whether they form a (non-degenerate) cycle. With n = |Vi| as the size of each
Vi, There are

(
n
2

)2 such possible choices.

4.2 Task List Item 2: Construction of a Hard-to-Test Matrix

Definition 3. The trivial integer solutions to the equation x1 + x2 + . . .+ xr =
r · xr+1 are those in which all of x1, . . . , xr are equal.

Lemma 2 ([17, Lemma 3.1] and [14, Lemma 6.1]). For every fixed integer
r ≥ 2, and for every positive integer m, there exists a subset X ⊆ {1, . . . ,m},
with size at least m

/
exp
(
10
√

log(m)log(r)
)
, with no non-trivial solution to the

equation x1 + x2 + . . .+ xr = r · xr+1.

Fix r = 3 and ε′ = 8ε. Let m maximize ε′ < 4−8exp
(
−10

√
log(m)log(3)

)
,

obtaining, for an appropriate constant c, the bound m ≥ (c/ε′ )c·log( c/ε
′ ).

Using the set X from Lemma 2, a cyclic 4-partite digraph T is constructed:
the four parts of T ’s vertex set, V1, . . . , V4, have cardinalities m, 2m, 3m, 4m
respectively. For every 1 ≤ i ≤ 3, 1 ≤ j ≤ im and x ∈ X , the edge (vj , vj+x)
exists between Vi and Vi+1; the edges between V4 and V1 are the pairs (vj+3x, vj)
for every x ∈ X and 1 ≤ j ≤ m.

As can be observed ([14, Lemma 6.2]), E(T ) consists of 4m|X | edges forming
m|X | edge-disjoint copies of the directed 4-cycle; T has more than 48ε′m2 edges.
For our use we would like all parts Vi to have the same cardinality, so we add
isolated vertices making every Vi of size exactly 4m. Let T1 be the graph resulting
from this addition. We note that all the cycles of T1 are non-degenerate.

Definition 4. A blow-up of a digraph G = (V,E) by a factor s is a graph G′ =
(V ′, E′), with V ′ = V × [s], and E′ = {((v, j), (u, j)) | (v, u) ∈ E ∧ j1, j2 ∈ [s]}.
That is, every vertex is copied s times and every edge is replaced with the complete
bipartite graph Ks,s between the corresponding sets of vertex copies.

Lemma 3 (special case of [14, Lemma 6.3]). Let K = (V (K), E(K)) be a
digraph and let T = (V (T ), E(T )) be an s-blow-up of K. Let R ⊆ E(T ) be a
subset of the set of edges of T , and suppose that each copy of K in T contains
at least one edge of R. Then |R| > |E(T )|/|V (K)|4.

The graph T1 is now blown-up by a factor of s =
⌊
n/(42m)

⌋
; let G1 denote

the resulting blown-up graph. We have |E(G1)| = s2 · 48ε′m2 > 44ε′n2. Since
E(T1) is a set of edge-disjoint 4-cycles, E(G1) is a set of edge-disjoint s-blown-up
4-cycles. By the lemma above, at least a 1

/
44 -fraction of the edges of each of

these edge sets must be removed so as to remove all 4-cycles; G1 is thus ε′-far
from being 4-cycle-free. On the other hand, G1 only has m2s4 < c1n

4
/
m copies
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of the 4-cycle, for some constant c1. One can also verify that all cycles of G1 are
non-degenerate.

We must now transform the argument regarding the testing hardness of the
graph G1 into an argument regarding CM(G1).

Proposition 1. For σ = 28 there exists a finite set F of σ-colored leg-2 ma-
trices, such that for every ε and n > (c/ε )c·log( c/ε ), there exists a σ-colored
matrix M which is ε-far from being free of members of F , and yet, the fraction
of leg-2 submatrices of M which are copies of a member of F is no more than
(c/ε)−c·log( c/ε ) for some global constant c.

Proof. Let M = CM(G1), and set the family of forbidden matrices to be the 228

matrices defined above. To prove the second part of the claim we recall that there
is only one copy of a forbidden matrix in CM(G1) for every copy of a 4-cycle
in G. Only c1n

4
/
m of the

(
n
2

)2 possible directed non-degenerate 4-cycles with
vertices in consecutive parts appear in G, so no more than an 8c1/m fraction of
the
(
n
2

)2 submatrices of CM(G1) of leg 2 are copies of forbidden matrices.
For the first part of the claim, we note that by modifying a matrix cell

one affects the representation of at most 8 edges of G1. Thus, unless at least
ε′n2/8 = εn2 cells are modified, more than (1−ε′)n2 of the edges of G have their
two representing color bits (i.e. in both the cells CM(G1) (i, j) and CM(G1) (j, i))
unmodified. Consequently, the cycles contained in this unmodified subset of
E(G1) still have their representing forbidden submatrix intact. G1 has a non-
degenerate directed 4-cycle remaining for every choice of less than ε′n2 edges, so
CM(G1) still contains a copy of a forbidden matrix.

4.3 Reducing the Number of Colors

As mentioned above, 256 colors are more than necessary to construct a hard to
test matrix. We now reduce this number, in several stages.

Note that by reducing the number of colors, we lose the ability to represent
many of the graphs that were previously representable; we maintain, however,
the ability to represent the graphs we construct for proving the lower bound.

Task List Item 3: Making most edge layers identical. We note that in
the graph T1, the edge sets in the ‘first’ 3 layers, those between Vi and Vi+1 for
1 ≤ i ≤ 3, are quite similar: vi,j is connected to vi,j+x. The difference is that
in each of the Vi’s, only the first im vertices are connected onwards to vertices
in Vi+1. We now consider the consequences of connecting all possible vertices of
Vi onwards – that is, making (vi,j , vi+1,j+x) an edge whenever j + x ≤ 4m and
x ∈ X .

Denote this new graph by T2. As with the graph T1, every directed 4-cycle
(v1,j1 , v2,j2 , v3,j3 , v4,j4) in T2 satisfies

(j2 − j1) + (j3 − j2) + (j4 − j3) = (j4 − j1)
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so if we denote

x1 = j2 − j1 x2 = j3 − j2 x3 = j4 − j3 x4 = (j4 − j1)/3

the equation becomes x1 + x2 + x3 = 3x4, and since x1, . . . , x4 ∈ X , all four
values must be equal. Also, if such a cycle begins with j1 > m in V1, then

(j1 −m�j1/m�, j2 −m�j1/m�, j3 −m�j1/m�, j4 −m�j1/m�)

is another cycle in T2 (the vertex indices all remain positive), which begins with
j1 ≤ m, i.e. it corresponds to a cycle in the original T1. It follows that the total
number of cycles has increased by no more than a factor of 4, and that all cycles
are still non-degenerate.

Since all cycles are edge-disjoint in T2 as well, the number of cycles increases
with the s-blow-up of T2 into G2 by a factor of s4, as in the case of G1. G2

has the same vertex sets as G1, and a superset of the edges of G1, making it at
least as far from being 4-cycle free as G1. As for the number of cycles, T1 had
m|X | < m2 4-cycles, T2 has at most 4m|X | < 4m2 4-cycles, and G2 has at most
4m2s4 < c2n

4
/
m 4-cycles, for some constant c2.

We can now use our different construction of T2 to reduce the number of colors
necessary for its representation: As the bits for the three Vi → Vi+1 edge layers
are the same, we only need two bits for each type of layer (one for the j1 → j2
edge and one for the ‘flip’ edge j2 → j1), times two types of layers (Vi → Vi+1

and V4 → V1): in total we now use only 24 = 16 colors. This property of T2’s
first three layers carries over to G with the blow-up.

Our observations thus lead us to conclude that Proposition 1 also holds for
σ = 24, with a different choice of the constants.

Task List Item 4: Making the edge layers symmetrical. The num-
ber of color bits may be further reduced – halved – if we could ensure that
whenever (vi1,j1 , vi2,j2) is an edge, so is (vi1,j2 , vi2,j1). This can be affected by
simply adding all ‘flip’ edges to T2 – in addition to the edge (j1, j1 + x) be-
tween Vi and Vi+1, and the edge (j1 + 3x, j1) between V4 and V1, we also add
(j1 + x, j1) between Vi and Vi+1, and (j1, j1 + 3x) between V4 and V1 respec-
tively. The addition of the ‘flip’ edges may result in an excessive increase in
the number of cycles, and possibly also results in intersections of the edges
of different cycles. To avoid this, we again modify our pre-blowup graph T .
Let us first consider a replacement of T2 by the following T ′

3: Each of the four
vertex sets is now

{
1, . . . , 42 ·m

}
. The edges in the first three layers (we con-

tinue to maintain the uniformity of these layers) are (j1, j1 + x + 3m) for all
x ∈ X and j1 ∈

{
1, . . . , 42m− x− 3m

}
; the edges between V4 and V1 are

(j1 + 3(x + 3m), j1) for all x ∈ X and j1 ∈
{
1, . . . , 42m− 3(x+ 3m)

}
. Each

directed 4-cycle (v1,j1 , v2,j2 , v3,j3 , v4,j4) must still satisfy

(j2 − j1) + (j3 − j2) + (j4 − j3) = (j4 − j1)

We denote

x1 = j2−j1−3m x2 = j3−j2−3m x3 = j4−j3−3m x4 = (j4−j1−9m)/3
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and this yields again the equation x1 + x2 + x3 = 3x4. Thus as in the case of
T2 above, cycles only exist when the edge x-values are all equal, i.e. T ′

3 has no
more than 42m|X | copies of a 4-cycle.

We now add all flip edges to T ′
3: the edges of the form (vi,j1+x+3m, vi+1,j1) are

added in the first three layers, and the edges of the form
(
v4,j1 , v1,j1+3(x+3m)

)

are added in the fourth layer. Let T3 denote the resulting graph.

Lemma 4. Every cycle in T3 is either a cycle in T ′
3 (a no-flip-edge cycle) or a

cycle consisting only of flip edges.

Proof. Consider first some tuple (j1, j2, j3, j4) of vertex indices in the four parts
where the first two edges are non-flip while the third one is a flip edge. In this
case, we find that j4 cannot be very far from j1:

|j1 − j4| = (j1 − j2) + (j3 − j2)− (j3 − j4) ≤ 2 · (3m+m)− 3m < 9m

however, for (j4, j1) to be an edge in the fourth layer (either a non-flip or a
flip edge), we must have |j4 − j1| = 9m + 3x for some x ∈ X . No such edges
exist, proving that such a cycle is impossible. The remaining cases where one of
three Vi → Vi+1 edges is in the direction opposite to the other two edges are
similarly impossible, implying that the edges in the first three layers are in the
same direction for every cycle of T3. If these three edges are non-flip edges, the
j’s are an increasing sequence, and so the fourth edge must have j4 > j1, i.e. it
must also be a non-flip; if the edges in first three layers are flip edges, the j’s
are a decreasing sequence, and j4 < j1, i.e. the fourth edge must also be a flip
edge.

As for the number of cycles with all-flip or all-non-flip edges: If (vi1,j1 , vi2,j2)
is a non-flip edge, then

(
vi1,42m−j1+1, vi2,42m−j2+1

)
is a flip edge as well, and(

vi1,42m−j2+1, vi2,42m−j1+1

)
is a non-flip edge. Thus if (v1,j1 , v2,j2 , v3,j3 , v4,j4) is

a cycle with no flip edges,
(
v1,42m−j1+1, v2,42m−j2+1, v3,42m−j3+1, v4,42m−j4+1

)
is

an all-flip-edge cycle, and vice-versa. This one-to-one correspondence, together
with the lemma above, bring us to conclude that there are exactly twice as many
cycles in T3 as there are in T ′

3, and that they are all edge-disjoint. Furthermore,
the necessity of the first three edges to be in the same direction means that
j1 �= j3 and j2 �= j4, so all cycles are still non-degenerate.
T3 is a graph with 43m vertices and no more than 2 · 42m|X | 4-cycles, all

edge-disjoint. Blowing it up by a factor of s = n
/(

43m
)

, we obtain a graph G3

with n vertices and 2 · 42m|X | · s4 ≤ c3n
4
/
m cycles for an appropriate constant

c3. G3 is also ε′-far from being cycle-free, by an argument similar to the case of
G1, with a proper choice of m(ε′) = (c/ε)c·log( c/ε ) reflecting the change in the
constants used in the construction of T and the blow-up.

To represent G3, we only need two bits of color: One bit for the first three
layers (a single bit now suffices for both the ‘non-flip’ and the ‘flip’ edge), and
one bit for the V4-to-V1 layer. We have thus brought down σ, the number of
cell colors of a matrix for which Proposition 1 holds, to 22 = 4 (again, with a
different choice of a constant c).
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Task List Item 5: Mutual exclusion between the edge layers. Obviously,
the result of [1] implies it is impossible to reduce the number of color bits from
two to one without making the matrix easy to test for the presence of forbidden
submatrices. There is still the possibility of reducing the number of colors from
four to three. In fact, if we review the construction of T3 and G3 carefully, we
notice that for any (j1, j2), we only have three edge combinations represented
for (j1, j2) (and the now-symmetrical j2, j1):

1. (j1, j2) is an edge in the Vi → Vi+1 layers, but not in V4 → V1.
2. (j1, j2) is not an edge in Vi → Vi+1 layers, but is an edge in V4 → V1.
3. (j1, j2) is not an edge in any layer.

No (j1, j2) can be an edge in all four layers, since edges in V4 → V1 correspond
to index differences |j1 − j2| of at least 9m + 1 (before the blowup of T3 into
G3), while edges Vi → Vi+1 correspond to differences of at most 4m. Thus
Proposition 1 holds for CM(G3) as a 3-colored matrix as well. In fact, we are
now able to prove Lemma 1:

Proof of Lemma 1. G is CM(G3) constructed above. Indeed, there is now only
one possible leg-2 submatrix (up to permutations) of CM(G3) witnessing the

presence of its corresponding cycle C in G3: MF =
(

1 2
1 1

)

(this is a matrix

over {0, 1, 2}). One may verify that in all other leg-2 submatrices, at least one of
the cycle edges must be missing. Thus F is the subgraph with adjacency ma-
trix MF.

4.4 Canonical Testing and Proof of Theorem 1

Definition 5. A property P of (colored) bipartite graphs is hereditary if it is
closed also under taking induced subgraphs.

One can readily see that the properties we investigate here indeed fall under this
definition.

Lemma 5. If P is a hereditary property of colored bipartite graphs, and for
some ε there exists a tester making q(ε) queries, which works independently of
the size of the input graph, then there exists a one-sided tester whose querying
is done by uniformly sampling O(q(ε)) vertices from each one of the two parts
of the graph, querying the subgraph they form and accepting if and only if this
subgraph itself satisfies P.

As was done in [1, Lemma 5.5], the above lemma can be proven by almost
word-by-word the same proof as that of [19, Appendix D, due to Alon].

Note, however, that these lemmata refer only to testers whose operation does
not depend on the size of the input graph; this fact is essential to the proof in
[19] of their lemma as well as the similar proof of Lemma 5. It is not trivial to
show (and in fact not known at the moment) that a two-sided-error tester, which
works differently for different values of n, implies the existence of a one-sided
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tester whose query complexity is not much worse than that of the original tester.
See the errata [20] for [19] for further discussion of this point.

We now have everything necessary for proving our first main result:

Proof of Theorem 1. Consider an ε-tester of 3-colored bipartite graphs for being
free of a forbidden subgraph which makes at most q(ε) queries. If the tester
works independently of the size n of the input graph, then by Lemma 5 there
exists a one-sided tester for the property, which uniformly samples O(q) vertices
from each of the two parts of the graph, queries the subgraph they form and
accepts if and only if it is free of the forbidden matrix. If the original tester is
one-sided, it is possible to show that w.l.o.g.it works independently of n; we omit
the details.

By Lemma 1, there exists (for any sufficiently high n) a graph G and a
forbidden subgraph F , such that G is ε-far from being free of F , but only a
(c′/ε )−c

′·log( c′/ε) fraction of its leg-2 subgraphs are copies of F , for some global
constant c′.

The expected number of copies of the forbidden subgraph in the uniformly
sampled subgraph of G is no more than O

(
q4
)/

(c′/ε )c
′·log( c′/ε) – the expected

number of copies of CM(F ) in a submatrix of CM(G) of leg O(q). If the original
tester makes q(ε) queries, then the number of queries of the uniform-subgraph-
sampling tester is at most O

(
q2
)
. Thus if q(ε) < (c/ε )c·log( c/ε ), for an appropri-

ate constant c, then the expected number of forbidden subgraphs discovered is
o(1); the tester therefore accepts G with probability 1−o(1), a contradiction.

5 The Lower Bound for 3-Graphs and Binary Tensors

5.1 Construction of a Hard-to-Test Tensor

Fix ε. LetM be as in the proof of Lemma 1, but with distance parameter ε′ = 2ε.
Let us consider the 3-colored matrix M as having two color bit layers: One bit-
layer for the first three edge-layers of the 4-cycle (Vi to Vi+1), and another
bit-layer for the 4th edge-layer (V4 to V1); it is still the case that no matrix cell
M(j1, j2) has both of its bits set.

Let us separateM into two binary matricesM ′ and M ′′, with M ′(j1, j2) being
the first color bit of M(j1, j2) and M ′′(j1, j2) being the second color bit. Using
these two matrices, we construct a 3-dimensional tensor T of leg n:

T (x, y, z) =

{
M ′(x, y) 1 ≤ z ≤ n/2
M ′′(x, y) n/2 < z ≤ n

We split the forbidden leg-2 matrix MF of Lemma 1 in a similar fashion, to
obtain a forbidden leg-2 subtensor TF:

[(
1 0
1 1

)

,

(
0 1
0 0

)]

(the two matrices are the layers for the two values in the z coordinate).
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Lemma 6. Let T ′ be a subtensor of T with coordinates (j1, j3)×(j2, j4)×(z1, z2).
T ′ = TF if and only if the following holds: (j1, j2, j3, j4) are vertex indices of a
cycle in G3, z1 ∈

{
1, . . . , n2

}
and z2 ∈

{
n
2 + 1, . . . , n

}
.

Proof. If z1, z2 ≤ n/2 or z1, z2 > n
2 , then T ′ is invariant along the z-axis and

is therefore not a copy of TF. Now suppose that z2 ∈
{
1, . . . , n2

}
and z1 ∈{

n
2 + 1, . . . , n

}
; in this case, all of (vj1 , vj2 ), (vj3 , vj2) and (vj3 , vj4) are edges in

the fourth edge layer of G3 and (vj4 , vj1) is an edge in the first three edge layers.
We recall that G3 is a blow-up of T3, thus there exist vertices vj′

1
, . . . , vj′

4
∈ T3

such that (vj′
1
, vj′

2
), (vj′

3
, vj′

2
), (vj′

3
, vj′

4
) are edges in T3’s fourth edge layer, and

(vj′
4
, vj′

1
) an edge in its first three edge layers. Now, the edges in the fourth layer

correspond to index differences |j′1 − j′2|,|j′3 − j′2| and |j′3 − j′4| of at least 9m+1.
Thus either j1 < 5m or j1 > 9m + 1. In the first case, j2 > 9m + 1, j3 < 5m
and j4 > 9m+ 1, thus |j′1 − j′4| > 4m, which makes it impossible for (j′4, j

′
1) to

be an edge in the first three layers. The second case is similar. Thus whenever
z2 ∈

{
1, . . . , n2

}
and z1 ∈

{
n
2 + 1, . . . , n

}
, it is impossible that T ′ = TF.

Finally, suppose (z1, z2) ∈
{
1 . . . n2

}
×
{
n
2 + 1, . . . , n

}
. In this case T ′(·, ·, z1) is

the first color bit of a leg-2 submatrix of M , and T ′(·, ·, z2) is the second color
bit thereof. If (j1, j2, j3, j4) are not vertex indices of a cycle of G4, then at least
one of the four ‘1’ bits of TF must be missing from T ′, so again T ′ �= TF.

For the second direction of the lemma, let (j1, j2, j3, j4) be vertex indices of a
cycle in G3, and let (z1, z2) ∈

{
1, . . . , n2

}
×
{
n
2 + 1, . . . , n

}
. The existence of the

cycle constrains the four subtensor cells corresponding to the four edges to be 1,
and the fact that no edge can exist both in the first three edge layers of G3 and
in its fourth layer constrains the other four bits to 0, so indeed T ′ = TF.

5.2 Hardness of the Tensor and Proof of Theorem 2

Proposition 2. There exists a single 3-dimensional binary tensor TF of leg 2,
such that for every n, ε there exists a tensor T which is ε-far from being free of
that subtensor, and yet, the fraction of leg-2 subtensors of T which are copies of
TF is no more than (c/ε )−c·log( c/ε ) for some global constant c.

Proof. Let T ,TF and ε′ be as in Subsection 5.1. By Lemma 6, we have that for
every choice of z1, z2, either no choices of (j1, j3) × (j2, j4) yield a copy of TF

(for the case of z1 > n
2 or z2 ≤ n

2 ), or at most a (c′/ε′ )−c
′·log( c′/ε′ ) fraction of

these choices yields such a copy (due to the properties of M). Setting c = c′/2

we conclude that at most a 1/4 · (c′/ε′ )−c
′·log( c′/ε′ ) < (c/ε )−c·log( c/ε ) fraction

of the leg-2 subtensors of T are copies of the forbidden subtensor.
As for the distance from being TF-free, for every z1 ∈ {1, . . . , n/2}, one must

modify enough cells of T (·, ·, z1) = M ′ and T (·, ·, z1 + n
2 ) = M ′′ to affect all

copies of TF located in this pair of layers. These copies are in 1-1 correspondence
with the copies of the forbidden leg-2 matrix in M , and the number of x, y
coordinate pairs in which M has to be changed to remove all copies of the
forbidden submatrix is at least ε′n2; thus at least 2εn2 changes are necessary to
remove all copies of TF in T (·, ·, z1), T (·, ·, z1 + n

2 ). There are n
2 disjoint pairs of
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such layers, so at least εn3 changes are needed in total. T is therefore ε-far from
being TF-free.

We now state another lemma very similar to [19, Appendix D, due to Alon]
and Lemma 5, again with a virtually identical proof, which will be necessary for
achieving our second lower bound.

Lemma 7. If P is a hereditary property of k-graphs, and for some ε there exists
a tester which works independently of the size of the input graph, and makes q(ε)
queries, then there exists a one-sided tester whose querying is done by uniformly
sampling O(q(ε)) vertices from each one of the k parts, querying the k-subgraph
they form and accepting if and only if this k-subgraph itself satisfies P.

Proof of Theorem 2. Consider a one-sided ε-tester of 3-graphs for being free of a
some forbidden 3-subgraph which makes at most q(ε) queries. If the tester works
independently of the size of the input 3-graph, then by Lemma 7, there exists
a one-sided tester which uniformly samples O(q) vertices from each one of the
three parts, querying the 3-subgraph they form and accepting if and only if it is
free of the forbidden 3-subgraph. If the original tester is one-sided, it is possible
to show that w.l.o.g.it works independently of n.

By Proposition 2, there exists a 3-dimensional tensor T of leg n that is ε-far
from being free of a leg-2 subtensor TF, but only a (c′/ε )c

′·log( c′/ε ) fraction of
its leg-2 subtensors are copies of TF, for some global constant c′. We use TF as
the adjacency tensors for the forbidden 3-subgraph H , and T as the adjacency
tensor for a 3-graph G to be tested.

The expected number of copies ofH from the forbidden set in a uniformly sam-
pled 3-subgraph of G is no more than O

(
q6
)/

(c′/ε )c
′·log( c′/ε ) – the expected

number of copies of TF in a uniformly sampled subtensor of T of leg O(q). If
the original tester makes q(ε) queries, the number of queries of the uniform-3-
subgraph-sampling tester is at most O

(
q3
)
. Thus if q(ε) < (c/ε )c·log( c/ε ), for an

appropriate constant c, then the expected number of copies of H discovered is
o(1); the tester therefore accepts G with probability 1−o(1), a contradiction.
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Abstract. Space-economical estimation of the pth frequency moments, defined
as Fp =

∑n
i=1|fi|p, for p > 0, are of interest in estimating all-pairs dis-

tances in a large data matrix [14], machine learning, and in data stream com-
putation. Random sketches formed by the inner product of the frequency vector
f1, . . . , fn with a suitably chosen random vector were pioneered by Alon, Ma-
tias and Szegedy [1], and have since played a central role in estimating Fp and
for data stream computations in general. The concept of p-stable sketches formed
by the inner product of the frequency vector with a random vector whose com-
ponents are drawn from a p-stable distribution, was proposed by Indyk [11] for
estimating Fp, for 0 < p < 2, and has been further studied in Li [13].

In this paper, we consider the problem of estimating Fp, for 0 < p < 2. A
disadvantage of the stable sketches technique and its variants is that they require
O( 1

ε2
) inner-products of the frequency vector with dense vectors of stable (or

nearly stable [14,13]) random variables to be maintained. This means that each
stream update can be quite time-consuming. We present algorithms for estimating
Fp, for 0 < p < 2, that does not require the use of stable sketches or its approxi-
mations. Our technique is elementary in nature, in that, it uses simple randomiza-
tion in conjunction with well-known summary structures for data streams, such as
the COUNT-MIN sketch [7] and the COUNTSKETCH structure [5]. Our algorithms
require space Õ( 1

ε2+p ) 1 to estimate Fp to within 1 ± ε factors and requires ex-
pected time O(log F1 log 1

δ
) to process each update. Thus, our technique trades

an O( 1
εp ) factor in space for much more efficient processing of stream updates.

We also present a stand-alone iterative estimator for F1.

1 Introduction

Recently, there has been an emergence of monitoring applications in diverse areas
including network traffic monitoring, network topology monitoring, sensor networks,
financial market monitoring, and web-log monitoring. In these applications, data is gen-
erated rapidly and continuously, and must be analyzed efficiently, in real-time and in a
single-pass over the data to identify large trends, anomalies, user-defined exception
conditions, and so on. In many of these applications, it is often required to continu-
ously track the “big picture”, or an aggregate view of the data, as opposed to a detailed

1 Following standard convention, we say that f(n) is Õ(g(n)) if f(n) =

O
(( 1

ε

)O(1)
(log m)O(1)(log n)O(1)g(n)

)
.
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view of the data. In such scenarios, efficient approximate computation is often accept-
able. The data streaming model has gained popularity as a computational model for
such applications—where incoming data (or updates) are processed very efficiently and
in an online fashion using space, much less than that needed to store the data in its
entirety.

A data stream S is viewed as a sequence of arrivals of the form (i, v), where i is the
identity of an item that is a member of the domain [n] = {1, . . . , n} and v is the update
to the frequency of the item. v > 0 indicates an insertion of multiplicity v, while v < 0
indicates a corresponding deletion. The frequency of an item i, denoted by fi, is the sum
of the updates to i since the inception of the stream, that is, fi =

∑
(i,v) appears in S v.

In this paper, we consider the problem of estimating the pth frequency moment of
a data stream, defined as Fp =

∑n
i=1|fi|p, for 0 < p < 2. Equivalently, this can be

interpreted as the pth power of the Lp norm of a vector defined by the stream. The tech-
niques used to design algorithms and lower bounds for the frequency moment problem
have been influential in the design of algorithmic and lower bound techniques for data
stream computation. We briefly review the current state of the art in estimating Fp, with
particular emphasis to the range 0 < p < 2.

1.1 Review

Alon, Matias and Szegedy [1] present the seminal technique of AMS sketches for es-
timating F2. An (atomic) AMS sketch is a random integer X =

∑n
i=1 fiξi, where

{ξi}i=1,2,...,n is a family of four-wise independent random variables assuming the val-
ues 1 or −1 with equal probability. An AMS sketch is easily maintained over a stream:
for each update (i, v), the sketch X is updated as X := X + vξi. Moreover, since the
family {ξi} is only 4-wise random, for each i, ξi can be obtained from a randomly cho-
sen cubic polynomial h over a field F that contains the domain of items [n], (ξi = 1 if
the last bit of h(i) is 1 and ξi = −1 otherwise). It then follows that E

[
X2
]

= F2 and
Var
[
X2
]
≤ 2F 2

2 [1]. An estimate of F2 that is accurate to within 1± ε with confidence
7
8 can therefore be obtained as the average of the squares of O( 1

ε2 ) independent sketch
values.

There has also been significant study of the case p = 0, also known as the distinct
elements problem. Alon, Matias and Szegedy [1] gave a constant factor approximation
in small space. Gibbons and Tirthapura [10] showed a (1 ± ε) factor approximation
space Õ( 1

ε2 ); subsequent work has improved the (hidden) logarithmic factors [2].

p-Stable Sketches. The use of p-stable sketches was pioneered by Indyk [11] for esti-
mating Fp, with 0 < p < 2. A stable sketch S is defined as Y =

∑n
i=1 fisi, where

si is drawn at random from a p-stable distribution, denoted S(p, 1) (the second param-
eter of S(·, ·) is the scale factor). By the defining property of p-stable distribution, Y
is distributed as S(p, (

∑n
i=1|fi|p)1/p). In other words, Y is p-stable distributed, with

scale factorF 1/p
p . Indyk gives a technique to estimate Fp by keepingO( 1

ε2 ) independent
p-stable sketches and returning the median of the these observations [11]. Woodruff [18]
presents an Ω( 1

ε2 ) space lower bound for the problem of estimating Fp, for all p ≥ 0,
implying that the stable sketches technique is space optimal up to logarithmic factors.
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Li [13] further analyses of stable sketches and suggests the use of the geometric
mean estimator, that is,

F̂p = c · |Y1|1/k|Y2|1/k · · · |Yk|1/k

where Y1, Y2, . . . , Yk are k independent p-stable sketches of the data stream. Li shows

the above estimator is unbiased, that is, E
[
F̂p
]

= Fp and Var
[
F̂p
]
≈ π2F 2

p

6kp2 . It follows

(by Chebychev’s inequality) that returning the geometric mean of O( 1
ε2p2 ) sketches

returns an estimate for Fp that is accurate to within factors of (1 ± ε) with probability
7
8 . Li also shows that the geometric means estimator has lower variance than the median
estimator proposed originally by Indyk [11].

Very Sparse sketches. The “very sparse sketch” method due to Li et al. aims to main-
tain the same space and accuracy bounds, but reduce the time cost to process each up-
date [14,13]. Note that this technique applies only when the data satisfies some unifor-
mity properties, whereas the preceeding techniques need no such assumptions. A very
sparse (nearly) p-stable sketch is a linear combination of the form W =

∑n
i=1 fiwi,

where wi is Pp with probability β/2, −Pp with probability β/2, and 0 otherwise.
Here, Pp is the p-Pareto distribution with probability tail function Pr{Pp > t} = 1

tp ,
t ≥ 1. Pareto distributions are proposed since they are much simpler to sample from
as compared to stable distributions. Further, Li shows that W is asymptotically p-stable
provided F∞

F
1/p
p

→ 0. Thus, very sparse sketches provide for a principled way of re-

ducing the data stream processing time provided the data satisfies certain uniformity
properties.

Drawbacks of Stable-Based Methods. A drawback of the original technique of stable
sketches is that, in general, for each stream update all of the O( 1

ε2 ) stable sketches
must be updated. Each sketch update requires a pseudo-random generation of a random
variable drawn from a p-stable distribution, making it time-consuming to process each
stream update. The very sparse stable sketches somewhat alleviates this problem by
speeding up the processing time by a factor of approximately 1/β, although the data
must now satisfy certain uniformity conditions. In general, it is not possible to a-priori
guarantee or verify whether the data stream satisfies the desired properties. We therefore
advocate that in the absence of knowledge of the data distribution, the geometric means
estimator over p-stable sketches is the most reliable of the known estimators—which is
quite expensive.

Contributions. In this paper, we present a technique for estimating Fp, for 0 < p < 2.
Our technique requires space O( 1

ε2+p log2 F1 logn) to estimate Fp to within relative
error (1 ± ε) with probability 7/8. Further, it requires O(log n logF1) expected time
(and O(logF1 log2 n) worst-case time) to process each stream update. Thus, our tech-
nique trades a factor of O( 1

εp ) space for improved processing time per stream update.
From an algorithm design viewpoint, perhaps the most salient feature of the technique
is that it does not recourse to stable distributions. Our technique is elementary in nature
and uses simple randomization in conjunction with well-known summary structures for
data streams, such as the COUNT-MIN sketch [7] and the COUNTSKETCH structure [5].
It is based on making some crucial and subtle modifications to the HSS technique [3].
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Organization. The remainder of the paper is organized as follows. In Section 2, we
review the HSS technique for estimating a class of data stream metrics. Sections 3 and 4
respectively, present a family of algorithms for estimating Fp and a recursive estimator
for F1, respectively. Finally, we conclude in Section 5.

2 Review of HSS Technique

In this section, we briefly review the HSS (for “Hierarchical Sampling from Sketches”)
procedure [3] for estimating Fp, p > 2 over data streams. Appendix A reviews the
COUNTSKETCH and the COUNT-MIN algorithms for finding frequent items in a data
stream and algorithms to estimate the residual first and second moments respectively of
a data stream [9].

The HSS method is a general technique for estimating a class of metrics over data
streams of the form:

Ψ(S) =
∑

i:fi>0

ψ(fi). (1)

From the input stream S, sub-streamsS0 . . .SL are created by successive sub-sampling,
that is, S0 = S and for 1 ≤ l ≤ L, Sl is obtained from Sl−1 by sub-sampling each dis-
tinct item appearing in Sl−1 independently with probability 1

2 (hence L = O(log n)).
Let k be a space parameter. At each level l, we keep a frequent items data-structure,
denoted by Dl(k), that takes as input the sub-stream Sl, and returns an approximation
to the top(k) items of its input stream and their frequencies. Dl(k) is instantiated by
either the COUNT-MIN or COUNTSKETCH data structures. At level l, suppose that the
frequent items structure at this level has an additive error of Δl(k) (with high probabil-
ity), that is, |f̂i − fi| ≤ Δl(k) with probability 1 − 2−t where t is a parameter. Define
F res1 (k, l) to be (the random variable denoting) the value of F1 of the sub-stream Sl af-
ter removing the k largest absolute frequencies; and Fres2 (k, l) to be the corresponding
value of F2. The (non-random value) F res1 (k, 0) (respectively, Fres2 (k, 0)) is written as
F res1 (k) (resp. Fres2 (k)).

Lemma 1 (Lemma 1 from [3])

1. For l ≥ 1 and k ≥ 48, F res1 (k, l) ≤ F res
1 (k)
2l with probability≥ 1− 2−

k
24+1.

2. For l ≥ 1 and k ≥ 48, Fres2 (k, l) ≤ Fres
2 (k)
2l with probability≥ 1− 2−

k
24+1.

By the above lemma, let Δ0 = F res
1 (k)
k or Δ0 =

(
Fres
2 (k)
k

)1/2

, depending on whether

the COUNT-MIN or the COUNTSKETCH structure is being used as the frequent items
structure at each level. Let ε̄ = ε

16 , T0 = 2Δ0
ε̄ and Tl = T0

2l , l = 0, 1, 2 . . . , logT0.
The items are grouped into groups G0, G1, . . . , GL as follows: G0 = {i ∈ S : fi ≥
T0} and Gl = {i ∈ S : Tl ≤ fi < Tl−1}, 1 ≤ l ≤ L. It follows that, with high
probability, for all items of Gl that are present in the random sub-stream Sl, f̂i ≥ Δl

ε̄

and |f̂i − fi| ≤ εfi.
Corresponding to every stream update (i, v), we use a hash-function h : [n] → [n]

to map the item i to a level u = lsb(h(i)), where, lsb(x) is the position of the least
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significant “1” in binary representation of x. The stream update (i, v) is then propagated
to the frequent items data structures Dl for 0 ≤ l ≤ u, so in effect, i is included in the
sub-streams from level 0 to level u. The hash function is assumed to be chosen randomly
from a fully independent family; later we reduce the number of random bits required by
a standard data streaming argument.

At the time of inference, the algorithm collects samples as follows. From each level
l, the set of items whose estimated frequency crosses the threshold Δ0

ε2l are identified,

using the frequent items structure Dl. It is possible for the estimate f̂i,l of an item i
obtained from the sub-stream Sl to exceed this threshold for multiple levels l. We
therefore apply the “disambiguation-rule” of using the estimate obtained from the low-
est level at which it crosses the threshold for that level. The estimated frequency after
disambiguation is denoted as f̂i. Based on their disambiguated frequencies, the sampled
items are sorted into their respective groups, Ḡ0, Ḡ1, . . . , ḠL, as follows:

Ḡ0 = {i|f̂i ≥ T0} and Ḡl = {i|Tl−1 < f̂i ≤ Tl and i ∈ Sl}, 1 ≤ l ≤ L.

We define the estimator Ψ̂ and a second idealized estimator Ψ̄ which is used for analysis
only.

Ψ̂ =
L∑

l=0

∑

i∈Ḡl

ψ(f̂i) · 2l Ψ̄ =
L∑

l=0

∑

i∈Ḡl

ψ(fi) · 2l (2)

We now briefly review the salient points in the error analysis. Lemma 2 shows that the
expected value of Ψ̄ is close to Ψ .

Lemma 2 (Lemma 2 from [3]). Suppose that for 0 ≤ i ≤ N − 1 and 0 ≤ l ≤ L,
|f̂i,l − fi| ≤ εfi with probability≥ 1− 2−t. Then |E

[
Ψ̄
]
− Ψ | ≤ Ψ · 2−t+logL.

We now present a bound on the variance of the idealized estimator. The frequency
groupGl is partitioned into three sub-groups, namely, lmargin(Gl) = [Tl, Tl(1+ ε̄/2)],
rmargin(Gl) = [Tl−1(1 − ε̄), Tl−1] and midregion(Gl) = [Tl(1 + ε̄/2), Tl−1(1 −
ε̄)], that respectively denote the lmargin (left-margin), rmargin (right-margin) and
midregion of the group Gl. An item i is said to belong to one of these regions if its
true frequency lies in that region. For any item i with non-zero frequency, we denote by
l(i) the group index l such that i ∈ Gl. For any subset T ⊂ [n], denote by ψ(T ) the
expression

∑
i∈T ψ(fi). Let Ψ2 = Ψ2(S) denote

∑n
i=1 ψ

2(fi).

Lemma 3 (Lemma 3 from [3]). Suppose that for all 0 ≤ i ≤ N − 1 and 0 ≤ l ≤ L,
|f̂i,l − fi| ≤ εfi with probability≥ 1− 2−t. Then,

Var
[
Ψ̄
]
≤ 2−t+L+2 · Ψ2 +

∑

i/∈(G0−lmargin(G0))

ψ2(fi) · 2l(i)+1.

Corollary 4. If the function ψ(·) is non-decreasing in the interval [0 . . . T0 +Δ0], then,
choosing t = L+ log 1

ε2 + 2, we get

Var
[
Ψ̄
]
≤ ε2Ψ2 +

L∑

l=1

ψ(Tl−1)ψ(Gl)2l+1 + 2ψ(T0 +Δ0)ψ(lmargin(G0)) (3)
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The error incurred by the estimate Ψ̂ is |Ψ̂ − Ψ |, and can be written as the sum of two
error components using the triangle inequality.

|Ψ̂ − Ψ | ≤ |Ψ̄ − Ψ |+ |Ψ̂ − Ψ̄ | = E1 + E2

Here, E1 = |Ψ − Ψ̄ | is the error due to sampling and E2 = |Ψ̂ − Ψ̄ | is the error due
to the approximate estimation of the frequencies. By Chebychev’s inequality, E1 =

|Ψ − Ψ̄ | ≤ |E[Ψ̄ ]−Ψ |+ 3
√

Var
[
Ψ̄
]

with probability 8
9 . Using Lemma 2 and Corollary

4, and choosing t = L+ log 1
ε2 + 2, the expression for E1 can be simplified as follows:

E1 ≤
ε2LΨ

2L
+ 3
(
ε2Ψ2 +

L∑

l=1

ψ(Tl−1)ψ(Gl)2l+1 + 2ψ(T0 +Δ0)ψ(lmargin(G0))
)1/2

(4)
with probability 8

9 . We now present an upper bound on E2.

Lemma 5. Suppose that for 1 ≤ i ≤ n and 0 ≤ l ≤ L, |f̂i,l−fi| ≤ εfi with probability

≥ 1 − 2−t. Then E2 ≤ Δ0

∑L
l=0

∑
i∈Gl

|ψ′(ξi)|
2l with probability ≥ 9

10 − 2−t, where

for i ∈ Gl, ξi lies between fi and f̂i, and maximizes ψ′().

The analysis assumes that the hash function mapping items to levels is completely inde-
pendent. We adopt a standard technique of reducing the required randomness by using
a pseudo-random generator (PRG) of Nisan [15] along the lines of Indyk in [11] and
Indyk and Woodruff in [12]. More details are provided in Appendix B.

3 Estimating Fp

In this section, we use the HSS technique with some subtle but vital modifications to
estimate Fp for 0 < p < 2. We use the COUNTSKETCH structure as the frequent items
structure at each level l.

We observe that a direct application of the HSS technique does not present an Õ(1)
space procedure, and so we need some novel analysis. To see this, suppose that k is the
space parameter of the COUNTSKETCH procedure at each level. Firstly, observe that

E2 ≤ Δ0

L∑

l=0

∑

i∈Gl

|ψ′(ξi)|
2l

=
L∑

l=0

∑

i∈Gl

Δ0

2l
· p · |fi|p−1 ≤ 2ε

L∑

l=0

∑

i∈Gl

|fi|p ≤ 2ε1+p/2Fp ≤ 2εFp

as required, since p < 2 andΔ02−l ≤ ε|fi| for i ∈ Gl. Now, by equation (4) and using
t = L+ 2 log 1

ε + 2, we have

E1 ≤ ε2F2p + 3

(

ε2F2p +

L∑

l=1

(
Fres
2 (k)

2lk

) p
2
Fp(Gl)2

l+1 + 2(1 + ε)

(
Fres
2 (k)

k

) p
2
Fp(lmargin(G0))

) 1
2

.

Further, if we write frank(r) to denote the rth largest frequency (in absolute value)

Fres
2 (k) =

∑

r>k

f
2
rank(r) ≤

∑

r>k

f
2−p
rank(k+1)f

p
rank(r) ≤

(
Fp

k

)2/p−1

· Fp ≤ k ·
(
Fp

k

)2/p

, for p > 0



On Estimating Frequency Moments of Data Streams 485

and hence the expression for E1 simplifies to

E1 ≤ ε2F2p + 3

(

ε2F2p + Fp

L∑

l=1

2l+1−lp/2Fp(Gl) +
2(1 + ε)Fp

k
· Fp(lmargin(G0))

)1/2

The main problem arises with the the middle term in the above expression, namely,
Fp
∑L

l=1 2l+1−lp/2Fp(Gl), which can be quite large. Our approach relies on altering
the group definitions to make them depend on the (randomized) quantities Fres2 (k, l) so
that the resulting expression for E1 becomes bounded by O(εFp). We also note that the
expression for E2 derived above remains bounded by εFp.

Altered Group Definitions and Estimator. We use the COUNTSKETCH data structure as
the frequent items structure at each level l = 0, 1, . . . , L, with k = O( 1

ε̄2+p ) buckets
per hash function and s = O(logF1) hash functions per sketch. We first observe that
Lemma 1 can be slightly strengthened as follows:

Lemma 6 (A slightly stronger version of Lemma 1). For l ≥ 1 and k ≥ 48

1. F res1 (k, l) ≤ F res1 (2l−1k)
2l

with probability ≥ 1− 2−
k
24+1.

2. Fres2 (k, l) ≤ Fres2 (2l−1k)
2l

with probability ≥ 1− 2−
k
24+1

Proof. The result follows from the proof given for Lemma 1 [3]. ��

At each level l, we use the COUNTSKETCH structure to estimate Fres2 (k, l) to within an
accuracy of (1 ± 1

4 ) with probability 1 − 1
16L , where, ε̄ = ε

32 . Let F̄ res2 (k, l) denote
5
4 · F

res
2 (k, l). We redefine the thresholds T0, T1, . . . , as follows:

Δl =
(
F̄ res2 (k, l)
k · 2l

)1/2

, Tl =
Δl

ε
, l = 0, 1, 2, . . . , L.

The groupsG0, G1, G2, . . . , are set in the usual way, using the new thresholds:

G0 = {i | fi ≥ T0} and Gl = {i | Tl ≤ fi ≤ Tl−1}

The estimator is defined by (1) as before.

Lemma 7. Suppose k ≥ 16
ε2+p . Then, E ≤ 8εFp with probability at least 3

4 .

Proof. We use the property of Fres2 (t) derived above, that for any 1 ≤ t ≤ F0.

Fres2 (t) ≤ t
(
Fp
t

)2/p

=
F

2/p
p

t2/p−1
, for p > 0. (5)
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We therefore have,

Tl = 2
(
F̄ res2 (k, l)
ε2k · 2l

)1/2

≤ 2
(

5Fres2 (k · 2l−1)
4ε2k · 2l

)1/2

, by Lemma 6

≤ 2

(
5F 2/p

p

4(k · 2l−1)2/p−1ε2k · 2l

)1/2

, by (5)

=
1
ε

√
5
2

(
2Fp
k2l

)1/p

(6)

By equation (4), one component of E1 can be simplified as follows:

E1,1 ≤
L∑

l=1

T pl Fp(Gl) · 2
l+1

≤ ε−p
(

5
2

)p/2 L∑

l=1

2Fp
k · 2lFp(Gl)2

l+1 substituting (6)

≤ 10
kεp
· Fp

L∑

l=1

Fp(Gl) since p < 2

=
10
kεp
· Fp(Fp − Fp(G0))

≤ 5
8
ε2F 2

p since k ≥ 16
ε2+p

The other component of E1 is

E1,2 = 2T p
0 (1 + ε)Fp(lmargin(G0)) ≤ 2ε−p(5/2)p/22

Fp

k
(1 + ε)Fp ≤ 10

kεp
(1 + ε)F 2

p ≤ ε2F 2
p ,

also using k ≥ 16
ε2+p and ε < 1

2 . Substituting in (4), we have,

E1 ≤ εFp + 3(ε2F 2
p + E1,1 + E1,2)1/2 < 6εFp. (7)

Adding, the total error is bounded by

E ≤ E1 + E2 ≤ 8εFp ��

We summarize this section in the following theorem.

Theorem 8. There exists an algorithm that returns F̂p satisfying |F̂p − Fp| ≤ εFp
with probability 3

4 using space O( 1
ε2+p (log2 n)(logF1)) and processes each stream

update in expected timeO(log n logF1) and worst case timeO(log2 n logF1) standard
arithmetic operations on words of size logF1 bits. ��
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Remarks

1. We note that for 0 < p < 1, an estimator for Fp with similar properties may be de-
signed in an exactly analogous fashion by using COUNT-MIN instead of
COUNTSKETCH as the frequent items structure at each level. Such an estimator would
require an ε-accurate estimation of F1 (which would imply estimation of F res1 using
standard techniques), which could either be done using Cauchy-sketches [11,13] or us-
ing the stand-alone technique presented in Section 4. However, using Cauchy-sketches
means that, in general, O( 1

ε2 ) time is required to process each stream update. In or-
der to maintain poly-logarithmic processing time per stream update, the technique of
Section 4 may be used.
2. The space requirement of the stable sketches estimator grows as Õ( 1

ε2p2 ) as a function

of p [13], whereas, the HSS-based technique requires space Õ( 1
ε2+p ). For small values

of p, i.e. p = O
(

1
log ε−1(1+log log ε−1)

)
, the HSS technique can be asymptotically more

space-efficient.

4 An Iterative Estimator for F1

In this section, we use the HSS technique to present a stand-alone, iterative estimator
for F1 =

∑n
i=1|fi|. The previous section presents an estimator for Fp that uses, as a

sub-routine, an estimator for Fres2 (k) at each level of the structure. In this section, we
present a stand-alone estimator that uses only COUNT-MIN sketch to estimate F1. The
technique may be of independent interest.

The estimator uses two separate instantiations of the HSS structure. The first in-
stantiation uses COUNT-MIN sketch structure with k = 8

ε̄3 buckets per hash function,
and s = O(logG) hash functions, where, G = O(F2) and ε̄ = ε

8 . A collection of
s2 = O(log 1

δ ) independent copies of the structure are kept for the purpose of boosting
the confidence of an estimate by taking the median. The second instantiation of the HSS

structure uses k′ = 128
ε̄3 buckets per hash function (so k′ = 16k) and s = O(logG) hash

functions. For estimating F1, we use a two-step procedure, namely, (1) first, we obtain
an estimate of F1 that is correct to within a factor of 16 using the first HSS instantiation
and (2) then, we use the second instantiation to obtain an ε-accurate estimation of F1.

The first step of the estimation is done using the first instantiation of the HSS struc-
ture as follows. We set the threshold T0 to a parameter t, Tl = T0

2l and the threshold
frequency for finding in group l to be Tl

2 . The group definitions are as defined earlier:
G0 = [t, F1], Gl = [ t

2l ,
t

2l−1 ), 1 ≤ l ≤ L. The disambiguation rule for the estimated

frequency is as follows: if f̂i,l > Tl, then, f̂i is set to the estimate obtained from the
lowest of these levels. The sampled groups Ḡl are defined as follows.

Ḡ0 = {i | f̂i ≥ T0}, Ḡl =
{

i | T0

2l
≤ f̂i <

T0

2l−1
and i ∈ Sl

}

, 1 ≤ i ≤ L.

The estimators F̂1 and F̄1 are defined as before—these are now functions of t.

F̂1(t) =
L∑

l=0

∑

i∈Ḡl

|f̂i|2l F̄1(t) =
L∑

l=0

∑

i∈Ḡl

|fi|2l.
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Estimator. Let t iterate over values 1, 2, 22, . . . , G and for each value of t let F̂med
1 (t)

denote the median of the estimates F̂1 returned from the s1 = O(log 1
δ ) copies of the

HSS structure, each using independent random bits and the same value of t. Let tmax

denote the largest value of t satisfying

F̂med
1 (t) ≥ 16t

1.01ε2
.

The final estimate returned is F̂med
1 (tmax) using the second HSS instantiation.

Analysis. We first note that Lemmas 2 and 3 hold for all choices of t. Lemma 5 gets
modified as follows.

Lemma 9. Suppose that for 1 ≤ i ≤ n and 0 ≤ l ≤ L, |f̂i,l − fi| ≤ Δ0
2l with

probability≥ 1− 2−t, where, Δ0 = F res
1 (k)
k . Then, E2 ≤ 16 ·Δ0

∑L
l=0

∑
i∈Gl

|ψ′(ξi)|
2l

with probability ≥ 9
10 − 2−t, where for an i ∈ Gl, ξi lies between fi and f̂i, and

maximizes ψ′(). ��

Lemma 10. Let ε̄ = ε
8 , k = 8

ε̄3 and ε ≤ 1
8 . Then, with probability 1− δ each,

1. For 4F1
ε̄k ≤ t ≤

8F1
ε̄k

|F̂med
1 (t)− F1| ≤

1.01εF1

2
and F̂med

1 (t) ≥ 16t
1.02ε2

2. For any t ≥ 64F1
ε̄k , F̂med

1 (t) < 16t
1.02ε2 with probability 1− δ.

Proof. We consider the two summation terms in error term E1 given by equation (4)
separately.

E1,1 =
L∑

l=1

t

2l
F1(Gl)2l+1 ≤ 2t(F1 − F0), and E1,2 = 2tF1(lmargin(G0)).

Adding, E1 ≤ (2(t+Δ0)F1)1/2.
We ignore the term 2−t+L+2F2 in E1, since, by choosing t = O(L), this term can

be made arbitrarily small in comparison with the other two terms. Since, |Gl| ≤ F1·2l

t ,
our bound on E2 becomes

E2 ≤ 16Δ0

L∑

l=0

|Gl|
2l
≤ 16F 2

1

kt
.

Therefore, the expression for total error is E(t) = E1 + E2

E(t) ≤ 2F1

(
t

F1
+

1
k

)1/2

+
16F 2

1

kt
. (8)

Suppose k = 128
ε̄3 and 4F1

ε̄k ≤ t ≤
8F1
ε̄k . Using ε ≤ 1

8 and ε̄ = ε
8 , we have

E(t) ≤ 2F1

(
t

F1
+

1
k

)1/2

+
16F 2

1

kt
≤ 1.01εF1

2
. (9)
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We therefore have,

|F̂med
1 (t)− F1| ≤ E(t) ≤

1.01εF1

2
, for

4F1

ε̄k
≤ t ≤ 8F1

ε̄k
with probability 1− δ.

Therefore, for 4F1
ε̄k ≤ t ≤

8F1
ε̄k , with probability 1− δ, we have from (9) that

1.01εF1

2
≥ 2
√

tF1 and so t ≤ (1.01)2ε2F1

16
≤

1.01ε2F̂ med
1

16
(1 + 0.505ε) so F̂ med

1 (t) ≥ 16t

1.02ε2
.

(10)

Let t = 2j+2F1
ε̄k for some j ≥ 0, and suppose that (10) is satisfied. Then by (8)

E(t) ≤ 2(j−1)/2−2ε(1.01)F1 + 2−j−2εF1 ≤ 2j/2εF1 with probability 1− δ.

With probability 1− δ, |F̂med
1 (t)− F1| ≤ E and so, using ε ≥ 1

8 ,

2j/2−3F1 ≥ 2j/2εF1 ≥ E(t) ≥ |F̂med
1 (t)− F1| ≥

16t
1.02ε2

− F1 by (10)

≥ 2j−3F1

1.02
− F1 using ε̄ =

ε

8
and k =

8
ε̄3

which is a contradiction for j ≥ 4, proving claim 2. ��

The correctness of the algorithm follows from the above Lemma. The space requirement
of the algorithm is O( 1

ε3 (log3 n)(log2 F1)) bits and the expected time taken to process
each stream update is O(logF1 log 1

δ ) standard arithmetic operations on words of size
O(log n).

5 Conclusion

We present a family of algorithms for the randomized estimation of Fp for 0 <
p < 2 and another family of algorithms for estimating Fp for 0 < p < 1. The
first algorithm family estimates Fp by using the COUNTSKETCH structure and F2

estimation as sub-routines. The second algorithm family estimates Fp by using the
COUNT-MIN sketch structure and F1 estimation as a sub-routines. The space re-
quired by these algorithms are O( 1

ε2+p (log2 n)(log2 F1)(log 1
δ ) and the expected

time required to process each stream update is O(log n logF1 log 1
δ ). Finally, we

also present a stand-alone iterative estimator for F1 that only uses the COUNT-MIN

sketch structure as a sub-routine.
Prior approaches to the problem of estimating Fp [11,13] used sketches of the fre-

quency vector with random variables drawn from a symmetric p-stable distribution. An
interesting feature of the above algorithms is that they do not require the use of sta-
ble distributions. The proposed algorithms trade an extra factor of O(ε−p) factor of
space for improved procesing time (with no polynomial dependency on ε) per stream
update.
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A COUNT-MIN and COUNTSKETCH Summaries

Given a data stream defining a set of item frequencies, rank(r) returns an item with the
rth largest absolute value of the frequency (ties are broken arbitrarily). We say that an
item i has rank r if rank(r) = i. For a given value of k, 1 ≤ k ≤ n, the set top(k) is the
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set of items with rank ≤ k. The residual second moment [5] of a data stream, denoted
by Fres

2 (k), is defined as the second moment of the stream after the top-k frequencies
have been removed. Then, Fres

2 (k) =
∑
r>k f

2
rank(r). The residual first moment [7] of a

data stream, denoted by F res1 , is analogously defined as the F1 norm of the data stream
after the top-k frequencies have been removed, that is, F res1 =

∑
r>k |frank(r)|.

A sketch [1] is a random integer X =
∑

i fi · xi, where, xi ∈ {−1,+1}, for i ∈ D
and the family of variables {xi}i∈D with certain independence properties. The family
of random variables {xi}i∈D is referred to as the sketch basis. For any d ≥ 2, a d-
wise independent sketch basis can be constructed in a pseudo-random manner from a
truly random seed of size O(d log n) bits as follows. Let F be field of characteristic
2 and of size at least n + 1. Choose a degree d − 1 polynomial g : F → F with
coefficients that are randomly chosen from F [17]. Define xi to be 1 if the first bit (i.e.,
the least significant position) of g(i) is 1, and define xi to be −1 otherwise. The d-wise
independence of the xi’s follows from an application of Wegman and Carter’s universal
hash functions [17].

Pair-wise independent sketches are used in [5] to design the COUNTSKETCH al-
gorithm for finding the top-k frequent items in an insert-only stream. The data struc-
ture consists of a collection of s = O(log 1

δ ) independent hash tables U1, U2, . . . , Us
each consisting of 8k buckets. A pair-wise independent hash function hj : [n] →
{1, 2, . . . , 8k} is associated with each hash table that maps items randomly to one
of the 8k buckets, where, k is a space parameter. Additionally, for each table index
j = 1, 2, . . . , s, we keep a pair-wise independent family of random variables {xij}i∈[n],
where, each xij ∈ {−1,+1} with equal probability. Each bucket keeps a sketch of the
sub-stream that maps to it, that is, Uj [r] =

∑
i:hj(i)=r

fixij , 1 ≤ j ≤ s, 1 ≤ r ≤ 8k.

An estimate f̂i is returned as follows: f̂i = mediansj=1 Uj[hj(i)]xij . The accuracy of
estimation is stated as a function Δ of the residual second moment given parameters k
and b is defined as [5]

Δ(b, k) = 8
(

Fres2 (k)
b

)1/2

.

The space versus accuracy guarantees of the COUNTSKETCH algorithm is presented in
Theorem 11.

Theorem 11 ([5]). Let Δ = Δ(k, 8k). Then, for any given i ∈ [n], Pr{|f̂i − fi| ≤
Δ} ≥ 1− δ. The space used isO(k · log 1

δ · (logF1)) bits, and the time taken to process
a stream update is O(log 1

δ ).

The COUNTSKETCH algorithm can be adapted to return approximate frequent items
and their frequencies. The original algorithm [5] uses a heap for maintaining the cur-
rent top-k items in terms of their estimated frequencies. After processing each arriv-
ing stream record of the form (i, v), where, v is assumed to be non-negative, an es-
timate for f̂i is calculated using the scheme outline above. If i is already in the cur-
rent estimated top-k heap then its frequency is correspondingly increased. If i is not
in the heap but f̂i is larger than the current smallest frequency in the heap, then it
replaces that element in the heap. This scheme is applicable to insert-only streams.
A generalization of this method for strict update streams is presented in [6] and re-
turns, with probability 1 − δ, (a) all items with frequency at least (Fres

2 (k)
k )1/2 and,
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(b) does not return any item with frequency less than (1 − ε)(Fres
2 (k)
k )1/2 using space

O
(
kε−2 logn log(kε−1 log(kε−1)) logF1

)
bits. For general update streams, a

variation of this technique can be used for retrieving items satisfying properties (a)
and (b) above using space O(ε−2k log(δ−1n) logF1) bits.

The COUNT-MIN algorithm [7] for finding approximate frequent items keeps a col-
lection of s = O(log 1

δ ) independent hash tables T1, T2, . . . , Ts, where each hash
table Tj is of size b = 2k buckets and uses a pair-wise independent hash function
hj : [n] → {1, . . . , 2k}, for j = 1, 2, . . . , s. The bucket Tj [r] is an integer counter
that maintains the following sum Tj [r] =

∑
i:hj(i)=r fi. The estimated frequency f̂i

is obtained as f̂i = mediansr=1Tj[hj(i)]. The space versus accuracy guarantees for the
COUNT-MIN algorithm is given in terms of the quantity F res1 (k) =

∑
r>k |frank(r)|.

Theorem 12 ([7]). Pr{|f̂i − fi| ≤ F res
1 (k)
k } ≥ 1 − δ with probability using space

O(k log 1
δ logF1) bits and time O(log 1

δ ) to process each stream update.

Estimating F res1 and Fres2 . [9] presents an algorithm to estimate Fres2 (k) to within an
accuracy of (1 ± ε) with confidence 1 − δ using space O( kε2 log(F1) log(nδ )) bits. The
data structure used is identical to the COUNTSKETCH structure. The algorithm basi-
cally removes the top-k estimated frequencies from the COUNTSKETCH structure and
then estimates F2. Let f̂τ1 , . . . , f̂τk

denote the top-k estimated frequencies from the
COUNTSKETCH structure. Next, the contributions of these estimates are removed from
the structure, that is, Uj[r]:=Uj [r] −

∑
t:hj(τt)=r

fτtxjτt . Subsequently, the Fast-AMS
algorithm [16], a variant of the original sketch algorithm [1], is used to estimate the
second moment as F̂

res

2 = mediansj=1

∑8k
r=1(Uj [r])

2. Formally, we can state:

Lemma 13 ([9]). For a given integer k ≥ 1 and 0 < ε < 1, there exists an algorithm
for update streams that returns an estimate F̂ res2 (k) satisfying |F̂ res2 (k)− F res2 (k)| ≤
εF res2 (k) with probability 1− δ using space O( kε2 (log F1

δ )(logF1)) bits.

A similar argument can be applied to estimate F res1 (s), where, instead of using the
COUNTSKETCH algorithm, we use the COUNT-MIN algorithm for retrieving the top-
k estimated absolute frequencies. In parallel, a set of s = O( 1

ε2 ) sketches based on
a 1-stable distribution [11] (i.e., Yj =

∑
i fizji, where zji is drawn from a 1-stable

distribution). After retrieving the top-k frequencies fτ1, . . . , fτk
with respect to their

absolute values, we reduce the sketches Yj :=Yj −
∑k
r=1 fτrzjτr and estimate F res1 (k)

as mediansj=1|Yj |. We summarize this in Lemma 14.

Lemma 14. For a given integer k ≥ 1 and 0 < ε < 1, there exists an algorithm
for update streams that returns an estimate F̂ res1 (k) satisfying |F̂ res1 (k)− F res1 (k)| ≤
εF res1 (k) with probability 1− δ using O(1

ε (k + 1
ε )(log k

δ )(logF1)) bits.

B Reducing Random Bits by Using a PRG

We use a standard technique of reducing the randomness by using a pseudo-random
generator (PRG) of Nisan [15] along the lines of Indyk in [11] and Indyk and Woodruff
in [12].
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Notation. Let M be a finite state machine that uses S bits and has running time R.
Assume thatM uses the random bits in k segments, each segment consisting of kb bits.
Let U r be a uniform distribution over {0, 1}r and for a discrete random variable X ,
let F [X ] denote the probability distribution of X , treated as a vector. Let M(x) denote
the state of M after using the random bits in x. The generator G : {0, 1}u → {0, 1}kb
expands a “small” number of u bits that are truly random to a sequence of kb bits that
“appear” random toM .G is said to be a pseudo-random generator for a class C of finite
state machines with parameter ε, provided, for every M ∈ C

∣
∣F [Mx∈Ukb(x)] −F [Mx∈Um(G(x))]

∣
∣
1
≤ ε

where, |y|1 denotes the F1 norm of the vector y. Nisan [15] shows the following prop-
erty (this version is from [11]).

Theorem 15 ([15]). There exists a PRG G for Space(S) and Time(R) with parameter
ε = 2−O(S) that requires O(S) bits such that G expands O(S logR) bits into O(R)
bits.

This is sufficient due to the fact that we can compute the frequency moments by con-
sidering each (aggregate) frequency fi in turn and use only segments of O(logF1) bits
to store and process it.
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Abstract. In the distribution-free property testing model, the distance between
functions is measured with respect to an arbitrary and unknown probability dis-
tribution D over the input domain. We consider distribution-free testing of sev-
eral basic Boolean function classes over {0, 1}n, namely monotone conjunctions,
general conjunctions, decision lists, and linear threshold functions. We prove that
for each of these function classes, Ω((n/ log n)1/5) oracle calls are required for
any distribution-free testing algorithm. Since each of these function classes is
known to be distribution-free properly learnable (and hence testable) using Θ(n)
oracle calls, our lower bounds are within a polynomial factor of the best possible.

1 Introduction

The field of property testing deals with algorithms that decide whether an input object
has a certain property or is far from having the property after reading only a small frac-
tion of the object. Property testing was introduced in [22] and has evolved into a rich
field of study (see [3,7,11,20,21] for some surveys). A standard approach in property
testing is to view the input to the testing algorithm as a function over some finite domain;
the testing algorithm is required to distinguish functions that have a certain property P
from functions that are ε-far from having propertyP . In the most commonly considered
property testing scenario, a function f is ε-far from having a property P if f disagrees
with every function g that has property P on at least an ε fraction of the points in the
input domain; equivalently, the distance between functions f and g is measured with
respect to the uniform distribution over the domain. The testing algorithm “reads” f
by adaptively querying a black-box oracle for f at points x of the algorithm’s choos-
ing (such oracle calls are often referred to as “membership queries” in computational
learning theory). The main goal in designing property testing algorithms is to use as
few queries as possible to distinguish the two types of functions; ideally the number of
queries should depend only on ε and should be independent of the size of f ’s domain.

One can of course view any property P as a class of functions (the class of those
functions that have property P ). In recent years there has been considerable work in
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the standard “uniform distribution” property testing scenario on testing various natu-
ral properties of Boolean functions f : {0, 1}n → {0, 1}, i.e. testing various Boolean
function classes. Some classes for which uniform distribution testing results have been
obtained are monotone functions [6,9,13]; Boolean literals, monotone conjunctions,
general conjunctions and s-term monotone DNFs [19]; J-juntas [8]; parity functions
(which are equivalent to degree-1 polynomials) [4]; degree-d polynomials [2]; deci-
sion lists, s-term DNFs, size-s decision trees and s-sparse polynomials [5]; and linear
threshold functions [18].

Distribution-Free Property Testing. A natural generalization of property testing is
to consider a broader notion of the distance between functions. Given a probability
distribution D over the domain, we may define the distance between f and g as the
probability that an input x drawn from D has f(x) �= g(x); the “standard” notion of
property testing described above corresponds to the case where D is the uniform dis-
tribution. Distribution-free property testing is the study of property testers in a setting
where distance is measured with respect to a fixed but unknown and arbitrary proba-
bility distribution D. Since the distribution D is unknown, in this scenario the testing
algorithm is allowed to draw random samples from D in addition to querying a black-
box oracle for the value of the function.

Distribution-free property testing is well-motivated by very similar models in com-
putational learning theory (namely the model of distribution-free PAC learning with
membership queries, which is closely related to the well-studied model of exact learn-
ing from equivalence and membership queries), and by the fact that in various settings
the uniform distribution may not be the best way to measure distances. Distribution-
free property testing has been considered by several authors [1,12,14,15,16]; we briefly
describe some of the most relevant prior work below.

Goldreich et al. [12] introduced the model of distribution-free property testing, and
observed that any proper distribution-free PAC learning algorithm (such a learning al-
gorithm for a class of functions always outputs a hypothesis function that itself belongs
to the class) can be used as a distribution-free property testing algorithm. They also
showed that several graph properties that have testing algorithms with query complex-
ity independent of input size in the uniform-distribution model (such as bipartiteness,
k-colorability, ρ-clique, ρ-cut and ρ-bisection) do not have distribution-free testing al-
gorithms with query complexity independent of input size. In contrast, Halevy and
Kushilevitz [15] gave a distribution-free algorithm for testing connectivity in sparse
graphs that has poly(1/ε) query complexity independent of input size.

A range of positive and negative results have been established for distribution-free
testing of Boolean functions over {0, 1}n. [16] showed that any distribution-free mono-
tonicity testing algorithm over {0, 1}n must make 2Ω(n) queries; this is in contrast
with the uniform distribution setting, where monotonicity testing algorithms are known
that have query complexity poly(n, 1/ε) [6,9,13]. On the other hand, [14] showed that
for several important function classes over {0, 1}n such as juntas, parities, low-degree
polynomials and Boolean literals, there exist distribution-free testing algorithms with
query complexity poly(1/ε) independent of n; these distribution-free results match the
query bounds of uniform distribution testing algorithms for these classes.
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To sum up, the current landscape of distribution-free property testing is intriguingly
varied. For some testing problems (juntas, parities, Boolean literals, low-degree poly-
nomials, connectivity in sparse graphs) the complexity of distribution-free testing is
known to be essentially the same as the complexity of uniform-distribution testing; but
for other natural testing problems (monotonicity, bipartiteness, k-colorability, ρ-clique,
ρ-cut, ρ-bisection), distribution-free testing provably requires many more queries than
uniform-distribution testing.

This Work. Our work is motivated by the fact that for many Boolean function classes
over {0, 1}n that are of fundamental interest, a very large gap exists between the query
complexities of the best known distribution-free property testing algorithms (which typ-
ically follow trivially from learning algorithms and have query complexity Ω(n)) and
the best known uniform distribution property testing algorithms (which typically have
query complexity poly(1/ε) independent of n). A natural goal is to try to close this gap,
either by developing efficient distribution-free testing algorithms or by proving lower
bounds for distribution-free testing for these classes.

We study distribution-free testability of several fundamental classes of Boolean func-
tions that have been previously considered in the uniform distribution testing frame-
work, and have been extensively studied in various distribution-free learning models.
More precisely, we consider the following classes (in order of increasing generality):
monotone conjunctions, arbitrary conjunctions, decision lists, and linear threshold func-
tions. Each of these four classes is known to be testable in the uniform distribution
setting using poly(1/ε) many queries, independent of n (see [19] for monotone and
general conjunctions, [5] for decision lists, and [18] for linear threshold functions). On
the other hand, for each of these classes the most efficient known distribution-free test-
ing algorithm is simply to use a proper learning algorithm. Using the fact that each
of these classes has Vapnik-Chervonenkis dimensionΘ(n), standard results in learning
theory yield well-known algorithms that useO(n/ε) random examples and no member-
ship queries (see e.g. Chapter 3 of [17]), and known results also imply that any learning
algorithm must make Ω(n) oracle calls (see [23]).

Our main results are strong distribution-free lower bounds for testing each of these
four function classes:

Theorem 1. Let T be any algorithm which, given oracle access to an unknown f :
{0, 1}n → {0, 1} and (sampling) oracle access to an unknown distribution D over
{0, 1}n, tests whether f is a monotone conjunction versus Θ(1)-far from every mono-
tone conjunction with respect to D. Then T must make Ω((n/ log n)1/5) oracle calls
in total. The same lower bound holds for testing general conjunctions, testing decision
lists, and testing linear threshold functions.

These results show that for these function classes, distribution-free testing is nearly
as difficult (from a query perspective) as distribution-free learning, and is much more
difficult than uniform-distribution testing.

Organization. After giving preliminaries in Section 2, in Section 3 we present our
construction of “yes” and “no” (function, distribution) pairs that are used in the lower
bound for monotone conjunctions. The actual lower bound proof is given in Section 4.
In Section 5 we give a simple argument that extends the result to a lower bound for
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arbitrary conjunctions and for decision lists. Because of space limitations we do not
present the proof for linear threshold functions here; it can be found in [10].

2 Preliminaries

Throughout the paper we deal with Boolean functions over n input variables.

Definition 1. LetD be a probability distribution over {0, 1}n. Given Boolean functions
f, g : {0, 1}n → {0, 1}, the distance between f and g with respect to D is defined by

distD(f, g)
def
= Prx∼D[f(x) �= g(x)].

If C is a class of Boolean functions over {0, 1}n, we define the distance between f

and C with respect to D to be distD(f, C)
def
= ming∈C distD(f, g).

We say that f is ε-far from C with respect to D if distD(f, C) ≥ ε.

Now we can define the notion of a distribution-free tester for a class of functions C:

Definition 2. A distribution-free tester for class C is a probabilistic oracle machine T
which takes as input a distance parameter ε > 0, is given access to

– a black-box oracle to a fixed (but unknown and arbitrary) function h : {0, 1}n →
{0, 1} (when invoked with input x, the oracle returns the value h(x)); and

– a sampling oracle for a fixed (but unknown and arbitrary) distribution D over
{0, 1}n (each time it is invoked this oracle returns a pair (x, h(x)) where x is
independently drawn from D),

and satisfies the following two conditions: for any h : {0, 1}n → {0, 1} and any distri-
bution D,

– If h belongs to C, then Pr[T h,D = Accept] ≥ 2
3 ; and

– If h is ε-far from C w.r.t. D, then Pr[T h,D = Accept] ≤ 1
3 .

This definition allows the tester to be adaptive and to have two-sided error; this is of
course the strongest version for proving lower bounds.

The Classes We Consider. For completeness we define here all the classes of functions
that we will consider: these are (in order of increasing generality) monotone conjunc-
tions, general conjunctions, decision lists, and linear threshold functions. We note that
each of these function classes is quite basic and natural and has been studied intensively
in fields such as computational learning theory.

The class MCONJ consists of all monotone conjunctions of any set of Boolean
variables from x1, . . . , xn, i.e. all ANDs of (unnegated) Boolean variables.

The class CONJ consists of all conjunctions of any set of Boolean literals over
{0, 1}n (a literal is a Boolean variable or the negation of a variable).

A decision list L of length k over the Boolean variables x1, . . . , xn is defined by a
list of k pairs and a bit (�1, β1), (�2, β2), . . . , (�k, βk), βk+1 where each �i is a Boolean
literal and each βi is either 0 or 1. Given any x ∈ {0, 1}n, the value of L(x) is βi if i is
the smallest index such that �i is made true by x; if no �i is true then L(x) = βk+1. Let
DL denote the class of all decision lists of arbitrary length k ≥ 0 over {0, 1}n.
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A linear threshold function is defined by a list of n + 1 real values w1, . . . , wn, θ.
The value of the function on input x ∈ {0, 1}n is 1 if w1x1 + · · · + wnxn ≥ θ and is
0 if w1x1 + · · ·+ wnxn < θ. We write LTF to denote the class of all linear threshold
functions over {0, 1}n.

It is well known and easy to see that MCONJ � CONJ � DL � LTF.

Notation. For a string x ∈ {0, 1}n we write xi to denote the i-th bit of x. For x, y ∈
{0, 1}n we write x ∧ y to denote the n-bit string z which is the bitwise AND of x and
y, i.e. zi = xi ∧ yi for all i. The string x ∨ y is defined similarly to be the bitwise OR
of x and y.

Recall that the total variation distance, or statistical distance, between two random
variablesX and Y that take values in a finite set S is dTV (X,Y ) def= 1

2

∑
ζ∈S |Pr[X =

ζ]−Pr[Y = ζ]|.

3 The Two Distributions for Monotone Conjunctions

In this section we define two distributions, YES and NO, over pairs (h,D) where
h : {0, 1}n → {0, 1} is a Boolean function and D is a distribution over the domain
{0, 1}n. We will prove that these distributions have the following properties:

1. For every pair (g,Dg) in the support of YES , the function g is a monotone con-
junction (and hence any tester for MCONJ must accept every such pair with
probability at least 2/3).

2. For every pair (f,Df ) in the support of NO, the function f is 1/3-far from
MCONJ with respect to Df (and hence any tester for MCONJ must accept
every such pair with probability at most 1/3).

Our constructions are parameterized by three values �,m and s. As we will see the
optimal setting of these parameters (up to multiplicative constants) for our purposes is

�
def= n2/5(logn)3/5, m

def= (n/ logn)2/5, s
def= logn. (1)

To keep the different roles of these parameters clear in our exposition we will present
our constructions and analyses in terms of “�,” “m” and “s” as much as possible and
only plug in the values from (1) toward the end of our analysis.

3.1 The YES Distribution

A draw from the distribution YES over (g,Dg) pairs is obtained as follows:

– LetR ⊂ [n] be a set of size 2�m selected uniformly at random. Randomly partition
the set R into 2m subsets A1, B1, . . . , Am, Bm, each of size �. Let ai ∈ {0, 1}n
be the string whose j-th bit is 0 iff j ∈ Ai. The string bi is defined similarly. The
string ci is defined to be ai ∧ bi, and similarly we define the set Ci = Ai ∪Bi. We
sometimes refer to ai, bi, ci as the “points of the i-th block.”

– Let g1 be the conjunction of all variables in [n] \R.
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Fig. 1. The left figure shows how a yes-function g labels ci and the points above it (including ai

and bi). Bold print indicate the label that g assigns. Note that every point above bi is labeled 1 by
g, and points above ai are labeled according to xα(i). The right figure shows how a no-function f
labels ci and the points above it (including ai and bi). Again, bold print indicates the label that f
assigns. Note that every point above bi is labeled 1 by f , and points above ai with less than s 0’s
are labeled according to xα(i). The i-special points for block i are shaded and are labeled 1 by f.

– For each i = 1, . . . ,m let α(i) be an element chosen uniformly at random from
the set Ai; we say that α(i) is a representative of Ai. Let g2 be a conjunction of
length m formed by taking g2 = xα(1) ∧ · · · ∧ xα(m), i.e. g2 is an AND of the
representatives from each of A1, . . . , Am.

– The function g is taken to be g = g1 ∧ g2. For each i = 1, . . . ,m the distribution
Dg puts weight 2/(3m) on bi and puts weight 1/(3m) on ci.

It is clear that for every (g,Dg) in the support of YES , the function g is a monotone
conjunction that contains exactly n−2m�+m variables, so Property (1) indeed holds.

3.2 The NO Distribution

A draw from the distributionNO of (f,Df ) pairs is obtained as follows:

– As in the yes-case, let R ⊂ [n] be a randomly selected set of size 2�m, and ran-
domly partition the set R into 2m subsetsA1, B1, . . . , Am, Bm, each of size �. The
points ai, bi, ci and sets Ai, Bi, Ci are defined as in the yes-case. The distribution
Df is uniform over the 3m points a1, . . . , cm.

– Construct the conjunctions g1 and g2 exactly as in the yes-case: g1 is the conjunc-
tion of all variables in [n] \ R and g2 is xα(1) ∧ · · · ∧ xα(m) where each α(i) is a
representative chosen uniformly from Ai.

– Define the function f ′ as follows: f ′(x) = 0 if there exists some i ∈ [m] such that
both the following conditions hold:
• xα(i) = 0 and
• (fewer than s of the elements j ∈ Ai have xj = 0) or (xj = 0 for some
j ∈ Bi).

The following terminology will be useful: we say that an input x ∈ {0, 1}n is
i-special if (at least s elements j ∈ Ai have xj = 0) and (xj = 1 for all j ∈
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Bi). Thus an equivalent way to define f ′ is that f ′(x) = g2(x) unless g2(x) = 0
(because some xα(i) = 0) but x is i-special for each i such that xα(i) = 0; in this
case f ′(x) = 1.

– The final function f is defined as f = g1 ∧ f ′.

It is easy to see that in both the yes-case and the no-case, any black-box query that
sets any variable in [n] \ R to 0 will give a 0 response. To give some intuition for our
construction, let us explain here the role that the large conjunction g1 (over n − 2�m
variables) plays in both the YES and NO constructions. The idea is that because of
g1, a testing algorithm that has obtained strings z1, . . . , zq from the distribution D will
“gain nothing” by querying any string x that has any bit xi set to 0 that was set to 1
in all of z1, . . . , zq. This is because such a variable xi will with very high probability
(over a random choice of (f,Df ) fromNO or a random choice of (g,Dg) from YES)
be contained in g1, so in both the “yes” and “no” cases the query will yield an answer
of 0 with very high probability. Consequently there is no point in making such a query
in the first place. (We give a rigorous version of this argument in Section 4.2).

For any (f,Df ) drawn from NO, we have f(ai) = f(bi) = 1 and f(ci) = 0
for each i = 1, . . . ,m. It is noted in [19] (and is easy to check) that any monotone
conjunction h must satisfy h(x)∧h(y) = h(x∧y) for all x, y ∈ {0, 1}n, and thus must
satisfy h(ci) = h(ai) ∧ h(bi). Thus any monotone conjunction h must disagree with f
on at least one of ai, bi, ci for all i, and consequently f is 1/3-far from any monotone
conjunction with respect to Df .

Thus we have established properties (1) and (2) stated at the beginning of this section.
These give:

Lemma 1. Any distribution-free tester for MCONJ that is run with distance param-
eter ε = 1/3 must accept a random pair (g,Dg) drawn from YES with probability at
least 2/3, and must accept a random pair (f,Df ) drawn from NO with probability at
most 1/3.

4 The Lower Bound for Monotone Conjunctions

In this section we will prove the following theorem:

Theorem 2. Let q
def
= 1

20 ( n
log n )1/5. Let T be any probabilistic oracle algorithm that,

given a pair (h,D), makes at most q black-box queries to h and samples D at most q
times. Then we have

∣
∣Pr(g,Dg)∼YES [T g,Dg = Accept]−Pr(f,Df )∼NO[T f,Df = Accept]

∣
∣ ≤ 1

4
.

Note that in the above theorem each probability is taken over the draw of the (func-
tion,distribution) pair from the appropriate distribution YES or NO, over the random
draws from the distribution Df or Dg, and over any internal randomness of algorithm
T. Lemma 1 and Theorem 2 together immediately imply the first part of Theorem 1,
our lower bound for monotone conjunctions.
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4.1 The Idea

Here is some high-level intuition for the proof. If T could find ai, bi and ci for some i
then T would know which case it is in (yes versus no), because h(ai) ∧ h(bi) = h(ci)
if and only if T is in the yes-case. Since T can only make q )

√
m draws from

D, the birthday paradox tells us that with high probability the random sample that T
draws contains at most one of ai, bi and ci for each i. The ci-type points (with n − 2�
ones) are labeled negative in both the yes- and no- cases, so these “look the same” to
T in both cases. And since the distributions Dg (in the yes-case) and Df (in the no-
case) put weight only on the positive ai and bi-type points (with n − � ones), these
points “look the same” to T as well in both cases. So with high probability T cannot
distinguish between yes-pairs and no-pairs on the basis of the first q random draws
alone. (Corollary 1 formalizes this intuition).

Of course, though, T can also make q queries. Can T perhaps identify a triple
(ai, bi, ci) through these queries, or perhaps T can otherwise determine which case
it is in even without finding a triple? The crux of the proof is to show that in fact queries
actually cannot help T much; we now sketch the idea.

Consider a single fixed block i ∈ [m]. If none of ai, bi or ci are drawn in the initial
sample, then by the argument of Section 3.2 the tester will get no useful information
about which case (s)he is in from this block. By the birthday paradox we can assume
that at most one of ai, bi and ci is drawn in the initial sample; we consider the three
cases in turn.

If bi is drawn, then by the Section 3.2 argument all query points will have all the bits
in Ai set to 1; such queries will “look the same” in both the yes- and no- cases as far as
the i-th block is concerned.

If ai is drawn (so we are in the no-case), then by the Section 3.2 argument all query
points will have all the bits in Bi set to 1. Using the definition of f ′, as far as the i-th
block is concerned with high probability it will “look like” the initial ai point was a
bi-point from the yes-case. This is because the only way the tester can tell that it is in
the no-case is if it manages to query a point which has fewer than s bits from Ai set to
0 but the representative α(i) is one of those bits. Such points are hard to find since α(i)
is randomly selected from Ai. (See the “a-witness” case in the proof of Lemma 6).

Finally, suppose that ci is drawn. The only way a tester can distinguish between the
yes- and no- cases is by finding an i-special point (or determining that no such point
exists), but to find such a point it must make a query with at least s 0’s inCi, all of which
lie in Ai. This is hard to do since the tester does not know how the elements of Ci are
divided into the sets Ai and Bi. (See the “c-witness” case in the proof of Lemma 6).

4.2 Proof of Theorem 2

Fix any probabilistic oracle algorithm T that makes at most q black-box queries to h
and samples D at most q times. Without loss of generality we may assume that T first
makes exactly q draws from distributionD, and then makes exactly q (adaptive) queries
to the black-box oracle for h.

It will be convenient for us to assume that algorithm T is actually given “extra infor-
mation” on certain draws from the distributionD. More precisely, we suppose that each
time T calls the oracle for D,
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– If a “ci-type” labeled example (ci, h(ci)) is generated by the oracle, algorithm T
receives the triple (ci, h(ci), α(i)) (recall that α(i) is the index of the variable from
Ci that belongs to the conjunction g2);

– If a “non-ci-type” labeled example (x, h(x)) is generated by the oracle where x �=
ci for all i = 1, . . . ,m, algorithm T receives the triple (x, h(x), 0). (Thus there is
no “extra information” given on non-ci points).

It is clear that proving Theorem 2 for an arbitrary algorithm T that receives this extra
information establishes the original theorem as stated (for algorithms that do not receive
the extra information).

Following [16], we now define a knowledge sequence to precisely capture the notion
of “what an algorithm learns from its queries.” A knowledge sequence is a sequence of
elements corresponding to the interactions that an algorithm has with each of the two or-
acles. The first q elements of a knowledge sequence are triples as described above; each
corresponds to an independent draw from the distribution D. The remaining elements
of the knowledge sequence are input-output pairs corresponding to the algorithm’s calls
to the black-box oracle for h. (Recall that these later oracle calls are adaptive, i.e. each
query point can depend on the answers received from previous oracle calls).

Notation. For any oracle algorithmALG, letPALGyes denote the distribution over knowl-
edge sequences induced by runningALG on a pair (g,Dg) randomly drawn fromYES .
Similarly, let PALGno denote the distribution over knowledge sequences induced by run-
ningALG on a pair (f,Df ) randomly drawn fromNO. For 0 ≤ i ≤ q we write PALGyes,i

to denote the length-(q+ i) prefix of PALGyes , and similarly for PALGno,i .
We will prove Theorem 2 by showing that the statistical distance dTV (PTyes,PTno)

between distributions PTyes and PTno is at most 1/4. Because of space constraints some
proofs are omitted from the following presentation; all omitted proofs can be found
in [10].

Most Sequences of Draws Are “Clean” in Both the Yes- and No- Cases. The main
result of this subsection is Corollary 1; intuitively, this corollary shows that given only
q draws from the distribution and no black-box queries, it is impossible to distinguish
between the yes- and no- cases with high accuracy. This is achieved via a notion of a
“clean” sequence of draws from the distribution, which we now explain.

Let S = (x1, y1), . . . , (xq, yq) be a sequence of q labeled examples drawn from
distributionD, whereD is eitherDf for some (f,Df ) ∈ NO orDg for some (g,Dg) ∈
YES. In either case there is a corresponding set of points a1, b1, c1, . . . , am, bm, cm as
described in Section 3. We say that S is clean if S does not hit any block 1, . . . ,m
twice, i.e. if the number of different blocks from 1, . . . ,m for which S contains some
point ai, bi or ci is exactly q. With this definition, we have the following claim and its
easy corollary:

Claim. We have Pr[PTyes,0 is clean] = Pr[PTno,0 is clean] ≥ 1 − q2/m. Furthermore,
the conditional random variables (PTyes,0 | PTyes,0 is clean) and (PTno,0 | PTno,0 is clean)
are identically distributed.

Corollary 1. The statistical distance dTV (PTyes,0,PTno,0) is at most q2/m.
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Eliminating Foolhardy Queries. Let T ′ denote a modified version of algorithm T
which works as follows: like T , it starts out by making q draws from the distribution.
Let Q be the set of all indices i such that all q draws from the distribution have the i-th
bit set to 1. We say that any query string x ∈ {0, 1}n that has xj = 0 for some j ∈ Q
is foolhardy. After making its q draws from D, algorithm T ′ simulates algorithm T for
q black-box queries, except that for any foolhardy query that T makes, T ′ “fakes” the
query in the following sense: it does not actually make the query but instead proceeds
as T would proceed if it made the query and received the response 0.

Our goal in this subsection is to show that in both the yes- and no- cases, the exe-
cutions of T and T ′ are statistically close. (Intuitively, this means that we can w.l.o.g.
assume that the testing algorithm T does not make any foolhardy queries.) To analyze
algorithm T ′ it will be useful to consider some other algorithms that are intermediate
between T and T ′, which we now describe.

For each value 1 ≤ k ≤ q, let Uk denote the algorithm which works as follows: Uk
first makes q draws from the distribution D, then simulates algorithm T for k queries,
except that for each of the first k − 1 queries that T makes, if the query is foolhardy
thenUk “fakes” the query as described above. Let U ′

k denote the algorithm which works
exactly like Uk, except that if the k-th query made by Uk is foolhardy then U ′

k fakes
that query as well. We have the following:

Lemma 2. For all k ∈ [q], the statistical distance

dTV ((PUk
yes | PUk

yes,0 is clean), (PU
′
k

yes | PU
′
k

yes,0 is clean))

is at most 2�m/n, and similarly dTV ((PUk
no | PUk

no,0 is clean), (PU
′
k

no | PU
′
k

no,0 is clean)) is
also at most 2�m/n.

Now a hybrid argument using Lemma 2 lets us bound the statistical distance between
the executions of T and T ′.

Lemma 3. The statistical distance dTV (PT ′

yes,PTyes) is at most 2�mq/n+ q2/m, and

the same bound holds for dTV (PT ′

no ,PTno).

Bounding the Probability of Finding a Witness. Let T ′′ denote an algorithm that
is a variant of T ′, modified as follows. T ′′ simulates T ′ except that T ′′ does not actu-
ally make queries on non-foolhardy strings; instead T ′′ simulates the answers to those
queries “in the obvious way” that they should be answered if the target function were a
yes-function and hence all of the draws from D that yielded strings with � zeros were
in fact bi-type points. More precisely, assume that there are r distinct ci-type points in
the initial sequence of q draws from the distribution. Since for each ci-type point the
algorithm is given α(i), the algorithm “knows” r variables xα(i) that are in the conjunc-
tion. To simulate an answer to a non-foolhardy query x ∈ {0, 1}n, T ′′ answers with 0
if any of the r xα(i) variables are set to 0 in x, and answers with 1 otherwise. Note that
consequently T ′′ does not actually make any black-box queries at all.

In this subsection we will show that in both the yes- and no- cases, the executions
of T ′ and T ′′ are statistically close; once we have this it is not difficult to complete the
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proof of Theorem 2. In the yes-case these distributions are in fact identical (Lemma 4),
but in the no-case these distributions are not identical; we will argue that they are close
using properties of the function f ′ from Section 3.2.

We first address the easier yes-case:

Lemma 4. The statistical distance dTV (PT ′

yes,PT
′′

yes) is zero.

Proof. We argue that T ′ and T ′′ answer all queries in exactly the same way. Fix any
1 ≤ i ≤ q and let z denote the ith query made by T .

If z is a foolhardy query then both T ′ and T ′′ answer z with 0. So suppose that z is
not a foolhardy query. Then any 0’s that z contains must be in positions from points that
were sampled in the first stage. Consequently the only variables that can be set to 0 that
are in the conjunction g are the xα(i) variables from the Ci sets corresponding to the ci

points in the draws. All the other variables that were “seen” are not in the conjunction
so setting them to 0 or 1 will not affect the value of g(z). Therefore, g(z) (and hence
T ′’s response) is 0 if any of the xα(i) variables are set to 0 in z, and is 1 otherwise. This
is exactly how T ′′ answers non-foolhardy queries as well. ��

To handle the no-case, we introduce the notion of a “witness” that the black-box func-
tion is a no-function.

Definition 3. We say that a knowledge sequence contains a witness for (f,Df ) if ele-
ments q+1, . . . of the sequence (the black-box queries) contain either of the following:

1. A point z ∈ {0, 1}n such that for some 1 ≤ i ≤ m for which ai was sampled in the
first q draws, the bit zα(i) is 0 but fewer than s of the elements j ∈ Ai have zj = 0.
We refer to such a point as an a-witness for block i.

2. A point z ∈ {0, 1}n such that for some 1 ≤ i ≤ m for which ci was sampled in the
first q draws, z is i-special. We refer to such a point as a c-witness for block i.

The following lemma implies that it is enough to bound the probability that PTno con-
tains a witness:

Lemma 5. The statistical distance dTV ((PT ′

no | PT
′

no does not contain a witness and
PT ′

no,0 is clean), (PT ′′

no | PT
′′

no does not contain a witness and PT ′′

no,0 is clean)) is zero.

Proof. Claim 4.2 implies that (PT ′

no,0 | PT
′

no,0 is clean) and (PT ′′

no,0 | PT
′′

no,0 is clean) are
identically distributed. We show that if there is no witness then T ′ and T ′′ answer all
queries in exactly the same way; this gives the lemma. Fix any 1 ≤ i ≤ q and let z
denote the ith query.

If z is a foolhardy query, then both T ′ and T ′′ answer z with 0. So suppose that z
is not a foolhardy query and not a witness. Then any 0’s that z contains must be in
positions from points that were sampled in the first stage.

First suppose that one of the xα(i) variables from some ci that was sampled is set to
0 in z. Since z is not a witness, either z has fewer than s zeros fromAi or some variable
from Bi is set to zero in z. So in this case we have f(xi) = g2(xi) = 0.

Now suppose that none of the xα(i) variables from the ci’s that were sampled are set
to 0 in z. If no variable xα(i) from any ai that was sampled is set to 0 in z, then clearly
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f(z) = g(z) = 1. If any variable xα(i) from an ai that was sampled is set to 0 in z,
then since z is not a witness there must be at least s elements of Ai set to 0 and every
element of Bi set to 1 for each such xα(i). Therefore, f(z) = 1.

Thus f(z) evaluates to 0 if any of the xα(i) variables from the ci’s that were
sampled is set to 0 and evaluates to 1 otherwise. This is exactly how T ′′ answers queries
as well. ��

Let us consider a sequence of algorithms that hybridize between T ′ and T ′′, similar to
the previous section. For each value 1 ≤ k ≤ q, let Vk denote the algorithm which
works as follows: Vk first makes q draws from the distribution D, then simulates algo-
rithm T ′ for k queries, except that each of the first k − 1 queries is faked (foolhardy
queries are faked as described in the previous subsection, and non-foolhardy queries are
faked as described at the start of this subsection). Thus algorithm Vk actually makes at
most one query to the black-box oracle, the k-th one (if this is a foolhardy query then
this one is faked as well). Let V ′

k denote the algorithm which works exactly like Vk,
except that if the k-th query made by Vk is non-foolhardy then V ′

k fakes that query as
well as described at the start of this subsection.

Lemma 6. For each value 1 ≤ k ≤ q, the statistical distance dTV ((PVk
no | PVk

no,0 is

clean ), (PV
′

k
no | PV

′
k

no,0 is clean)) is at most max{ qs� ,
q
2s } = qs/�.

Proof. By Lemma 5, the executions of Vk and V ′
k are identically distributed unless

the k-th query string (which we denote z) is a witness for (f,Df ). Since neither Vk
nor V ′

k makes any black-box query prior to z, the variation distance between PVk
no and

PV
′

k
no is at most Pr[z is a witness] where the probability is taken over a random draw of

(f,Df ) from NO conditioned on (f,Df ) being consistent with the q draws from the
distribution and with those first q draws being clean. We bound the probability that z is
a witness by considering both possibilities for z (an a-witness or a c-witness) in turn.

– We first bound the probability that z is an a-witness. So fix some i ∈ [m] and let
us suppose that ai was sampled in the first stage of the algorithm. We will bound
the probability that z is an a-witness for block i; once we have done this, a union
bound over the (at most q) blocks such that ai is sampled in the first stage gives a
bound on the overall probability that z is an a-witness.

Fix any possible outcome for z. In order for z to be an a-witness for block i, it
must be the case that fewer than s of the � elements in Ai are set to 0 in z, but the
bit zα(i) is set to 0. For a random choice of (f,Df ) as described above, since we are
conditioning on the q draws from the distribution being clean, the only information
that these q draws reveal about the index α(i) is that it is some member of the set
Ai. Consequently for a random (f,Df ) as described above, each bit inAi is equally
likely to be chosen as α(i), so the probability that α(i) is chosen to be one of the at
most s bits in Ai that are set to 0 in z is at most s/�. Consequently the probability
that z is an a-witness for block i is at most s/�, and a union bound gives that the
overall probability that z is an a-witness is at most qs/�.

– Now we bound the probability that z is a c-witness. Fix some i ∈ [m] and let us
suppose that ci was sampled in the first stage of the algorithm. We will bound the
probability that z is a c-witness for block i and then use a union bound as above.
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Fix any possible outcome for z; let r denote the number of 0’s that z has in the
bit positions in Ci. In order for z to be a c-witness for block i it must be the case
that z is i-special, i.e. r ≥ s and all r of these 0’s in fact belong to Ai. For a
random choice of (f,Df ) conditioned on being consistent with the q samples from
the distribution and with those q samples being clean, the distribution over possible
choices of Ai is uniform over all

(
2�
�

)
possibilities for selecting a size-� subset of

Ci. Consequently the probability that all r 0’s belong to Ai is at most

(
2�−r
�−r
)

(
2l
�

) =
�(�− 1) · · · (�− r + 1)

2�(2�− 1) · · · (2�− r + 1)
<

1
2r
≤ 1

2s
.

So the probability that z is a c-witness for block i is at most 1/2s, and by a union
bound the overall probability that z is a c-witness is at most q/2s.

So the overall probability that z is a witness is at most max{ qs� ,
q
2s }.Using (1) we have

that the maximum is qs/�, and the lemma is proved. ��

Now similar to Section 4.2, a hybrid argument using Lemma 6 lets us bound the statis-
tical distance between the executions of T ′ and T ′′. The proof of the following lemma
is entirely similar to that of Lemma 3 so we omit it.

Lemma 7. The statistical distance dTV (PT ′

no ,PT
′′

no ) is at most q2s/�+ q2/m.

Putting the Pieces Together. At this stage, we have that T ′′ is an algorithm that
only makes draws from the distribution and makes no queries. It follows that the sta-
tistical distance dTV (PT ′′

yes,PT
′′

no ) is at most dTV (PTyes,0,PTno,0). So we can bound
dTV (PTyes,PTno) as follows (we write “d” in place of “dTV ” for brevity):

d(PTyes,PT
′

yes) + d(PT ′

yes,PT
′′

yes) + d(PT ′′

yes,PT
′′

no ) + d(PT ′′

no ,PT
′

no) + d(PT ′

no ,PTno)
≤ d(PTyes,PT

′

yes) + d(PT ′

yes,PT
′′

yes) + d(PTyes,0,PTno,0) + d(PT ′′

no ,PT
′

no) + d(PT ′

no ,PTno)
≤ 4q2/m+ 4q�m/n+ q2s/�

where the final bound follows by combining Corollary 1, Lemma 3, Lemma 4 and
Lemma 7. Recalling the parameter settings � = n2/5(log n)3/5, m = (n/ logn)2/5,
and s = logn from (1) and the fact that q = 1

20 ( n
logn )1/5, this bound is less than 1/4.

This concludes the proof of Theorem 2. ��

5 Extending the Lower Bound to Conjunctions and Decision Lists

The construction and analysis from the previous sections easily give a lower bound for
testing decision lists via the following lemma:

Lemma 8. For any pair (f,Df ) in the support of NO and any decision list h, the
function f is at least 1/6-far from h w.r.t. Df .
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Proof. Fix any (f,Df ) in the support of NO and any decision list h = (�1, β1),
(�2, β2), . . . , (�k, βk), βk+1. We will show that at least one of the six points a1, b1,
c1, a2, b2, c2 is labeled differently by h and f . Grouping all m blocks into pairs and
applying the same argument to each pair gives the lemma.

Let �a1 be the first literal in h that is satisfied by a1, so the value h(a1) equals βa1 .
Define �b1 , �c1 , �a2 , �b2 , and �c2 similarly. We will assume that h and f agree on all
six points, i.e. that βa1 = βb1 = βa2 = βb2 = 1 and βc1 = βc2 = 0, and derive a
contradiction.

We may suppose w.l.o.g. that a1 = min{a1, b1, a2, b2}. We now consider two cases
depending on whether or not c1 < a1. (Note that a1 cannot equal c1 since f(a1) = 1
but f(c1) = 0).

Suppose first that c1 < a1. No matter what literal �c1 is, since c1 satisfies �c1 at least
one of a1, b1 must satisfy it as well. But this means that min{a1, b1} ≤ c1, which is
impossible since c1 < a1 and a1 ≤ min{a1, b1}.

Now suppose that a1 < c1; then it must be the case that �a1 is a literal “xj” for some
j ∈ B1. (The only other possibilities are that �a1 is “xj” for some j ∈ Ai or is “xj” for
some j ∈ ([n] \ C1); in either case, this would imply that f(c1) = 1, which does not
hold.) Since f(c2) = 0 and (c2)j = 1, it must be the case that c2 < a1. But no matter
what literal �c2 is, since c2 satisfies it at least one of a2, b2 must satisfy it as well. This
means that min{a2, b2} ≤ c2 < a1 ≤ min{a2, b2}, which is a contradiction. ��

Since monotone conjunctions are a subclass of decision lists, for every (g,Dg) in the
support of YES we have that g is computed by a decision list. We thus have the ob-
vious analogue of Lemma 1 for decision lists; together with Theorem 2, this gives the
Ω((n/ logn)1/5) lower bound for decision lists that is claimed in Theorem 1.

Since any conjunction (not necessarily monotone) can be expressed as a decision list,
we immediately have an analogue of Lemma 8 for general conjunctions. The same line
of reasoning described above now gives the Ω((n/ logn)1/5) lower bound for general
conjunctions that is claimed in Theorem 1.

While the construction from Section 3 went through unchanged to give us lower
bounds on general conjunctions and decision lists, it is not suited for a lower bound on
LTF . To see this, observe that for any (f,Df ) in the support of NO the function f is
0-far from the linear threshold function x1 + · · · + · · ·xn ≥ n − 3�/2 with respect to
Df . Consequently we need a somewhat different approach; in [10] a modified version
of our construction from Section 3 is used to obtain a lower bound for LTF.

References

1. Ailon, N., Chazelle, B.: Information theory in property testing and monotonicity testing in
higher dimension. Information and Computation 204, 1704–1717 (2006)

2. Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing low-degree polynomials
over GF(2). In: Proceedings of RANDOM-APPROX, pp. 188–199 (2003)

3. Alon, N., Shapira, A.: Homomorphisms in Graph Property Testing - A Survey. Topics in
Discrete Mathematics (to appear, 2007) available at
http://www.math.tau.ac.il/∼asafico/nesetril.pdf

4. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical
problems. J. Comp. Sys. Sci. 47, 549–595, Earlier version in STOC’90 (1993)

http://www.math.tau.ac.il/~ asafico/nesetril.pdf


508 D. Glasner and R.A. Servedio

5. Diakonikolas, I., Lee, H., Matulef, K., Onak, K., Rubinfeld, R., Servedio, R., Wan, A.: Test-
ing for concise representations. Submitted for publication (2007)

6. Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky, A.: Im-
proved testing algorithms for monotonocity. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P.,
Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 97–108.
Springer, Heidelberg (1999)

7. Fischer, E.: The art of uninformed decisions: A primer to property testing. Computational
Complexity Column of The Bulletin of the European Association for Theoretical Computer
Science 75, 97–126 (2001)

8. Fischer, E., Kindler, G., Ron, D., Safra, S., Samorodnitsky, A.: Testing juntas. In: Proceed-
ings of the 43rd IEEE Symposium on Foundations of Computer Science, pp. 103–112 (2002)

9. Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., Samrodnitsky, A.:
Monotonicity testing over general poset domains. In: Proc. 34th Annual ACM Symposium
on the Theory of Computing, pp. 474–483. ACM Press, New York (2002)

10. Glasner, D., Servedio, R.: Distribution-free testing lower bounds for basic boolean functions
(2007), http://www.cs.columbia.edu/rocco/papers/random07.html

11. Goldreich, O.: Combinatorial property testing – a survey. In: “Randomized Methods in Al-
gorithms Design”, AMS-DIMACS, pp. 45–61 (1998)

12. Goldreich, O., Goldwaser, S., Ron, D.: Property testing and its connection to learning and
approximation. Journal of the ACM 45, 653–750 (1998)

13. Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samordinsky, A.: Testing monotonicity.
Combinatorica 20(3), 301–337 (2000)

14. Halevy, S., Kushilevitz, E.: Distribution-Free Property Testing. In: Proceedings of the Sev-
enth International Workshop on Randomization and Computation, pp. 302–317 (2003)

15. Halevy, S., Kushilevitz, E.: Distribution-Free Connectivity Testing. In: Proceedings of the
Eighth International Workshop on Randomization and Computation, pp. 393–404 (2004)

16. Halevy, S., Kushilevitz, E.: A lower bound for distribution-free monotonicity testing. In:
Proceedings of the Ninth International Workshop on Randomization and Computation, pp.
330–341 (2005)

17. Kearns, M., Vazirani, U.: An introduction to computational learning theory. MIT Press, Cam-
bridge, MA (1994)

18. Matulef, K., O’Donnell, R., Rubinfeld, R., Servedio, R.: Testing Halfspaces. (Manuscript,
2007)

19. Parnas, M., Ron, D., Samorodnitsky, A.: Testing basic boolean formulae. SIAM J. Disc.
Math. 16, 20–46 (2002)

20. Ron, D.: Property testing (a tutorial). In: Rajasekaran, S., Pardalos, P.M., Reif, J.H., Rolim,
J.D.P. (eds.) “Handbook of Randomized Computing, Volume II”, Kluwer, Dordrecht (2001)

21. Rubinfeld, R.: Sublinear time algorithms (2006), available at
http://theory.csail.mit.edu/∼ronitt/papers/icm.ps

22. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to pro-
gram testing. SIAM J. on Comput. 25, 252–271 (1996)

23. Turán, G.: Lower bounds for PAC learning with queries. In: COLT ’93: Proc. 6th Annual
Conference on Computational Learning Theory, pp. 384–391 (2002)

http://www.cs.columbia.edu/rocco/papers/random07.html
http://theory.csail.mit.edu/~ronitt/papers/icm.ps


On the Randomness Complexity of Property

Testing�

Oded Goldreich and Or Sheffet��

Weizmann Institute of Science, Rehovot, Israel

Abstract. We initiate a general study of the randomness complexity of
property testing, aimed at reducing the randomness complexity of testers
without (significantly) increasing their query complexity. One concrete
motivation for this study is provided by the observation that the prod-
uct of the randomness and query complexity of a tester determine the
actual query complexity of implementing a version of this tester that
utilizes a weak source of randomness (through a randomness-extractor).
We present rather generic upper- and lower-bounds on the randomness
complexity of property testing and study in depth the special case of
testing bipartiteness in two standard property testing models.

Due to space limitations, several proofs and various other details have been
omitted from this version. A full version is available from

http://www.wisdom.weizmann.ac.il/∼oded/p ors.html

1 Introduction

Property testing [RS, GGR] is concerned with a relaxed type of decision prob-
lems; specifically, for a fixed property (resp., a set) Π , the task is to distinguish
between objects that have property Π (resp., are in Π) and objects that are
“far” from have property Π (resp., are “far” from any object in Π). The focus
of property testing is on sublinear-time algorithms, which in particular cannot
examine the entire object. Instead, these algorithms, called testers, may obtain
bits in the representation of the object by issuing adequate queries. Indeed, in
this case, the query complexity of testers becomes a measure of central interest.

For natural properties, testers of sublinear query-complexity must be ran-
domized (see articulation in Section 2.1). This is a qualitative assertion, and the
corresponding quantitative question arises naturally: for any fixed property Π
and a sublinear function q, what is the randomness-complexity of testers for Π
that have query-complexity q?

� This work is based on the M.Sc. thesis of the second author, which was completed
under the supervision of the first author. This research was partially supported by
the Israel Science Foundation (grant No. 460/05).

�� Work done while Or was a graduate student at the Weizmann Institute of Science.

M. Charikar et al. (Eds.): APPROX and RANDOM 2007, LNCS 4627, pp. 509–524, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



510 O. Goldreich and O. Sheffet

In addition to the natural appeal of the foregoing question, there are concrete
reasons to care about it. Firstly, the randomness-complexity of a tester deter-
mines the length of PCPs that are constructed on top of this tester. Indeed,
this was the motivation for the interest of [GS, BSVW] in reducing the ran-
domness complexity of low-degree testing. Secondly, the randomness-complexity
of a tester affects the complexity of implementing a version of this tester while
utilizing a weak source of randomness. This motivation is further discussed in
Section 1.2.

Indeed, the randomness-complexity of testers was considered in some prior
work, starting in [GS]. This subject is the pivot of [BSVW] and the main topic
of [SW]. However, all these works refer to specific (algebraic) tasks (i.e., testing
low-degree polynomials and group homomorphisms). In contrast, our focus in
this paper is either on general properties (see Section 1.4) or on specific combi-
natorial properties (see Section 1.3).

1.1 The Perspective of Average-Estimation

Property testing is a vast generalization of the task of estimating the average
value of a function. Specifically, consider the task of distinguishing between func-
tions f : {0, 1}n → {0, 1} having average value exceeding 0.5 and functions that
are ε-far from having this property (i.e., functions having average value below
0.5− ε). Clearly, this task can be solved by a randomized algorithm that queries
the function at O(1/ε2) (random) points. This query-complexity is optimal and
any algorithm achieving it, called a sampler, must be randomized (see [CEG]).
Furthermore, a quantitative study of the randomness-complexity of samplers in
terms of their query-complexity was also carried out in [CEG]. The current paper
may be viewed as extending this study to the domain of general property testing.

Note that estimating the average value of a function corresponds to very
restricted properties of functions. In particular, these properties are symmetric
(i.e., are invariant under any relabeling of the inputs to the function). In contrast,
most of the study of property testing refers to properties that are not symmetric
(e.g., being a low-degree polynomial, monotonicity, representing a graph that
has a certain graph property, etc). Furthermore, while all symmetric properties
of Boolean functions are easily testable by straightforward sampling, this cannot
be said about property testing in general (nor about the numerous special cases
that were studied in the last decade [F, R]).

1.2 A Concrete Motivation: Using Weak Sources of Randomness

In the standard context of randomized algorithms, a concrete motivation for
minimizing the randomness-complexity is provided by the exponential effect of
the latter measure on the time-complexity of a possible derandomization. In con-
trast, in the context of property testing, derandomization is typically infeasible,
because (as noted above) deterministic testers cannot have sublinear query com-
plexity. Instead, a different motivation (advocated in [G]), becomes very relevant
in this context.



On the Randomness Complexity of Property Testing 511

We refer to the effect of the randomness-complexity on the overhead involved
in implementing the tester when using only weak sources of randomness (rather
than perfect ones). Specifically, we refer to the paradigm of implementing ran-
domized algorithms by using (a single sample from) such a weak source, and try-
ing all possible seeds to an adequate randomness extractor (see below). We shall
see that the overhead created by this method is determined by the randomness-
complexity of the original algorithm.

Recall that a randomness extractor is a function E : {0, 1}s×{0, 1}n→ {0, 1}r
that uses an s-bit long random seed in order to transform an n-bit long (outcome
of a) weak source of randomness into an r-bit long string that is almost uniformly
distributed in {0, 1}r. Specifically, we consider arbitrary weak sources that are
restricted (only) in the sense that, for a parameter k, no string appears as the
source outcome with probability that exceeds 2−k. Such sources are called (n, k)-
sources (and k is called the min-entropy). Now, E is called a (k, ε)-extractor if for
any (n, k)-source X it holds that E(Us, X) is ε-close to Ur, where Um denotes
the uniform distribution over m-bit strings (and the term ‘close’ refers to the
statistical distance between the two distributions). For further details about
(k, ε)-extractors, the interested reader is referred to Shaltiel’s survey [Shal].

Next we recall the standard paradigm of implementing randomized algorithms
while using sources of weak randomness. Suppose that the algorithm A has
time-complexity t and randomness-complexity r ≤ t. Recall that, typically, the
analysis of algorithm A refers to what happens when A obtains its randomness
from a perfect random source (i.e., for each possible input α, we consider the
behavior of A(α,Ur), where A(α, ω) denotes the output of A on input α when
given randomness ω). Now, suppose that we have at our disposal only a weak
source of randomness; specifically, a (n, k)-source for n ( k ( r (e.g., n = 10k
and k = 2r). Then, using a (k, ε)-extractor E : {0, 1}s × {0, 1}n → {0, 1}r, we
can transform the n-bit long outcome of the weak source into 2s strings, each of
length r, and use the resulting 2s strings (which are “random on the average”)
in 2s corresponding invocations of the algorithm A. That is, upon obtaining the
outcome x ∈ {0, 1}n from the source, we invoke the algorithm A for 2s times
such that in the ith invocation we provide A with randomness E(i, x). The results
of these 2s invocations are processed in the natural manner. For example, if A
is a decision procedure, then we output the majority vote obtained in the 2s

invocations (i.e., when given the input α, we output the majority vote of the
sequence 〈A(α,E(i, x))〉i=1,...,2s).

Let us consider the cost of the foregoing implementation. We assume, for
simplicity, that the running-time of the randomness extractor is dominated by
the running-time of A. Then, algorithm A can be implemented using a weak
source, while incurring an overhead factor of 2s. Recalling that s > log2(n− k)
and n > k > r − s must hold (cf. [Shal]), it follows that for k = n − Ω(n)
the aforementioned overhead is at least linear in r. On the other hand, for
n = O(k) = O(r) (resp., n = poly(k) = poly(r)) efficient randomness-extractors
using s = (1 + o(1)) log2 n (resp., s = O(log n)) are known; see [Shal]. This
establishes our claim that the time-complexity of implementing randomized
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algorithms when using weak sources is related to the randomness-complexity
of these algorithms. The same applies to the query complexity of testers. Specif-
ically, for n = O(k) = O(r) (resp., n = poly(k) = poly(r)) the query-complexity
of implementing a tester is almost linear in r · q (resp., is poly(r) · q), where
q is the query-complexity of the original tester (which uses a perfect source of
randomness).

1.3 Specific Algorithms

The motivation discussed in Section 1.2 is best illustrated by our results re-
garding testing bipartiteness in the bounded-degree model of [GR1]. Specifically,
fixing a degree bound d, the task is to distinguish (N -vertex) bipartite graphs of
maximum degree d from (N -vertex) graphs of maximum degree d that are ε-far
from bipartite (for some parameter ε), where ε-far means that ε · dN edges have
to be omitted from the graph in order to yield a bipartite graph. It is easy to see
that no deterministic algorithm of o(N) time-complexity can solve this problem.
Yet, there exists a probabilistic algorithm of time-complexity Õ(

√
Npoly(1/ε))

that solves this problem correctly (with probability 2/3). This algorithm makes
q

def= Õ(
√
Npoly(1/ε)) incidence-queries to the graph, and (as described in the

work [GR2]) has randomness-complexity r > q >
√
N (yet r < q · log2N).1

Let us now turn to the question of implementing the foregoing tester in a
setting where we have access only to a weak source of randomness. In this case,
the implementation calls for invoking the original tester Õ(r) times, which yields
a total running time of Õ(r) · Õ(

√
Npoly(1/ε)) > N (and the same bound holds

for its query-complexity). But in such a case we better use the standard (deter-
ministic) decision procedure for bipartiteness!

Fortunately, a randomness-efficient implementation of the original tester
of [GR2] is possible. This implementation (presented in Section 3.2) has
randomness-complexity r′ = poly(ε−1 logN) (rather than r = poly(ε−1 logN) ·√
N). Thus, the cost of the implementation that uses a weak source of random-

ness is related to r′ · s = Õ(
√
Npoly(1/ε)), which matches the original bound

(up to differences hidden in the Õ() and poly() notation).
The randomness-efficient implementation of the [GR2]-tester presented in

Section 3.2 is based on pin-pointing the “random features” used in the original
analysis, and providing an alternative implementation that satisfies the same
features. In contrast, the randomness-efficient tester presented in Section 3.1 is
based on new ideas.

In Section 3.1 we consider testers for graph properties in the adjacency ma-
trix model of [GGR]. Specifically, we consider the task of testing bipartiteness.
Recall that the tester presented in [GGR] works by selecting a random set of
Õ(ε−2) vertices and inspecting the (corresponding) induced subgraph. In fact,
as shown [GGR], it suffices to make Õ(ε−3) queries. A randomness-efficient im-
plementation of the “random features” used in the original analysis, allows

1 We comment that Ω(
√

N) is a lower-bound on the query-complexity of any property
tester of bipartiteness (in the bounded-degree model; see [GR1]).
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reducing the randomness-complexity to Õ(ε−1) · log2N , where N denotes the
number of vertices. In contrast, using an alternative approach, we present a
tester of randomness-complexity O(log(1/ε)) · log2N , while maintaining a query-
complexity bound of Õ(ε−3). The latter randomness-efficient tester is the main
technical contribution of this work.

1.4 Generic Bounds

In contrast to the specific algorithms described in Section 1.3, we now consider
quite generic lower- and upper-bounds on the randomness-complexity of property
testers as a function of their query-complexity. We stress that these results do
not refer to the time-complexity of the testers, which makes the lower-bounds
stronger (and the upper-bound weaker).

Loosely speaking, we show that, for a wide class of properties of functions
defined over a domain of size D, the randomness-complexity of testing with q
queries is essentially log2(D/q). Needless to say, the dependence on the query-
complexity is essential, because deterministic testers of query-complexityD exist
for any property. Furthermore, the randomness-complexity of any tester can be
decreased by an additive term of t while increasing the query complexity by a
factor of 2t.

The lower-bounds established in Section 2.1 are exactly of the foregoing form,
and they apply to two general and natural classes of properties. In particular,
these lower-bounds apply to testing low-degree polynomials (cf., e.g., [BLR, RS]),
locally-testable codes (cf., e.g., [GS]), testing graph properties (in both the ad-
jacency matrix and incidence-list models, see [GGR, GR1], resp.), testing mono-
tonicity (cf., e.g., [GGLRS]), and testing of clustering (cf., e.g., [ADPR]). The
upper-bound established in Section 2.2 refers to any property but is actually of
the form log2D+log2 log2R+O(1) (rather than log2(D/q)), where R is the size
of the range of the functions we refer to.

2 Generic Bounds

We consider testing properties of functions from D to R. Fixing a set of such
functions Π , we say that a randomized oracle machine T is an ε-tester for Π if
the following two conditions hold:

1. For every f ∈ Π it holds that Pr[T f = 1] ≥ 2/3.
2. For every f that is ε-far from Π it holds that Pr[T f = 1] ≤ 1/3, where f is
ε-far from Π if for every g ∈ Π it holds that Prx∈D[f(x) �= g(x)] > ε.

In case the first condition holds with probability 1, we say that T has one-sided
error. The query and randomness complexities of T are defined in the natural
manner. A tester is called non-adaptive if it determines its queries based solely
on its internal coin-tosses (and independently of the answers to prior queries).

Note that we have defined property testers for finite properties and a fixed
value of the proximity parameter ε. The definition may be extended to infinite
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properties and varying ε, by providing the tester with |D|, |R| and ε as inputs
(and assuming D = [D]).2

2.1 Lower Bounds

We provide lower-bounds on the randomness complexity of testing two general
classes of properties.

Strongly Evasive Properties. We first consider properties that are “strongly
evasive” in the sense that determining the values of some function at a constant
fraction of the domain leaves the promise problem (of distinguishing between
yes-instances and “far from yes”-instances) undetermined.3 That is, for fixed
parameters ε and ρ, the property Π is called strongly evasive if there exists a
function f : D → R such that for every D′ ⊂ D of density ρ (i.e., D′ = ρ ·D),
there exists f1 ∈ Π and f0 : D → R that is ε-far from Π such that for every
x ∈ D′ it holds that f1(x) = f0(x) = f(x). Many natural properties are strongly
evasive (with respect to various pairs of parameters); see examples below. The
following result can be easily proved by extending a similar result regarding
samplers (which is presented in [CEG]).

Theorem 1. Let Π be strongly evasive with respect to ε and ρ. Then any ε-tester
for Π that has query complexity q, must have randomness complexity greater than
log2(ρ|D|/q).

Some Applications. Many graph properties are strongly evasive, but since such
properties will be at the focus of the next subsection, we mention first a few
examples that refer to different types of properties.

1. Multi-variate polynomial. For everym and d, the set of m-variate polynomial
of total degree d (over a finite field F ) is strongly evasive with respect to
density ρ = 1/2 and distance ε = 1/4.

2. Codes of linear distance. A binary code C ⊂ {0, 1}n of distance d = Ω(n), is
viewed as a set of functions of the form f : [n]→ {0, 1}, where each function
corresponds to a codeword. The set of these codewords is strongly evasive
with respect to density ρ = 1− (d/2n) and distance ε = d/2n.

3. Monotone functions. A function f : {0, 1}n → {0, 1} is said to be monotone
if f(x) ≤ f(y) for every x ≺ y, where ≺ denotes the natural partial order
among strings (i.e., x1 · · ·xn ≺ y1 · · · yn if xi ≤ yi for every i and xi < yi for
some i). The set of monotone functions is strongly evasive with respect to
density ρ = 1/4 and distance ε = 1/4.

Turning back to graph properties, we focus on the bounded incidence lists model
(of [GR1]) because the results of the following subsection do not apply to it. We
mention a few properties of bounded-degree graphs that are strongly evasive in
2 Occasionally, we shall assume that ε ≥ |D|−1; otherwise, ε-testers coincide with

standard decision procedures.
3 This notion of “strongly evasive” is incomparable to the standard definition of eva-

siveness (cf. [LY]).
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the (bounded) incidence lists model. Examples include connectivity, planarity,
bipartiteness, and being Eulerian (or Hamiltonian).

Relabeling-Invariant Properties. We now consider properties that are in-
variant under some “nice” relabeling of D. Specifically, for any set SD of per-
mutations over D, we say that the property Π is SD-invariant if for every
f : D → R and every π ∈ SD it holds that f ∈ Π if and only (f ◦ π) ∈ Π ,
where (f ◦ π)(x) = f(π(x)). We consider only sets SD that correspond to a
transitive group of permutations over D; that is, SD is permutation group and for
every x, y ∈ D there exists a permutation π ∈ SD such that π(x) = y. Needless to
say, the set of all permutations is a transitive group of permutations, but so are
also many other permutation groups (e.g., the group of all cyclic permutations).

Theorem 2. Let SD be a transitive group of permutations over D, and Π be a
non-empty and SD-invariant property of functions from D to R. Suppose that,
for some σ ∈ R, the all-σ function is 2ε-far from Π. Then any non-adaptive
ε-tester for Π that has query complexity q, must have randomness complexity at
least log2(|D|/q)− 1.

Main Application. As hinted before, the most appealing application of Theo-
rem 2 is to testing graph properties in the adjacency matrix model (of [GGR]).
In this model,N -vertex graphs are represented by Boolean functions defined over
[N ]× [N ]. For technical reasons, we prefer to represent such graphs as Boolean
functions defined over the set of the

(
N
2

)
(unordered) vertex-pairs, which is actu-

ally more natural (as well as non-redundant). Note that the set of all permuta-
tions over [N ] induces a transitive group of permutations over these pairs, where
the permutation π : [N ] → [N ] induces a permutation that maps pairs of the
form {i, j} to {π(i), π(j)}. Indeed, any graph property is invariant under this
group, and Theorem 2 can be applied whenever either the empty graph or the
complete graph is far from the property. We note that all the graph properties
considered in [GGR] fall into the latter category (and that the testers of [GGR]
are all non-adaptive).4

Other Applications. We note that any property that refers to sets of objects (e.g.,
sets of points as in [ADPR]) is invariant under the group of all permutations.
Another application domain consists of matrix-properties that are preserved
under row and column permutations.

Generalizations. Theorem 2 can be generalized to properties that are
SD-invariant under a set of permutations that is “sufficiently mixing” in the
sense that a permutation selected uniformly in SD maps each element of the
domain to a distribution that has high min-entropy. For example, for a pa-
rameter α ≥ 1, it suffices that for every x ∈ D and y ∈ R it holds that
4 Note that q adaptive Boolean queries can always be replaced by 2q non-adaptive

Boolean queries. We warn that the more query-efficient transformation provided
in [GT] is inapplicable here, because this transformation does not preserve the
randomness-complexity.
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Prπ∈SD [π(x) = y] ≤ α/|D|. In this case, we shall prove that |D′| > |D|/2α,
and a lower-bound of log2(|D|/q)− log2(2α) on the randomness-complexity fol-
lows. A different generalization is obtained by replacing σ with a set of values
S ⊂ R and referring to properties for which every function f : D → S is 2ε-far
from the property.

2.2 Upper Bounds

We start with a totally generic bound, and later focus on graph properties.

A generic bound. Recall that we refer to properties of functions from D
to R. The following result can be easily proved by extending a similar result
regarding samplers (presented in [CEG]), which in turn is proved using well-
known techniques.

Theorem 3. If Π has an ε-tester that makes q queries then it has an ε-tester
that makes O(q) queries and tosses log2 |D|+log2 log2 |R|+O(1) coins. Further-
more, one-sided error and/or non-adaptivity are preserved.

Corollary. Applying Theorem 3 to testers of graph properties in the adjacency
matrix model (of [GGR]), we conclude that if a property of N -vertex graphs is
ε-testable using q queries then it has an ε-tester that makes O(q) queries and
tosses 2 log2N +O(1) coins. We further discuss this model in the following sub-
section.

Bounds for Canonical Testers of Graph Properties. The proof of Theo-
rem 3 shows that for every tester T (of randomness complexity r) there exists
a small set of coin-sequences ΩT (⊂ {0, 1}r) that is essentially as good as the
original set of coin-sequences used by this tester (i.e., {0, 1}r). This raises the
question of whether there may exists a universal set Ω that is good for all testers
(of randomness complexity r). Needless to say, the latter formulation is too gen-
eral and is doomed to yield a negative answer (e.g., by considering, for any Ω, a
pathological tester that behaves badly when fed with any sequence in Ω). Still
such universal sets may exist for naturally restricted classes of testers.

One adequate class of testers was suggested in [GT], and it refers to testing
graph properties in the adjacency matrix model. A canonical ε-tester for a prop-
erty Π of N -vertex graphs is determined by an integer k and a property Π ′ of
k-vertex graphs. Such a tester, sometimes referred to as k-canonical, selects uni-
formly a set of k vertices in the input graph G and accepts G if and only if the
corresponding induced (k-vertex) subgraph has the property Π ′. It was shown
in [GT] that if Π is ε-testable with query complexity q then Π has a k-canonical
ε-tester with k = O(q). Thus, it is natural to consider the notion of a “universal
set” of k-subsets of [N ] that is good for all k-canonical testers.

Definition 4. A set Ω ⊆ {S⊂ [N ] : |S|=k} is called (ε, k)-universal if for every
property Π of N -vertex graphs and for every k-canonical ε-tester for Π, denoted
T , the following holds:
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1. If G has property Π, then Prω∈Ω[TG(ω) = 1] ≥ 3/5, where TG(ω) denotes
the execution of T when given the coin-sequence ω and oracle access to G.

2. If G is ε-far from property Π, then Prω∈Ω[TG(ω) = 1] ≤ 2/5.

Using an (ε, k)-universal set, we can reduce the randomness complexity of any
k-canonical ε-tester T by selecting uniformly ω ∈ Ω and emulating T (ω). The
residual oracle machine, denoted T ′, is essentially an ε-tester for the same prop-
erty, except that T ′ may err with probability at most 2/5 (rather than 1/3)
Needless to say, T ′ has randomness complexity log2 |Ω| and query complexity(
k
2

)
. Furthermore, T ′ preserves the possible one-sided error of T .
Clearly, the set of all k-subsets is (ε, k)-universal, because using this set coin-

cides with the definition of a k-canonical ε-tester. We seek (ε, k)-universal sets
that are much smaller; specifically, by prior results we may hope to have (ε, k)-
universal sets of size O(N2). By extending the proof of Theorem 3, we can prove
the following result.

Theorem 5. There exist (ε, k)-universal sets (for [N ]) having size 2k
2 ·N2.

The randomness complexity of the derived ε-tester is k2 + 2 log2N . For
relatively small k and in particular for k that only depends on ε (as in
[GGR, AFKS, AFNS]), this is much smaller than the randomness complexity
of the k-canonical ε-tester (i.e., k log2N).

Open Problems. Can the upper-bound of Theorem 5 be improved; in particular,
do there exist (ε, k)-universal sets (of subsets of [N ]) having size O(poly(k) ·N2)
or even O(N2)? Can universal sets of small size (e.g., as in Theorem 5) be
efficiently constructed?

3 Specific Algorithms: The Case of Bipartiteness

We consider two standard models for testing graph properties: the adjacency
matrix model (introduced in [GGR]) and the bounded-degree model (introduced
in [GR1]). We focus on the problem of testing bipartiteness in these models.
Further details and additional testers are provided in [Shef]. We make extensive
use of randomness-efficient hitters.5

3.1 In the Adjacency Matrix Model

In the adjacency matrix model an N -vertex graph G = (V,E) is represented
by the Boolean function g : [N ] × [N ] → {0, 1} such that g(u, v) = 1 if and
only if u and v are adjacent in G (i.e., {u, v} ∈ E). In this section we present a
randomness-efficient Bipartite Tester for graphs in the adjacency matrix model.
5 A hitter is a randomized algorithm that, on input parameters n, ε and δ, outputs a list

of strings such that, for any function f :{0, 1}n →{0, 1} that satisfies |f−1(1)| ≥ ε2n,
with probability at least 1− δ it holds that the list contains an f -preimage of 1 (i.e.,
an element of f−1(1)).



518 O. Goldreich and O. Sheffet

This tester is strongly influenced by the tester of [GGR], but differs from it in
significant ways. Still, it is instructive to start with a description of the tester
of [GGR].

The Tester of [GGR]. Essentially, the bipartite tester of [GGR] selects a
random set of Õ(ε−2) vertices, inspects the subgraph of G induces by this
set, and accepts if and only if this induced subgraph is bipartite. The analy-
sis in [GGR] actually refers to the following description, which also has a lower
query-complexity.

Algorithm 6. On input parameters N and ε, and oracle access to an adjacency
predicate of an N -vertex graph, G = (V,E), proceed as follows:

1. Uniformly select a sample U of Õ(ε−1) vertices.
2. Uniformly select a sample S of Õ(ε−2) vertex-pairs.
3. For each u ∈ U and (v1, v2) ∈ S, check whether {u, v1}, {u, v2} and {v1, v2}

are edges.
4. Accept if and only if the subgraph viewed in Step 3 is bipartite.

Clearly, this algorithm never rejects a bipartite graph, and thus its analysis
focuses on the case that G is ε-far from being bipartite. One key observation is
that each 2-partition, (U1, U2), of U induces a 2-partition of the entire graph in
which all neighbors of U1 are on one side and all the other vertices are on the
other side. A pair of vertices (v1, v2) detects that the latter partition is not a
valid 2-coloring of G if there exists u1, u2 ∈ U1 (resp., u1, u2 ∈ U2) such that
{u1, v1}, {v1, v2} and {v2, u2} are all edges of G. In such a case, we call the pair
(v1, v2) a witness against (U1, U2). The analysis in [GGR] shows that if G is ε-far
from being bipartite then, with high probability, for every 2-partition of U there
exists a pair in S that is a witness against this 2-partition. Let us briefly recall
how this is done.

The first step is proving that, with high probability (say, with probability
at least 5/6), the set U dominates6 all but an ε/8 fraction of the vertices of G
that have degree at least εN/8. This step is quite straightforward. The next step
is proving that this implies that for every 2-partition of U there exists at least
εN2/2 (ordered) vertex-pairs that are each a witness against this 2-partition. The
implication is proved by confronting the following two facts:

1. Since G is ε-far from being bipartite, the 2-partition of V induced by any
2-partition of U has at least εN2 (ordered) vertex-pairs that reside on the
same side of the partition and yet are connected by an edge.

2. The number of (ordered) vertex-pairs (v1, v2) such that {v1, v2} ∈ E but
either v1 or v2 is not dominated by U is at most εN2/2, because each low-
degree vertex contributes at most εN/4 such (ordered) pairs and there are
at most εN/8 high-degree vertices that are not dominated by U .

6 We say that a set U dominates a vertex v in the graph G if v is adjacent to some
vertex in U .
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Having established the existence of at least εN2/2 vertex-pairs that constitute
a witness against any fixed 2-partition of U , it is clear that each random pair
of vertices will be a witness with probability at least ε/2, and selecting enough
random pairs will do the job. The point, however, is that we need to rule out
each of the 2|U| possible 2-partitions of U . Thus, the number of selected pairs is
set such that the probability that we do not find a witness against any specific
2-partition is smaller than 2−|U|. Indeed, setting |S| = O(|U |/ε) will do. This
completes our review of [GGR].

As stated in Section 1.3, the problem with the foregoing approach is that it
is impossible to implement it using randomness-complexity below |U |, which in
turn is Ω(ε−1). However, our aim is to obtain randomness-complexity that is
linearly related to O(log(1/ε)).

A Warm-Up: Randomness-Efficient Tester of Query Complexity
Õ(ε−4). A closer look at the foregoing argument reveals that a pair (v1, v2)
such that {u1, v1}, {v1, v2} and {v2, u2} are all edges of G is not merely a wit-
ness against a specific 2-partition of U that places u1 and u2 on the same side.
It is actually a witness against any 2-partition of U that places u1 and u2 on
the same side. Viewed from a different perspective, such a pair (v1, v2) imposes
a constraint on the “relevant” 2-partition of U ; the constraint being that u1 and
u2 should not be placed on the same side. It will be useful to consider the graph
of these constraints, which has the vertex-set U and edges between each pair of
vertices to which such a constraint is applied (i.e., there is an edge between u1

and u2 if there exists a pair (v1, v2) ∈ V ×V that imposes a constraint on the pair
(u1, u2)). Indeed, the 2-partitions of U that satisfy the set of these constraints
are exactly the 2-colorings of this auxiliary graph.

The foregoing perspective suggests that it may be useful to try to accumulate
constraints. At the very extreme, the graph of constraints will not be bipartite,
which definitely allows us to reject (because it indicates that there are witnesses
against each 2-partition of U). Discarding this case, we consider another extreme
case in which the graph of constraints is connected, leaving us with a single
allowed 2-partition of U (i.e., a single 2-coloring of the constraint graph), which
can be checked as in Algorithm 6. The point, however, is that in this case it will
suffice to set |S| = O(ε−1) and more importantly to have a sample that rules out
the remaining partition with constant probability (rather than with probability
2−|U|). This opens the door to a randomness-efficient implementation.

But what if the graph of constraints that we found is not connected? Unless
this event is due to sheer lack of luck, it indicates that there are few pairs in
V ×V that impose constraints regarding vertex-pairs in U×U that are in different
connected components of the constraint graph. This implies that, for every 2-
partition of U that is consistent with the constraint graph (i.e., every 2-coloring
of this graph), there are many pairs in V × V that constitute a witness against
the 2-partition of some of the connected components. That is, each such pair
imposes a constraint that refers to vertices that reside in the same connected
component, and furthermore this constraint contradicts the constraints that are
already present regarding this connected component.



520 O. Goldreich and O. Sheffet

Needless to say, for the foregoing to work, we should determine adequate
thresholds for the notion of “few pairs in V ×V that impose a constraint regard-
ing vertex-pairs” (in U ×U). Let us start by spelling out the notion of imposing
(or rather forcing) a constraint. We say that the pair (v1, v2) ∈ V ×V constrains
the pair (u1, u2) ∈ U × U if {u1, v1}, {v1, v2} and {v2, u2} are all edges of G.
Next, we say that a pair (u1, u2) ∈ U × U is ρ-constrained if there are at least
ρ ·N2 vertex-pairs in V × V that constrain (u1, u2). Leaving ρ unspecified for a
moment, we make the following observations:

1. Using a sample of O(ρ−1 · log |U |) vertex-pairs in V ×V , with high probabil-
ity, it holds that for every ρ-constrained pair (u1, u2) ∈ U × U , the sample
contains a pair that constrains (u1, u2). This holds even if the sample is
generated using a randomness-efficient hitter (which hits any set of den-
sity ρ with probability at least 1− (|U |−2/10), using randomness-complexity
O(log |V | + log |U |) = O(log |V |)). The point is that there are at most |U |2
relevant pairs (i.e., pairs that are ρ-constrained), and we may apply a Union
Bound as long as we fail on each such pair with probability at most |U |−2/10
(or so).

2. Consider the graphGU,ρ consisting of the vertex-set U and edges correspond-
ing to the ρ-constrained pairs of vertices. Then, the number of vertex-pairs
in V ×V that constrain some pair of vertices (in U) that does not belong to
the same connected component of GU,ρ is at most |U |2 · ρN2.

Recall that if G is ε-far from bipartite and U is good (i.e., U dominates
almost all high-degree vertices) then, for every 2-partition of U , there are at
least εN2/2 pairs that constrain some pair of vertices that are on the same
side of this 2-partition. It follows that at least ((ε/2)− |U |2ρ) ·N2 of these
pairs constrain pairs that are in the same connected component of GU,ρ.
Setting ρ = ε/(4|U |2), we need to hit a set of density ε/4, which is easy to
do using a randomness-efficient hitter.

This analysis lead to an algorithm that resembles Algorithm 6, except that it uses
a secondary sample S that has different features than in the original version. In
Algorithm 6 the set S had to hit any fix set of density ε/2 with probability at least
1− 2−|U|. Here the set S needs to hit any fix set of density ρ = ε/(4|U |2) < ε−3

with probability at least 1 − (|U |−2/10). Thus, while in Algorithm 6 we used
|S| = O(|U |/ε) but generating the set S required at least |U | random bits, here
|S| = O(|U |2/ε) = Õ(ε−3) but generating the set S can be done using O(logN)
random bits. (The set U is generated with the same aim as in Algorithm 6; that
is, hitting a set of density ε with probability at least 1− ε−1. Such a set can be
generated using O(logN) random bits).

Thus, we obtain a (computational efficient) ε-tester with randomness-
complexity O(logN) and query-complexity O(|U | · |S|) = Õ(ε−4). Our aim in
the next section is to reduce the query-complexity to Õ(ε−3) while essentially
maintaining the randomness-complexity.

The Actual Algorithm: Randomness-Efficient Tester of Query Com-
plexity Õ(ε−3). The query-complexity bottleneck in the previous subsection
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is due to the size of S, which in turn needs to hit sets of density ρ = O(ε3). Our
improvement will follow by using a larger value of the threshold ρ (essentially
ρ = O(ε2)). Recall that in the previous subsection we used ρ = O(ε3) in order to
bound the total number of pairs that constrain pairs that are not ρ-constrained.
Thus, using ρ = O(ε3) seems inherent to an analysis that refers to each pair
separately, and indeed we shall deviate from that paradigm in this section.

The planned deviation is quite natural. After all, we not not care about hav-
ing specific edges in our constraint graph, but rather care about the connected
components of that graph. For example, looking at any vertex u ∈ U , any pair
in V × V that constrains any pair (u, u′), where u′ ∈ U \ {u}, increases the con-
nected component in which u resides. That is, let γ(u1, u2) denote the fraction
of vertex-pairs in V × V that constrain (u1, u2), and recall that a pair (u1, u2)
was called ρ-constrained if γ(u1, u2) ≥ ρ. Thus, we (tentatively) say that u ∈ U
is ρ-constrained if

∑
u′∈U\{u} γ(u, u′) ≥ ρ. Let us now see what happens.

1. Using a sample of O(ρ−1 ·log |U |) vertex-pairs in V ×V , with high probability,
it holds that for every ρ-constrained vertex u ∈ U , the sample contains a
pair that constrains (u, u′), for some u′ ∈ U \ {u}. Again, this holds even if
the sample is generated using a randomness-efficient hitter.

2. The number of vertex-pairs in V × V that constrain some pair of vertices
(u1, u2) ∈ U × U such that either u1 or u2 is not ρ-constrained is at most
2|U | · ρN2. This means that we can ignore such vertex-pairs (in V ×V ) even
when setting ρ = O(ε/|U |) or so.

Thus, taking a sample S′ as in Item 1, will result in having a constraint graph
GU,S′ in which each ρ-constrained vertex resides in non-singleton connected com-
ponents. In particular, the number of non-singleton connected components is at
most |U |/2.

Note, however, that unlike in the previous subsection, the foregoing facts do
not yield an upper-bound on the number of vertex-pairs in V × V that con-
strain some pair of vertices (in U) that does not belong to the same connected
component of GU,S′ . Loosely speaking, we shall iterate the same process on the
non-singleton connected components of GU,S′ , while recalling that the only ver-
tices that form singleton connected components in GU,S′ are not ρ-constrained
(and thus can be ignored). This suggests an iterative process, which will halt af-
ter at most log2 |U | iterations in a situation analogous to having no ρ-constrained
vertices. At this point we may proceed with a final sample of pairs that, with
high probability, will yield a constraint that conflicts with the existing ones.

Clarifying the foregoing iterative process requires generalizing the notion of
ρ-constrained vertices such that it will apply to the connected components de-
termined in the previous iteration. Consider a partition of U , denoted U =
(U (0), U (1), ..., U (k)), where U (0) may be empty and k may equal 0, but for every
i ∈ [k] it holds that U (i) �= ∅. In the first iteration, we use U = (∅, {u1}, ..., {ut}),
where U = {u1, ..., ut}. In later iterations, U (1), ..., U (k) will correspond to con-
nected components of the current constraint graph and U (0) will contain vertices
that were cast aside at some point.



522 O. Goldreich and O. Sheffet

Definition 7 (being constrained w.r.t a partition). For i ∈ {0, 1, ..., k},
we say that u ∈ U (i) is ρ-constrained w.r.t U if

∑
u′∈U ′ γ(u, u′) ≥ ρ, where

U ′ = ∪j∈[k]\{i}U
(j). Recall that γ(u1, u2) denote the fraction of vertex-pairs in

V ×V that constrain (u1, u2), where the pair (v1, v2) ∈ V ×V constrains the pair
(u1, u2) ∈ U × U if {u1, v1}, {v1, v2} and {v2, u2} are all edges of G.

We stress that the foregoing sum does not include vertices in either U (0) or U (i).
Our analysis will refer to the following algorithm, which can be implemented
within randomness-complexity O(log(1/ε)) · log2N and query-complexity Õ(ε−3).

Algorithm 8 (The Bipartite Tester, revised)

1. Select a sample U of Õ(ε−1) vertices by using a hitter that hits any set of
density ε/8 with probability at least 1− (ε/100).

2. For i = 1, ..., �+ 1, where � = log2 |U |, select a sample Si of Õ(ε−2) vertex-
pairs by using a hitter that hits any set of density ρ = ε/Õ(|U |) with probabil-
ity at least 1− Õ(|U |)−1. (This hitter has randomness-complexity O(logN+
log |U |) = O(logN).) Let S = ∪�+1

i=1Si.
3. For each u ∈ U and (v1, v2) ∈ S, check whether {u, v1}, {u, v2} and {v1, v2}

are edges.
4. Accept if and only if the subgraph viewed in Step 3 is bipartite.

Needless to say, the peculiar way in which S is selected is aimed to support the
analysis.

Lemma 9. If G is ε-far from being bipartite then Algorithm 8 rejects with prob-
ability at least 2/3.

Proof Outline: We may assume that U is good in the sense that it dominates all
but εN/8 of the vertices that have degree at least εN/8. As argued above (and
shown in [GGR]), there are at most εN2/2 vertex pairs that have an endpoint
that is not dominated by U = {u1, ..., ut}. Starting with U = (∅, {u1}, ..., {ut}),
the proof proceeds in iterations while establishing that in each iteration one of
the following two events occur:

1. There are Ω(εN2) vertex pairs that form constraints that contradicts the
existing constraints. In this case, with very high probability, the algorithm
will select such a pair and will reject (because the subgraph that it sees is
not 2-colorable).

2. There exist ρ-constrained vertices with respect to the current partition U =
(U (0), U (1), ..., U (k)), where U (1), ..., U (k) are connected components of the
current constraint graph and U (0) contains vertices that were cast aside in
previous iterations. It is also shown that ρ-constrained (w.r.t U) vertices
cannot be in U (0). In this case, with very high probability, the algorithm will
find new constraints and in particular it will find such a constraint between
every ρ-constrained (w.r.t U) vertex and some vertex that is in one of the
other k connected components.
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Noting that the second case (i.e., Case 2) becomes impossible once k = 1 holds
(in the current iteration), we conclude that at this point the algorithm must
reject due to the first case (i.e., Case 1).

Open Problem. Needless to say, we are aware of the Bipartite Tester of [AK],
which has better query-complexity than the tester of [GGR] (as well as ours).
Specifically, the query-complexity of the tester of [AK] is Õ(ε−2) rather than
Õ(ε−3). Theorem 3 implies that the tester of [AK] has a randomness-efficient
implementation, but it does not provide an explicit one. We conjecture that
there exists a randomness-efficient bipartite tester that has query-complexity
Õ(ε−2) and time-complexity poly(ε−1 logN).

3.2 In the Bounded-Degree Model

The bounded-degree model refers to a fixed degree bound, denoted d. An N -
vertex graph G = (V,E) (of maximum degree d) is represented in this model by
a function g : [N ]× [d]→ {0, 1, ..., N} such that g(v, i) = u ∈ [N ] if u is the ith

neighbor of v and g(v, i) = 0 if v has less than i neighbors. In this section we
outline a randomness-efficient implementation of the Bipartite Tester of [GR2],
which refers to the bounded-degree model.

Recall that the tester of [GR2] proceeds in T = O(1/ε) iterations, where
in each iteration a random start vertex, denoted s, is selected (uniformly in
V ), and K

def= poly((logN)/ε) ·
√
N random walks starting from vertex s are

performed, where each walk is of length L
def= poly((logN)/ε). Focusing on

a single iteration, we observe that the analysis of [GR2] refers to events that
correspond to pairs of paths, and that it only relies on the variances and co-
variances of random variables corresponding to these events. Thus, the original
analysis applies also when the walks are four-wise independent (so that pairs
of pairs of paths are “covered”). Consequently, each iteration can be imple-
mented using a randomness-efficient construction of K four-wise independent
random strings, each specifying a random walk of length L (i.e., each being
a string of length L log2 d). It follows that a single iteration can be imple-
mented using (log2N) + 4 · L log2 d = poly((logN)/ε) random coins (rather
than (log2N) +K · L log2 d = Ω(

√
N) random coins).
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Abstract. We consider the question of whether adaptivity can improve
the complexity of property testing algorithms in the dense graphs model.
It is known that there can be at most a quadratic gap between adaptive
and non-adaptive testers in this model, but it was not known whether
any gap indeed exists. In this work we reveal such a gap.

Specifically, we focus on the well studied property of bipartiteness.
Bogdanov and Trevisan (IEEE Symposium on Computational Complex-
ity, 2004 ) proved a lower bound of Ω(1/ε2) on the query complexity
of non-adaptive testing algorithms for bipartiteness. This lower bound
holds for graphs with maximum degree O(εn). Our main result is an
adaptive testing algorithm for bipartiteness of graphs with maximum
degree O(εn) whose query complexity is1 Õ(1/ε3/2). A slightly modi-
fied version of our algorithm can be used to test the combined property
of being bipartite and having maximum degree O(εn). Thus we demon-
strate that adaptive testers are stronger than non-adaptive testers in the
dense graphs model.

We note that the upper bound we obtain is tight up-to polylogarithmic
factors, in view of the Ω(1/ε3/2) lower bound of Bogdanov and Trevisan
for adaptive testers. In addition we show that Õ(1/ε3/2) queries also
suffice when (almost) all vertices have degree Ω(

√
ε · n). In this case

adaptivity is not necessary.

1 Introduction

We consider the question of whether adaptivity can benefit property testing algo-
rithms in the dense graphs model [10]. In this model a testing algorithm (tester)
is given a distance parameter ε > 0 and query access to the n × n adjacency
matrix of a graph G = (V,E) where n = |V | (that is, the tester can perform
vertex-pair queries). For a predetermined property P (e.g., bipartiteness), the
tester should distinguish, with high constant probability, between the case that
G has the property P and the case that more than εn2 edges should be added
to or removed from G in order to make it have the property. In the latter case
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1 The notation Õ(g(k)) for a function g of a parameter k means O(g(k) ·polylog(g(k))

where polylog(g(k)) = logc(g(k)) for some constant c.
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we say that the graph is ε-far from having P . A tester is adaptive if its queries
depend on answers to previously asked queries.

It is known that there is at most a quadratic gap in the query complexity
between adaptive and non-adaptive testers in the dense graphs model [1,13].
Namely, if there exists any (possibly adaptive) tester for a particular property
that has query complexity q(n, ε), then there exists a non-adaptive tester with
query complexity O((q(n, ε))2). This non-adaptive tester, referred to as canoni-
cal , takes a uniformly selected sample of O(q(n, ε)) vertices and queries all pairs
of vertices in the sample. It accepts or rejects depending on some property of
the resulting induced subgraph. In fact, all known testers in the dense graphs
model are non-adaptive.

In this work we focus on the basic and well studied graph property of bi-
partiteness . Goldreich et. al. [10] showed that Õ(1/ε4) queries are sufficient for
testing bipartiteness using a canonical tester, which accepts or rejects depending
on whether the subgraph induced by the sampled vertices is bipartite. In fact,
Goldreich et. al. showed that it is not necessary to perform all queries between
pairs of selected vertices, as done by the canonical tester, and that Õ(1/ε3)
queries are sufficient, where the choice of queries is non-adaptive. By performing
a more refined and sophisticated analysis, Alon and Krivelevich [2] improved on
this result and showed that it is sufficient to randomly select Õ(1/ε) vertices and
apply the canonical tester, thus reducing the query complexity to Õ(1/ε2).

The result of Alon and Krivelevich is optimal in terms of the number of vertices
that the tester inspects [2]. A natural question addressed by Bogdanov and
Trevisan [5] is whether 1/ε2 queries on pairs of vertices are necessary. Bogdanov
and Trevisan showed that Ω(1/ε2) queries are indeed necessary for any non-
adaptive tester. For adaptive testers they showed that Ω(1/ε3/2) queries are
necessary. Both lower bounds hold for graphs of small degree, that is, the degree
of every vertex is Θ(εn). Bogdanov and Trevisan raised the question whether
there exists a natural example where an actual gap between adaptive and non-
adaptive testers occurs.

Our Results. Our main result is a proof of a gap between the complexity of adap-
tive and non-adaptive testers in the dense graphs model. Specifically, we describe
an adaptive bipartiteness tester for graphs in which all vertices have degreeO(εn)
that performs Õ(1/ε3/2) queries. Thus we demonstrate that adaptive testers are
stronger than non-adaptive testers in this model, since the Ω(1/ε2) lower bound
of [5] for non-adaptive testers holds in this case, which we refer to as the low-
degree case. In other words, the gap between the complexity of adaptive and
non-adaptive testers in the dense-graphs model is manifested in the problem of
testing bipartitness under the promise that the graph has degree O(εn).

We next describe an alternative formulation of our result, which removes the
need for a promise. By slightly modifying our algorithm we can test for the
combined property of being bipartite and having degree at most cεn for any
given constant c. The complexity of the algorithm remains Õ(1/ε3/2). Since
the lower bound of [5] still holds when we add the degree bound restriction, we
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obtain a gap between the complexity of adaptive and non-adaptive testers in the
dense-graphs model for the combined property.

In the above two formulations, we either relied on a promise or we combined
the bipartiteness property with another property, where in both cases there is
a dependence on the distance parameter ε (in the promise or in the combined
property). A natural question is whether the complexity of testing bipartiteness
in general graphs when allowing adaptivity is o(1/ε2). A positive answer would
establish a gap between adaptive and non-adaptive testers without relying on
a promise and without allowing the property to depend on ε. While we do not
answer this question, we provide another result that may be of use in further
research on the problem. We show that Õ(1/ε3/2) queries suffice when (almost)
all vertices have degree Ω(

√
ε · n), that is, relatively high degree. In this case

adaptivity is not necessary. We conjecture that Õ(1/ε3/2) queries are sufficient
for all graphs but leave this as an open question. Note that if our conjecture is
not correct then one would obtain a surprising non-monotonic behavior of the
complexity of testing bipartiteness as a function of the degree of the graph.

Techniques. Interestingly, though our work is strictly in the aforementioned
model of dense graphs, we use techniques not only from the dense graphs model,
but also from the bounded-degree graphs model. In the bounded-degree model
there is a an upper bound, d, on the degree of vertices in the graph. A testing
algorithm may perform queries of the form: “who is the i’th neighbor of vertex v”
(neighbor queries) and is required to distinguish with high constant probability
between the case that the graph is bipartite and the case that more than ε · d ·n
edges should be removed from the graph in order to make it bipartite. Thus,
both the type of queries and the distance measure are different from those in
the dense model.

Specifically, by extending techniques from [10] and [2] and combining them we
prove the following lemma that is a building block in proving our main result.

Lemma 1. If a graph G is ε-far from being bipartite and has maximum degree
ρ · εn for some ρ ≥ 1, then with high constant probability over a random choice
of s = Õ(ρ/ε) vertices in G, the subgraph induced by the selected vertices is ε′-
far from being bipartite (according to the distance measure for dense graphs) for
ε′ = Ω

(
ε

ρ2 log(1/ε)

)
.

That is, it is not merely that (with high constant probability) the subgraph
induced by the small sample is not bipartite (as shown in [2]), but rather that
at least ε′ · s2 edges should be removed from this subgraph in order to make it
bipartite. We note that Lemma 1 can be strengthened in the case where almost
all vertices have roughly the same degree (see the full version of this paper [14]).

From this point on (until the end of the section) we focus on the case that ρ =
O(1), that is, the maximum degree in the graph is O(εn). As noted previously,
the known lower bounds of Ω(1/ε2) for non-adaptive algorithms and Ω(1/ε3/2)
for adaptive algorithms were shown for this case. Given Lemma 1, consider the
small subgraph G′ that is induced by the s = Õ(1/ε) sampled vertices, and
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assume that in fact Ω
(

ε
log(1/ε) · s2

)
edges should be removed from G′ in order

to make it bipartite. Observe that given the O(εn) upper bound on the degree of
vertices in G, and the number of vertices in G′, with high constant probability,
the degree of vertices in G′ is upper bounded by d = polylog(1/ε). This means
that the number of edges that should be removed from G′ is at least ε′′ · d · s for
ε′′ = 1/polylog(1/ε). In other words, in terms of the distance measure defined
for the bounded degree model , the subgraph G′ is very far from being bipartite.

We hence turn to the result in [11] on testing bipartiteness in the bounded-
degree model. The tester of [11] is based on performing random walks, where
the query complexity grows like a square root of the number of vertices in the
graph and depends polynomially on the inverse of the distance to bipartiteness
(according to the distance measure for bounded degree graphs). The algorithm
has no dependence on the degree bound. Recall that in our case, the graph
G′ contains s = Õ(1/ε) vertices (so that

√
s = Õ(1/

√
ε)), and the distance

to bipartiteness is 1/polylog(1/ε). However, we cannot simply apply the [11]
tester to G′, because we do not have direct access to neighbor queries in G′,
as is assumed in the bounded-degree model. Yet, we can easily emulate such
queries using vertex-pair queries, at a cost of s = polylog(1/ε) · ε−1 vertex-pair
queries per neighbor query. The total number of queries performed by our tester
is therefore Õ(ε−3/2).

Perspective. As noted previously, all known algorithms in the dense graphs model
are non-adaptive. On the other hand, algorithms in the bounded-degree model
are almost “adaptive by nature” in the sense that non-adaptive tester in this
model are quite limited. Recall that in the bounded-degree model a tester can
perform neighbor queries. That is, it can ask for names of neighbors of vertices
of its choice. Therefore, in the bounded-degree model, essentially all that a non-
adaptive tester can do is ask for neighbors of a predetermined set of vertices.
If a tester wants to “go beyond” these neighbors, and, say, perform random
walks, or a (bounded-depth) breadth first search, then the tester must use an-
swers to previous queries (names of neighbors) in its new queries. More formally,
Raskhodnikova and Smith [17] prove that for any non-trivial property, that is,
a property that is not determined by the distribution of degrees in the graph,
any non-adaptive tester must perform Ω(

√
n/d) queries in graphs with degree

bound d. Our tester can be viewed as “importing” this adaptivity to the dense
model by emulating a tester from the bounded-degree model in the dense model.

The question of whether adaptivity can be beneficial arises in other areas of
property testing. Two interesting families of properties for which it was proved
that adaptivity cannot help are monotonicity in one dimension [8], and prop-
erties of subsets of strings that are defined by linear subspaces [4]. Fischer’s
result [8] implies that a known lower bound for testing monotonicity in one di-
mension [6] that holds for non-adaptive testers, also holds for adaptive testers.
In [4] the fact that adaptive algorithms are no stronger than non-adaptive al-
gorithms simplified a lower-bound proof. In contrast, Fischer [8, Sec. 4] gives
several examples of properties for which there is a large (e.g., exponential) gap
between the complexity of adaptive and non-adaptive testers.
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Other Related Work. Other results on testing bipartiteness can be found in [12]
and [16]. For tutorials on property testing in general, see [9,7,18].

2 Preliminaries

Let G = (V,E) be an undirected graph with n vertices. For a vertex v let Γ (v)
denote the set of neighbors of v and let deg(v) denote the degree of v. For a set
of vertices R ⊆ V and an edge (u, v) ∈ E we say that R spans (u, v) if u, v ∈ R.
We let E(R) denote the set of edges spanned by R. For a partition (V1, V2) of
V , we say that an edge (u, v) ∈ E is a violating edge with respect to (V1, V2) if
either (u, v) ∈ E(V1) or (u, v) ∈ E(V2).

Recall that G = (V,E) is said to be bipartite if there exists a partition (V1, V2)
of V with respect to which there are no violating edges. It is well know that a
graph is bipartite if and only if it contains no odd-length cycles. We say that G is
ε-far from being bipartite if the number of edges that must be removed from G
so as to make it bipartite is greater than εn2. In other words, for every partition
(V1, V2) there are more than εn2 violating edges with respect to (V1, V2).

Definition 1. A testing algorithm for bipartiteness is given as input a distance
parameter ε > 0 and may query the adjacency matrix of G. Namely, it can
perform queries of the form: “is there an edge between u and v in G?” We refer
to such queries as vertex-pair queries. The requirements from the algorithm are:

– If G is bipartite then the algorithm should accept;
– If G is ε-far from being bipartite then the algorithm should reject with prob-

ability at least 2/3.

Observe that in the above definition we required that the algorithm have one-
sided error .

3 Some Useful Sampling Claims

In this section we prove a few claims that will be useful in our analysis. First we
introduce one more definition.

Definition 2. For 0 ≤ α, γ ≤ 1, we say that a subset S ⊆ V is an (α, γ)
dominating set for G if all but at most a γ-fraction of the vertices in G with
degree at least αn have a neighbor in S.

Lemma 2. For every graph G, with probability at least 1− δ over the choice of
a uniformly selected random subset S of 1

α · ln
1
γδ vertices in G, the subset S is

an (α, γ) dominating set for G.

Proof. Let S denote the set of selected vertices. We may select S = {u1, . . . , us}
in s trials, where in the i’th trial we uniformly, independently at random select a
vertex from V \ {u1, . . . , ui−1}. Consider any fixed vertex v with degree at least
αn. The probability that S does not contain any neighbor of v is upper bounded
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by (1− α)s < e−α·s = γ · δ. Therefore, the expected fraction of vertices with
degree at least αn that do not have a neighbor in S is at most γ ·δ. By Markov’s
inequality, the probability that there are more than a γ-fraction such vertices
(that is, 1

δ times the expected value) is less than δ. ��

In our analysis we make use of one of Janson’s inequalities [15] (see also [3,
Chapter 8, Theorem 7.2]). In order to state it we shall need to introduce some
notation. Let Ω be a finite set and let R be a random subset of Ω given by
Pr[r ∈ R] = pr, where these events are mutually independent over r ∈ Ω. Let
Ai, i ∈ I, be subsets of Ω, where I is a finite index set. For each i ∈ I let
Xi be a 0/1 random variable which is 1 if Ai ⊆ R and is 0 otherwise, and let
X =

∑
i∈I Xi be the number of subsets Ai that are contained in R. Define

Δ
def=

∑

i�=j, Ai∩Aj �=∅
Pr[Xi = 1 & Xj = 1] (1)

(note that the sum is over all ordered pairs i �= j).

Theorem 1 ([15]). For any γ > 0,

Pr[X ≤ (1− γ)Exp[X ]] ≤ exp
(

−γ2 Exp[X ]
2(1 +Δ/Exp[X ])

)

.

As a corollary of Theorem 1 we get:

Corollary 3. Let 0 < β ≤ α < 1 where α ≥ β, and let B ⊆ E be a set of
edges such that |B| ≥ βn2 and the number of edges in B that are incident to any
u ∈ V is at most αn. If we uniformly select a random subset of vertices R where
|R| = 2cR · αβ and cR ≥ 1/α, then

Pr
[

|E(R) ∩B| ≤ 1
8
β|R|2

]

≤ 2e−cR/24

Proof. We first analyze the case that R is chosen by independently selecting
each vertex u ∈ V with probability pR = cR · αβ ·

1
n , so that we may apply

Theorem 1.
Let Ω = V and for each edge (ui, vi) ∈ B let Ai = {ui, vi} and let Xi be the

0/1 random variable indicating whether Ai ⊆ R. Thus Xi = 1 if and only if R
spans (ui, vi) and X =

∑
iXi = |E(R)∩B|. It follows that Pr[Xi = 1] = p2

R and

Exp[X ] = |B| · p2
R ≥ βn2 · p2

R . (2)

Observe that for every i �= j such that Ai ∩ Aj �= ∅ we have that Pr[Xi =
1 & Xj = 1] = p3

R. For any vertex u let degB(u) denote the number of edges in
B that are incident to u. Then

Δ =
∑

(ui,vi)∈B
(degB(ui) + degB(vi)− 2) · p3

R . (3)
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Since degB(u) ≤ αn for every u ∈ V , we get that Δ ≤ 2 · |B| ·αn · p3
R Therefore,

Δ/Exp[X ] ≤ 2 · αn · pR = 2 · cRα
2

β
. (4)

Since α ≥ β and cR ≥ 1/α, we have that cRα
2

β ≥ 1, and so 2(1 +Δ/Exp[X ]) ≤
6αn · pR. If we apply Theorem 1 with γ = 1

2 then we get that

Pr
[

|E(R) ∩B| ≤ 1
2
|B| · p2

R

]

≤ exp
(

−(1/4) · |B| · p
2
R

6αn · pR

)

≤ exp (−(1/24)(βn/α)pR) = exp(−cR/24) . (5)

Since Exp[|R|] = pR ·n, by a multiplicative Chernoff bound, the probability that
|R| ≥ 2 · pR ·n is exp(−pRn/3) < exp(−cR/24). In other words, with probability
at least 1 − exp(−cR/24), |R|2 ≤ 4p2

Rn
2. Combining this with Equation (5), we

get that

Pr
[

|E(R) ∩B| ≤ 1
8
β|R|2

]

≤ exp(−cR/24) + Pr
[

|E(R) ∩B| ≤ 1
2
|B| · p2

R

]

≤ 2 exp(−cR/24) . (6)

It remains to deal with the way R is chosen. Instead of choosing R by indepen-
dently selecting each vertex u ∈ V with probability pR, we can equivalently first
select the size r of R that is induced by this distribution, and then uniformly at
random select a subset of r vertices. Furthermore, since we have already shown
that the probability that |R| ≥ 2 · pR · n is exp(−pRn/3) < exp(−cR/24) (and
have already taken the probability of this event into account), we can restrict
the choice of r to r ≤ 2 · pR ·n. The final observation is that the probability that
|E(R) ∩B| ≤ 1

2 |B| · p2
R monotonically decreases with the size r of R. Therefore,

we can take r to equal 2 · pR · n = 2cR · αβ . ��

4 An Adaptive Algorithm for Graphs with Small Degree

In this section we describe an adaptive tester for bipartiteness with query com-
plexity 1

ε3/2 · poly
(
α
ε log 1

ε

)
for graphs with maximum degree αn. In particular,

when α = O(ε), the query complexity is Õ(1/ε3/2). Recall that the lower bounds
in [5] (Ω(1/ε2) for non-adaptive testers and Ω(1/ε3/2) for adaptive testers), hold
for graphs with degree bound O(εn). At the end of the section we address the
question of testing the combined property of being bipartite and having degree
at most αn for α = O(ε).

Let ρ = α
ε denote the ratio between the maximum degree in the graph and

εn. We may assume that ρ ≥ 1 or else the graph is trivially ε-close to being
bipartite. The algorithm selects (uniformly at random) two subsets of vertices,
denoted S and R, where |S| = Θ

(
log(1/ε)

ε

)
and |R| = Θ

(
ρ·log(1/ε)

ε

)
, such that

|R| is always at least a sufficiently large constant factor larger than ρ · |S|. 2

2 In particular, setting |S| = 4
ε
ln 64

ε
and |R| = 128ρ|S| = 512ρ

ε
ln 64

ε
, suffices.
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The algorithm then performs queries on only some of the pairs of vertices in
S ∪ R (as is explained subsequently) in an attempt to find an odd-length cycle
in the subgraph induced by S ∪ R. We first describe several properties of the
two subsets and show that they hold with high constant probability (given the
sizes of the two sets as stated above). In all that follows, when we say “high
constant probability” we mean probability at least 1− δ for a small constant δ.
The constant δ is selected so that when we sum over all (constant number of)
failure events, we get at most 1/3.

Property 1. The total number of edges that are incident to vertices that do not
have a neighbor in S is at most (ε/2)n2.

Lemma 4. With high constant probability S has Property 1.

Proof. By Lemma 2, with high constant probability S is an (ε/4, ε/4) domi-
nating set for G. Namely, there are at most (ε/4)n vertices with degree at least
(ε/4)n that do not have a neighbor in S. The total number of edges incident to
these vertices is upper bounded by (ε/4)n2. Since there are at most n vertices
with degree less than (ε/4)n (that may not have a neighbor in S), there are at
most (ε/4)n2 additional edges. The lemma follows. ��

Definition 3. For a partition (S1, S2) of S, we say that an edge (u, v) ∈ E is
conflicting with (S1, S2) if u and v both have a neighbor in S1 or both have a
neighbor in S2.

By Definition 3, if for every partition (S1, S2) of S it holds that R spans at least
one edge that conflicts with (S1, S2), then the subgraph induced by S ∪R is not
bipartite. If, as in previous works [10,2] our algorithm would query all Ω(1/ε2)
pairs of vertices in S ∪R (or even just all Ω(1/ε2) pairs of vertex u, v such that
u ∈ S, v ∈ R or u, v ∈ R), then it would suffice to show that with high constant
probability R spans at least one conflicting edge for every partition of S. We
however need something stronger, which will allow us to save in the number of
queries when running an adaptive algorithm.

Property 2. For every partition (S1, S2) of S, the subset R spans at least
(ε/16)|R|2 edges that conflict with (S1, S2).

Lemma 5. Let G be a graph that is ε-far from being bipartite and has maximum
degree αn = ρ · εn. Suppose that S has Property 1. Then with high constant
probability R has Property 2.

Proof. For each fixed partition (S1, S2) of S, let B(S1, S2) denote the set of
edges that conflict with (S1, S2). We first show that conditioned on S having
Property 1, |B(S1, S2)| ≥ (ε/2)n2. To see why this is true, consider the following
partition (V1, V2) of V : V1 = {u : Γ (u) ∩ S2 �= ∅} and V2 = V \ V1. Since G is
ε-far from bipartite, there are at least εn2 edges that are violating with respect
to (V1, V2). Since S has Property 1, among these edges there are at least (ε/2)n2

edges whose endpoints both have at least one neighbor in S. Consider any such
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edge (u, v). If u, v ∈ V1 then u and v both have a neighbor in S2, and if u, v ∈ V2

then u and v both have a neighbor in S1. Therefore, all these violating edges are
conflicting edges and so |B(S1, S2)| ≥ (ε/2)n2 as claimed.

We now apply Corollary 3 with B = B(S1, S2) so that β = ε/2, and with
α = ρ · ε and cR = Θ(log(1/ε)/ε) (so that |R| = 2cR · αβ = Θ(ρ · log(1/ε)/ε)). It
follows that the probability that R spans less than (ε/16)|R|2 edges in B(S1, S2)
is exp(−Θ(log(1/ε)/ε)). The lemma follows by taking a union bound over all
partitions (S1, S2) of S. ��
Let T = S ∪R and let n = |T |, so that n = Θ(ρ · log(1/ε)/ε). Let GT denote the
subgraph induced by T .

Property 3. The maximum degree in GT is at most 2αn = O(ρ2 log(1/ε)).

Lemma 6. With high constant probability GT has Property 3.

Proof. Recall that n = |T |, and let u1, . . . , un be random variables where ui
is the i’th vertex selected to be in T = S ∪ R. (To be precise, since R and
S may intersect (if ε is very small), n is the number of vertices in T , counted
with repetitions.) For every i, j ∈ {1, . . . , n}, i �= j, let Yi,j be a random variable
indicating that (ui, uj) ∈ E, so that

∑
j �=i Yi,j is the number of neighbors that ui

has in T . For each fixed choice of i, consider selecting ui first, and then selecting
the other vertices. By the definition of Yi,j we have that Pr[Yi,j = 1] ≤ deg(ui)

n for
every j �= i (where we have an inequality rather than equality since S and R are
each selected without repetitions). Hence for each fixed choice of i we have that
Exp[

∑
j �=i Yi,j ] ≤ deg(ui) · (n− 1)/n < ρεn. By a multiplicative Chernoff bound,

Pr[
∑

j �=i Yi,j > 2ρεn] < e−ρεn/3. By applying the union bound, the probability
that this event occurs for some i ∈ {1, . . . , n} is upper bounded by n · e−ρεn/3
which for n = Θ(ρ · log(1/ε)/ε) is smaller than any constant, as required. ��

Lemma 7. Let G be a graph that is ε-far from being bipartite and has maximum
degree αn = ρεn. If R has Property 2 and GT has Property 3 then GT is ε′-far
from being bipartite for ε′ ≥ ε/(c2ρ2 log(1/ε)) where c2 is a constant.

Note that Lemma 1, which was stated in the introduction, follows from Lem-
mas 4–7.

Proof. Consider any fixed partition (S1∪R1, S2∪R2) of T = S∪R. We shall show
that there are at least ε′′|R|2 violating edges with respect to (S1 ∪R1, S2 ∪R2)
where ε′′ ≥ ε/(c′2ρ2 log(1/ε)) for some constant c′2. Since |R| ≥ (1/2)n (as |R| >
|S|), ε′′|R|2 ≥ 1

4ε
′′n2, the lemma follows for ε′ = 1

4ε
′′.

Recall that R has Property 2 and so there are at least (ε/16)|R|2 edges (u, v),
u, v ∈ R, that conflict with (S1, S2). Note that if an edge (u, v) (where u, v ∈ R)
conflicts with (S1, S2) then it is not necessarily a violating edge with respect
to (S1 ∪ R1, S2 ∪ R2), as u and v may be on different sides of the partition.
However, we can define a mapping from edges that conflict with (S1, S2) to
edges that are violating with respect to (S1 ∪ R1, S2 ∪ R2), where the number
of conflicting edges mapped to each violating edge is at most c′1ρ

2 log(1/ε) for
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some constant c′1. We thus get that the number of violating edges is at least
(ε/16)|R|2
c′
1ρ

2 log(1/ε) = ε
c′
2ρ

2 log(1/ε) |R|2 as claimed.
In what follows, whenever we say that an edge (u, v) is a conflicting edge, we

mean that it conflicts with (S1, S2) and is spanned by R. Similarly, whenever we
say that an edge is violating, then it is violating with respect to (S1∪R1, S2∪R2).

Consider any conflicting edge (u, v). If it is violating (i.e., u, v ∈ R1 or u, v ∈
R2) then it is mapped to itself. Otherwise, its two end points belong to different
sides of the partition (S1 ∪R1, S2 ∪R2). Without loss of generality, u ∈ R1 and
v ∈ R2. Since (u, v) is conflicting, either u has a neighbor w ∈ S1 and v has a
neighbor z ∈ S1, or u has a neighbor w ∈ S2 and v has a neighbor z ∈ S2. In
the former case we map (u, v) to the violating edge (u,w), and in the latter case
we map (u, v) to the violating edge (v, z).

In the worst case, for every vertex u, all conflicting edges (u, v) are mapped to
the same edge (u,w). Since (by Property 3) u has at most 2ρεn = c′1ρ

2 log(1/ε)
neighbors in R, the maximum number of conflicting edges that are mapped to
each violating edge is at most c′1ρ2 log(1/ε) as claimed. ��

As we show in [14], we can strengthen Lemma 7 in the case where almost all
vertices have approximately the same degree (where this degree may be large).
Specifically, in that case we show that if the graph is ε-far from bipartite, then
the subgraph induced by a sample of Θ̃(1/ε) vertices is ε′-far from bipartite for
ε′ = Ω(ε/ log(1/ε)).

4.1 Emulating an Algorithm for Bounded Degree Graphs

An alternative model for testing graph properties is known as the “bounded-
degree model”. When we discuss this model we shall add an ‘overline’ ( ) to all
notation so as to distinguish it from the dense model. In this model there is an
upper bound d on the degree of all vertices, and a graph G over n vertices is
said to be ε-far from being bipartite if more than εdn edges must be removed in
order to make the graph bipartite. A testing algorithm in this model can perform
“neighbor queries”, that is, for any vertex v and index 1 ≤ i ≤ d, the algorithm
may query what is the i’th neighbor of v. Clearly this model is most appropriate
for constant degree graphs, and more generally, for graphs in which the average
degree is of the same order as the maximum degree d (so that the number of
edges is Θ(dn).

Goldreich and Ron [11] presented an algorithm for testing bipartiteness in
the bounded-degree model whose query complexity and running time are

√
n ·

poly(logn, 1/ε). The running time of the algorithm has no dependence on the
degree bound d and it works for every ε and d, which in particular may be
functions of n.

We now describe the algorithm in [11]: It uniformly and independently at
random selects O(1/ε) starting vertices. From each starting vertex s it performs√
n · poly(logn, 1/ε) random walks, each of length poly(logn, 1/ε). Each step in

the random walk is performed in the following manner. Let deg(u) be the degree
of the current vertex reached by the walk (where initially u = s). Then for each
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vertex v ∈ Γ (u), the walk traverses to v with probability 1
2d

, and with probability

1− deg(u)

2d
(which is at least 1/2), the walk remains at u. If the algorithm detects

an odd-length cycle in the course of all the walks then it rejects, otherwise it
accepts.

We now return to our problem. Let G = GT and n = |T |. By Lemmas 4–7,
with high constant probability over the choice of S andR, all vertices in the graph
G=GT have degree at most d = O(ρ2 log(1/ε)), and it is necessary to remove more
than ε′n2 edges in order to make it bipartite, where ε′ = Ω(ε/(ρ2 log(1/ε))). But
this means that, in the bounded-degree model, G is ε-far from being bipartite for

ε =
ε′n2

dn
= Ω

(
1

ρ3 log(1/ε)

)

.

Given the aforementioned discussion, we would like to run the algorithm of [11]
on G. The only difficulty is that we cannot perform neighbor queries in G, where
these queries are necessary for performing random walks, and we can only per-
form vertex-pair queries. Note that the number of neighbor queries performed by
the algorithm is

√
n ·poly(logn, 1/ε), which for G = GT is poly(ρ · log(1/ε))/

√
ε.

In order to perform a random step from a vertex u, we simply perform all
queries (u, v) for v ∈ T , and take a random neighbor. The total cost is poly(ρ ·
log(1/ε))/ε3/2.

Algorithm 1 (A Testing Algorithm for Graphs with degree at most ρεn)

1. Uniformly at random select two subsets of vertices, S and R from V , where
|S| = Θ(log(1/ε)/ε) and |R| = Θ(ρ · log(1/ε)/ε), and let T = S ∪R.

2. Uniformly and independently at random select Θ(ρ3 log(1/ε)) vertices from
T . Let the set of vertices selected be denoted by W .

3. For each vertex s ∈ W , perform poly(ρ · log(1/ε))/
√
ε random walks in

GT , each of length poly(ρ · log(1/ε)). To perform a random walk step from
vertex u, the algorithm performs all vertex pair queries (u, v) for v ∈ T .
For each v ∈ Γ (v) ∩ T the walk continues to v with probability 1

2d
(where

d = cρ2 log(1/ε) for a constant c), and with probability 1− |Γ (v)∩T |
d

the walk
remains at u.

4. If an odd-length cycle is detected in the subgraph induced by all random walks
then reject, otherwise accept.

The next theorem follows from Lemmas 5, 6 and 7 and the correctness of the
algorithm in [11].

Theorem 2. Algorithm 1 is a testing algorithm for graphs with maximum degree
αn = ρεn. Its query complexity and running time are poly(ρ · log(1/ε))/ε3/2. In
particular, when ρ = O(1), the complexity of the algorithm is Õ(1/ε3/2).
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4.2 Testing Bipartiteness Combined with Small Degree

We have shown that is possible to test bipartitness of graphs with query complex-
ity and running time poly(ρ · log(1/ε))/ε3/2 under the promise that the graph
has degree at most αn = ρεn. Here we sketch the idea of how to remove the
promise and test the combined property of being bipartite and having degree at
most ρεn for any given ρ = O(1). For full details see [14].

For the sake of simplicity we set ρ = 3. We claim that it is possible to test
whether a graph has degree at most 3εn or is (ε/c)-far from any such graph
for any constant c, using Õ(1/ε) queries. We refer to this as the degree test .
Our algorithm for the combined property will first run the degree test with the
distance parameter set to ε/16. If the degree test rejects, then our algorithm
rejects. Otherwise it runs Algorithm 1 with the distance parameter set to ε/4.
If at any step in the algorithm it observes a vertex that has degree greater than
6εn in GT (the subgraph induced by the sample T where |T | = n) then it stops
and rejects. Otherwise its returns the output of Algorithm 1.

If the graph G has degree at most 3εn and is bipartite, then it will pass the
degree test and be accepted by Algorithm 1 with high constant probability. On
the other hand, if the graph is ε-far from the combined property, then it is either
at least (ε/2)-far from having degree at most 3εn or it is at least (ε/2)-far from
being bipartite (or possibly both). In the first case, it will be rejected with high
constant probability by the degree test. In fact, we set the distance parameter
for the degree test to be such that with high constant probability it only passes
graphs that are (ε/16)-close to having degree at most 3εn.

The main observation is that if a graph is (ε/16)-close to having degree at
most 3εn but is (ε/2)-far from being bipartite, then the following holds: The
subgraph of G, denoted G′, which contains all vertices of G but only the edges
between vertices with degree at most 6εn, is (ε/4)-far from bipartite. When
we run Algorithm 1, it either detects a vertex with high degree in the sample,
in which case it has evidence that G does not have degree at most 3εn, or it
effectively runs on G′, and rejects with high constant probability.

5 An Algorithm for Graphs with Large Degree

In this section we show that Õ
(

1
ε·α
)

queries suffice for testing bipartiteness of
graphs with minimum degree αn. In particular this implies that Õ(ε−3/2) queries
suffice for testing bipartiteness of graphs with minimum degree Ω(

√
ε · n). In

fact, we allow there to be at most (ε/4)n2 edges that are incident to vertices
with degree smaller than αn.

Algorithm 2 (A Testing Algorithm for Graphs with Degree at least αn)

1. Uniformly and independently at random select Θ
(

log(1/ε)
α

)
vertices in V .

Let the set of selected vertices be denoted by S.3 Uniformly at random select
a subset R of Θ

(
log2(1/ε)

ε

)
vertices in V .

3 Here S is chosen a bit differently from the way it was chosen in Algorithm 1 so that
we can directly apply a result from [2].
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2. Perform all vertex-pair queries between vertices in S and vertices in R.
3. Uniformly and independently at random select Θ

(
log3(1/ε)

ε·α

)
pairs of vertices

in R and perform a vertex-pair query on each pair.
4. Consider the subgraph induced by all edges revealed in the vertex-pair queries.

If the subgraph is bipartite then accept, otherwise reject.

Theorem 3. Algorithm 2 is a testing algorithm for graphs with minimum degree
at least αn. Its query complexity and running time are polylog(1/ε)

ε·α .

In our analysis we build on Alon and Krivelevich [2], where at a certain point we
deviate from their analysis and exploit the minimum degree of the graph. The
next lemma is a variant of Proposition 3.2 in [2].

Lemma 8. Let 0 < α < 1, and let G be a graph in which the number of edges
incident to vertices with degree smaller than αn is at most (ε/4)n2. Suppose
we select Θ

(
log(1/ε)

α

)
vertices, uniformly, independently at random, and denote

the subset of vertices selected by S. Then with high constant probability over
the choice of S, there exist subsets of S, denoted S1, . . . , St, and edge-disjoint
subgraphs of G, denoted

{
Gi = (V,Ei)

}t=ln 1
α

i=1
for which the following conditions

hold:

1. For every 1 ≤ i ≤ t: (a) |Si| ≤ t · ei+2; (b) Every vertex in Gi has at least
one neighbor in

⋃i
j=1 S

j; (c) For every vertex v in Gi, the degree of v in
Gi is at most n

ei−1 .

2.
∣
∣
∣E(G) \

⋃t
i=1 E(Gi)

∣
∣
∣ ≤ ε

2n
2.

As in Section 4, we show that certain properties of the samples S and R hold
with high constant probability.

For each 1 ≤ i ≤ t let S≤i =
⋃i
j=1 S

j, and for each partition (S1, S2) of
S, and for � ∈ {1, 2}, let Si� = S� ∩ Si and S≤i

� = S� ∩ S≤i =
⋃i
j=1 S

j
� . Let

Bi(S1, S2) ⊆ E(Gi) be the subset of edges in E(Gi) that conflict with (S≤i
1 , S≤i

2 )
(recall Definition 3).

Property 4. For every partition (S1, S2) of S, there exists an index 1 ≤ i ≤ t
such that |Bi(S1, S2)| ≥ ε

2tn
2.

Lemma 9. Let G be a graph that is ε-far from being bipartite. If S satisfies the
conditions in Lemma 8 then S has Property 4.

Proof. Similarly to the proof of Lemma 5, consider the following partition
(V1, V2) of V : V1 = {u : Γ (u) ∩ S2 �= ∅} and V2 = V \ V1. Since G is ε-far
from bipartite, there are at least εn2 edges that are violating with respect to
(V1, V2). Since S satisfies Condition 2 in Lemma 8, among these edges there are
at least (ε/2)n2 edges that belong to

⋃t
i=1E(Gi). Therefore, there exists an in-

dex 1 ≤ i ≤ t such that there are at least ε
2tn

2 edges in E(Gi) that are violating
with respect to (V1, V2).
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Consider any such edge (u, v). Since S satisfies Condition 1b in Lemma 8, u
and v each have a neighbor in S≤i. If u, v ∈ V1 then u and v both have a neighbor
in S2, and if u, v ∈ V2 then u and v both have a neighbor in S1. Therefore, all
these violating edges are conflicting edges with respect to (S≤i

1 , S≤i
2 ) and hence

|Bi(S1, S2)| ≥ (ε/2t)n2 as claimed. ��

Property 5. For every partition (S1, S2) of S and for every index 1 ≤ i ≤ t such
that |Bi(S1, S2)| ≥ ε

2tn
2, the subset R spans at least ε

16t |R|2 edges in Bi(S1, S2).

Lemma 10. If S satisfies the conditions in Lemma 8 then with high constant
probability over the choice of R it has Property 5.

Proof. Let us fix i, and let Z = S≤i. For any partition (Z1, Z2) of Z, let
B(Z1, Z2) denote the subset of edges in E(Gi) that conflict with (Z1, Z2). Con-
sider a fixed partition (Z1, Z2) for which |B(Z1, Z2)| ≥ ε

2tn
2. By Condition 1c

in Lemma 8, the degree of vertices in Gi is at most n
ei−1 . We apply Corol-

lary 3 with B = B(Z1, Z2), so that β = ε
2t , and with α = e−(i−1) and cR =

Ω(log(1/ε)·ei). The probability that R spans less than ε
16t |R|2 edges in B(Z1, Z2)

is exp(−Ω(log(1/ε) · ei)).
By Condition 1a in Lemma 8, |Z| = O(tei). By taking the union bound over

all exp(O(tei)) partitions (Z1, Z2) of Z = S≤i and the union bound over all
1 ≤ i ≤ t, we get that with high constant probability, for every 1 ≤ i ≤ t and
for every partition (Z1, Z2) of Z = S≤i for which |B(Z1, Z2)| ≥ ε

2tn
2, R spans

at least ε
16t |R|2 edges in B(Z1, Z2).

Now consider any partition (S1, S2) of S and index 1 ≤ i ≤ t such that
|Bi(S1, S2)| ≥ ε

2t . Since, by definition, Bi(S1, S2) = B(S≤i
1 , S≤i

2 ) where
(S≤i

1 , S≤i
2 ) is the partition of S≤i induced by (S1, S2), the lemma follows. ��

Lemma 11. Suppose that S has Property 4 and R has Property 5. Then with
high constant probability, for every partition (S1, S2) of S, in Step 3 of Algo-
rithm 2 the algorithm selects a pair u, v ∈ R such that (u, v) conflicts with
(S1, S2).

Proof. Let us fix a partition (S1, S2) and let i be the minimal index such that
|Bi(S1, S2)| ≥ ε

2tn
2, where such an index exists because S has Property 4. Since

R has Property 5 we know that it spans at least ε
16t |R|2 edges in Bi(S1, S2).

If we select Θ
(

log3(1/ε)
ε·α

)
pairs of vertices from R, then the probability that no

edge in Bi(S1, S2) is selected is exp
(
−Θ
(

log3(1/ε)
tα

))
. Since α ≥ √ε the above

probability is exp
(
−Θ
(

log2(1/ε)
α

))
. The lemma follows by taking a union bound

over all partitions of S. ��

Theorem 3 follows from Lemmas 8–11: If for every partition (S1, S2) of S the
algorithm queries a conflicting edge (u, v), u, v ∈ R, then for every partition
(S1 ∪ R1, S2 ∪ R2) the algorithm queries a violating edge and so that subgraph
induced by all edges queried is not bipartite.
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Slow Mixing of Markov Chains Using Fault

Lines and Fat Contours�
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Abstract. We show that local dynamics require exponential time for
two sampling problems: independent sets on the triangular lattice (the
hard-core lattice gas model) and weighted even orientations of the Carte-
sian lattice (the 8-vertex model). For each problem, there is a parameter
λ known as the fugacity such that local Markov chains are expected to be
fast when λ is small and slow when λ is large. However, establishing slow
mixing for these models has been a challenge because standard contour
arguments typically used to show that a chain has small conductance do
not seem sufficient. We modify this approach by introducing the notion
of fat contours that can have nontrivial d-dimensional volume and use
these to establish slow mixing of local chains defined for these models.

1 Introduction

Markov chains based on local moves, known as Glauber dynamics, are used
extensively in practice to sample from large state spaces. An example is the
following Markov chain used to sample independent sets on Zd, the so-called
“hard-core lattice gas model.” The Gibbs (or Boltzmann) distribution is param-
eterized by a “fugacity” λ > 0 and is defined as π(I) = λ|I|/Z, where Z is the
normalizing constant known as the partition function. Glauber dynamics start
at any initial state, say the empty independent set, and repeatedly add and re-
move single vertices according to the correct conditional probabilities so that the
chain converges to the Gibbs distribution. We are interested in characterizing
when simple chains converge quickly to equilibrium so that they can be used for
efficient Monte Carlo algorithms.

An interesting phenomenon occurs as the parameter λ is varied: for small
values of λ, Glauber dynamics converge quickly to stationarity, while for large
values of λ, this convergence will be prohibitively slow. When λ is sufficiently
large, dense independent sets dominate the stationary distribution π and it will
take a very long time to move from an independent set that lies mostly on the
odd sublattice to one that lies mostly on the even sublattice. The key observation
is that local moves require the chain to visit an independent set that has roughly
half of its vertices on the even sublattice and half on the odd sublattice, and such
configurations are forced to have substantially fewer vertices and are therefore
� Supported in part by NSF grants CCR-0515105 and DMS-0505505.
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very unlikely when λ is large. This phenomenon is well known in the statistical
physics community and characterizes a phase transition in the underlying model.
Physicists observe such a dichotomy in the context of identifying when there will
be a unique limiting distribution on the infinite lattice, known as a Gibbs state;
below some critical λc there is a unique Gibbs state, while above λc there are
multiple Gibbs states.

In order to show that a Markov chain is slow, it suffices to show that it has
exponentially small conductance, i.e., that the state space can be partitioned into
three sets such that the middle set has exponentially small probability compared
to the other two and yet it is necessary to pass through the middle set to move
between configurations in the large sets. In the context of independent sets on the
Cartesian lattice, the large sets consist of configurations that lie predominantly
on one sublattice, and the middle set contains configurations that are more
balanced. Balanced independent sets are forced to contain many fewer vertices
because there must be a space between regions that are mostly even and regions
that are mostly odd; this makes such configurations exponentially unlikely when
λ is large. When λ is large enough, then the total weight of the middle set will
have small probability, even though it may contain an exponential number of
configurations. Peierls arguments allow us to formalize this intuition by defining
“contours” between regions bounded by odd or even vertices in the independent
set and constructing injections that map configurations in the middle set to
ones with substantially larger stationary probability. For independent sets, the
injection is constructed by shifting the interior of a contour and adding many
new vertices to the set (see, e.g., [3, 6, 5, 11]). Likewise, for spin configurations
such as the Ising model (where vertices are assigned + or - spins and neighboring
vertices prefer to have the same spin) contours separate regions that are mostly
- and mostly + and the injection flips the spins on the interior of a contour [13].

1.1 Non-bipartite Independent Sets and Weighted Even
Orientations

The dichotomy observed for Glauber dynamics on independent sets defined on
the Cartesian lattice is believed to persist when the underlying lattice is the
2-dimensional triangular lattice. For small λ, Glauber dynamics are known to
be rapidly mixing [9]. However, for large enough λ, independent sets will tend
to be quite dense and hence any local dynamics should be slow. This is because
there are three maximal independent sets, arising from the natural tri-partition
of the triangular lattice into black, white and gray vertices, and the most likely
configurations will be largely monochromatic. Configurations with fewer than
n/2 vertices of each color are expected to be exponentially unlikely, and yet it is
necessary to pass through such configurations to move from, say, a mostly black
configuration to a mostly white one.

Unfortunately, Peierls arguments that succeed on bipartite lattice do not seem
to generalize readily to the triangular lattice. The problem is that a contour
surrounding a region whose boundary is black might be adjacent to some vertices
that are white and some that are gray. The map must significantly increase the
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Fig. 1. An independent set of the triangle lattice and an even orientation of the Carte-
sian lattice

stationary probability for the argument to work, but there is no guarantee that
shifting the black region in any direction will allow us to add enough new vertices
to sufficiently increase the weight. An example of such a problematic balanced
configuration is illustrated in the first half of Figure 1.

The second model we consider, weighted even orientations, also seems resistant
to standard contour arguments. Given a rectangular region L in the Cartesian
lattice Z2, the state space Ω8 is the set of even orientations of E(L), i.e., orien-
tations of edges so that each vertex on the interior of L has even in-degree and
out-degree. This is known as the 8-vertex model in statistical physics, as there
are 8 possible orientations of the edges incident to any vertex. We call vertices
sources if they have in-degree 0 and sinks if they have out-degree 0; all other
vertices are called Eulerian since their in-degree and out-degree are both 2. For
σ ∈ Ω8, let S(σ) be number of sources and sinks in σ. Given γ > 0, we assign
configuration σ probability π(σ) = γS(σ)/Z, where Z is the normalizing constant.

The local Markov chain M8 is the Glauber dynamics defined on the set of
even orientations. In each step, the chain chooses a cycle of length 4 in the lat-
tice and either reverses the orientations of the edges around that cycle or keeps
them unchanged according to the correct conditional probabilities given by the
Gibbs distribution. This chain can be shown to connect the state space for all
finite γ. When γ = 0, the only allowable configurations are Eulerian orientations
(known as the 6-vertex model) where every vertex has in-degree = out-degree
= 2, and Glauber dynamics are known to be efficient [8, 12]. When γ is close to
1, we can use simple coupling arguments to show that Glauber dynamics are also
fast. However, when γ is sufficiently large, we expect most vertices to be sources
or sinks and it should take exponentially long to move from a configuration
that has predominantly odd sources and even sinks to one with predominantly
even sources and odd sinks. While it seems true that configurations that are “bal-
anced” are exponentially unlikely, this does not seem to follow from any standard
contour arguments. As demonstrated by the configuration in the second half of
Figure 1, it is not always possible to define a map between valid configurations
by flipping or shifting a single contour that is guaranteed to significantly increase
the stationary probability, as required for the Peierls argument to work.
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1.2 Our Results

We provide the first rigorous proofs that Glauber dynamics are slow for indepen-
dent sets on the triangular lattice and for weighted even orientations on Z2. For
even orientations, we show slow mixing of the local Markov chain on rectangular
regions with fixed boundary conditions, while for independent sets we consider
rhomboidal regions with periodic (toroidal) boundary conditions. These turn out
to be the simplest regions for which our arguments can be made to work. Our
two main theorems are as follows.

Theorem 1. Let Λ be an n× n rhomboidal region of the triangular lattice with
periodic boundary conditions, let ΩIS be the set of independent sets on Λ, and
let MIS be Glauber dynamics on ΩIS. There exists λ such that for all λ′ > λ,
the mixing time of MIS(λ′) is Ω(ekn) for some constant k.

Theorem 2. Let L be an n× n region in the Cartesian lattice, Ω8 be the set of
even orientations of L, andM8 be Glauber dynamics on Ω8. There exists γ such
that for all γ′ > γ, the mixing time of M8(γ′) is Ω(ekn) for some constant k.

Our proofs are based on several innovations. First, we abandon the approach of
partitioning the state space into sets of configurations so that the middle sets
are “balanced” in the sense described above. Instead we expand the approach
in [11] of basing the partition of the state space on “topological obstructions.”
Roughly speaking, the middle set in our partition of the state space is defined
by the presence of “fault lines,” or paths from the top to bottom or left to right
of the region that pass only through “unfavorable” vertices (in our cases, vacant
vertices in the independent sets or Eulerian vertices in the even orientations).
The absence of a fault line is characterized by the presence of a monochromatic
blocking path of “favorable” vertices in each direction, and the color of this path
determines which part of the state space a configuration lies in. To see why
this is different from the standard approach, consider an independent set that
has a single odd cross, and then includes all even vertices that can possibly be
added; this independent set is considered “odd” even though it has O(n2) even
vertices and only O(n) odd ones. This partition of the state space was shown to
greatly simplify the combinatorial methods underlying the Peierls argument for
bipartite independent sets [11] and can be extended to the models we consider
here as well.

It is still the case that the 1-dimensional contours used for independent sets
and the Ising model on bipartite lattices do not readily generalize to our problems
for the reasons outlined above. However, a generalized notion of contours that
includes a larger 2-dimensional region can be made to work. Instead of defining
a minimal connected set of unfavorable vertices, we define fat contours to be
maximal connected sets of unfavorable vertices. We encode a fat contour by
taking a depth-first search on the component, and define an injective map from
configurations in the “middle set” of the state space by replacing the entire fat
contour with favorable vertices (a maximal independent set or a maximal set of
sources and sinks). This typically involves shifting parts of the independent set
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outside of the fat contour in two different directions. We then show that the gain
is sufficient to outweigh the amount of information needed for the encoding of
the fat contour.

Last, in order to show slow mixing in the context of independent sets on
the triangular lattice with periodic boundary conditions, it is necessary to talk
about multiple non-contractible fault lines, depending on the color of the bound-
ary vertices. On the Cartesian lattice with periodic boundary conditions it was
only necessary to find two non-contractible cycles and to shift (or flip) the config-
uration between these; on the triangular lattice it is sometimes necessary to find
three non-contractible cycles since we are shifting regions in multiple directions.

In Section 2, we cover some background material for basic Markov chain
mechanics more formally. In Sections 3 and 4, we prove Theorems 1 and 2. We
note that we have not attempted to optimize constants throughout this version
of the paper, but have focused on constructing simple arguments for the proofs.

2 Preliminaries

Let M be an ergodic (i.e., irreducible and aperiodic), reversible Markov chain
with finite state space Ω, transition probability matrix P , and stationary distri-
bution π. Let P t(x, y) be the t-step transition probability from x to y and let
||·, ·|| denote the total variation distance.

Definition 1. For ε > 0, the mixing time τ = min{t : ‖P t′ , π‖ ≤ 1/4, ∀t′ ≥ t}.

We say a Markov chain is rapidly mixing if the mixing time is bounded by a
polynomial in n and slowly mixing if the mixing time is exponential in n. Jerrum
and Sinclair [7] defined the conductance of a chain and showed that it bounds
mixing time.

Definition 2. If a Markov chain has stationary distribution π, for any subset
S ⊂ Ω of the state space with π(S) ≤ 1/2, define

ΦS =

∑
x∈S,y �∈S π(x)P (x, y)

π(S)

and define the conductance Φ as

Φ = min
S:π(S)≤1/2

ΦS .

The conductance theorem due to Jerrum and Sinclair [7] reduces to the following
that exactly characterizes when a Markov chain mixes rapidly or slowly.

Theorem 3. An ergodic, reversible Markov chain with conductance Φ is rapidly
mixing if Φ > 1/p(n) for some polynomial p and slowly mixing if Φ < c−n for
some c > 1.

It follows that in order to show that a Markov chain mixes slowly, it suffices to
identify a cut (S, SC) in the state space such that ΦS ≤ c−n.
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3 Weighted Even Orientations

Let L be an n × n region of the Cartesian lattice Z2, and let Ω8 be the set
of all orientations of the edges of L, so that all vertices in the interior of L
have even in-degree and even out-degree. We are given a fixed constant γ > 0
representing the fugacity. Then for each σ ∈ Ω8, we define the Gibbs measure
π(σ) = γS(σ)/Z, where S(σ) is the number of sources and sinks in σ and Z is
the normalizing constant. Let the Markov chain M8 be the Glauber dynamics
on Ω8 that chooses a face of L uniformly at random and flips the orientations of
all edges incident to that face according to the correct conditional probabilities.
More precisely, let s1 be the number of sources and sinks among the four vertices
defining the face in the current configuration and let s2 be the number of sources
and sinks that would surround that face if we were to flip the orientations of
the four bounding edges. We flip the orientations of the four bounding edges
with probability λs2/(λs1 + λs2) and we keep the orientation unchanged with
probability λs1/(λs1 + λs2 ).

When λ = 1, all even orientations are equally likely. In this case, the probabil-
ity of flipping the orientation of edges around any face is the same. If we define
the distance between two configurations to be the number of edges in which their
orientations differ, then it is easy to construct a coupling argument to show that
the chain is rapidly mixing. (See [1] for the coupling theorem.) In fact, the dis-
tance function never increases during moves of the coupled chain. When λ �= 1
the distance function can increase as well as decrease, but the coupling argument
still works when λ is suffiently close to 1. We also know that the chain is rapidly
mixing when λ = 0, since this corresponds to Eulerian orientations on Cartesian
lattice regions [8].

However, when λ is large, Glauber dynamics behave quite differently than
when λ is small and the chain converges rapidly to equilibrium. Before proceed-
ing with our analysis of the mixing time, we present a reinterpretation of Ω8 as
an edge coloring. For every configuration, color an edge white if it points from
an even vertex to an odd one, and color it black if it points from an odd vertex
to an even one. An example of this transformation is shown in Figure 2. Now Ω8

can be seen as the set of edge-colorings where every internal vertex has an even
number of edges of each color. The sources and sinks are now monochromatic
vertices (i.e., all incident edges are the same color). We call vertices that are in-
cident to both black and white edges bichromatic. The cut in the state space will
be characterized by configurations with many bichromatic vertices. Unlike the
standard approach of partitioning the state space by relative numbers of black
and white vertices, we instead use the approach of [11] and partition according
to fault lines.

Call two vertices of L edge-adjacent if they share an edge of L and call two
vertices of L face-adjacent if they lie on a common face of L. (Face-adjacent
vertices can be edge-adjacent or diagonally opposite across a face.) Define a
vertical fault line to be a connected path of bichromatic face-adjacent vertices
from the top of L to the bottom. A horizontal fault line is defined similarly. Let
F ⊂ Ω8 be the set of all configurations containing a fault line.
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Fig. 2. A configuration σ ∈ Ω8 (with sources and sinks marked) and the corresponding
edge-coloring

Now we define a vertical bridge to be a edge-connected path of monochro-
matic vertices which touches both the top and bottom of L. A horizontal bridge
is defined similarly. We say that a configuration has a cross if it contains both a
horizontal and a vertical bridge (of the same color). Let W be the set of config-
urations containing a white cross and B be the set of configurations containing
a black cross. We now show that these three sets F , W , and B are disjoint and
characterize all of Ω8.

Lemma 1. We may partition Ω8 into F ,W, and B. That is, every configuration
of Ω8 has either a fault line, a white cross, or a black cross (but no two of these).

Proof. The sets W and B are clearly disjoint, as every configuration in W has a
vertical white bridge and every configuration in B has a horizontal black bridge;
no configuration can have both. Similarly F is disjoint from W and B because
fault lines obstruct crosses; if a configuration has a horizontal fault line it can
not have a vertical bridge. What remains to be shown is that these three sets
cover all of Ω8, that any configuration without a cross must have a fault line.

Let σ be a configuration with no horizontal bridge. This means some vertices
along the top of L must be bichromatic. Let T be the set of bichromatic vertices
that have a face-connected path to the top of L. If T never reaches the bottom
of L, then the boundary of T can be used to construct a horizontal bridge (and
therefore a contradiction). Therefore T contains some part of the bottom of L,
and so contains a vertical fault line.

Similarly, if σ has no vertical bridge then σ has a horizontal fault line.

We now show that for M8 to pass from W to B, it must pass through F , so F
defines a cut in the state space.

Lemma 2. For transition probability P (·, ·) of M8, we have P (σW , σB) = 0 for
all σW ∈ W and σB ∈ B.

Proof. Assume we do have configurations σW ∈ W and σB ∈ B that differ
by a single move of M8, say on face f . Configuration σW has both vertical
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and horizontal white bridges and σB has vertical and horizontal black bridges.
Outside of f , σW = σB, so each contain both white and black paths from f to
the top, bottom, left, and right of L. Moreover, for f to be critical to there being
a black or a white cross, one edge eB of f must be incident to only black edges
outside of f , and the opposite edge eW of f must be incident to only white edges
outside of f . Coloring eB black and eW white, we must then have a left-right
white crossing of the region and a top-bottom black crossing, a contradiction.
We can conclude that W and B are not connected by a single move.

Next, we proceed to show that the stationary probability of F is exponentially
small. We define a fat contour to be a maximally face-connected set of bichro-
matic vertices containing a fault line. Clearly any configuration with a fault line
has a fat contour. To bound π(F), we define a mapping ψ : F → Ω8 which
takes σ ∈ F and recolors edges incident to a fat contour so that the contour
contains only white (or black) vertices. Although ψ is not one-to-one, we will
show that for every σ′ ∈ Img(ψ), the stationary probability of the pre-image
ψ−1(σ′) = {σ ∈ O : ψ(σ) = σ′} is exponentially less than π(σ′). First we prove
a counting lemma that will help bound the size of the pre-image of ψ.

Lemma 3. If F is a fat contour such that |F | = �, then there are fewer than
2n · 64� possible choices for the vertices of F and fewer than 6� colorings of the
edges incident to those vertices.

Proof. Without loss of generality, we assume F is a vertical fat contour. This
at most halves the total choices for F . The fat contour must then include some
vertex of the top of L. The location of this vertex together with a description
of a DFS traversal of F starting at this vertex is sufficient to reconstruct the
vertices in F . As there are at most eight choices at each step in the DFS (four
adjacencies along edges and four diagonals across faces) there are at most 82�

such traversals. With n choices for the starting vertex, we have the bound on F .
Finally, for each vertex in F , there are at most 6 possible Eulerian orientations

of the incident edges, so 6� is an immediate (albeit weak) upper bound on the
number of colorings of the edges defining F .

Our definition of ψ(σ) proceeds as follows. First, choose an arbitrary fat contour
of σ, F (e.g. farthest to the left or top). In the complement of F , each of the
connected components (or “islands” of F ) has a boundary which is either entirely
white or entirely black. We reverse the color of every edge within the white islands
(leaving black islands as they are). Now the edges incident to F are entirely
black, and F can be recolored completely with black monochromatic vertices. An
example of this modification is in Figure 3. The resulting configuration has |F |
more monochromatic vertices than the pre-image, corresponding to additional
sources and sinks in the original even orientation.

Notice that to find the inverse of ψ, we need only the location of F and the
colorings of the edges incident to vertices of F . The edges on the boundary of
the fat contour will then define whether a island was originally white or black,
and we can therefore recover the colors of edges in those islands accordingly.
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Fig. 3. A coloring σ, σ with the fat contour removed, and ψ(σ)

Lemma 4. There exists constants γ0, n0, c > 1 such that, if γ > γ0 and n > n0,
then π(F) < c−n.

Proof. For each � ∈ [n, n2], let Fl be the edge-colorings in F where the fat
contour chosen by ψ is of size �. Then, for each σ′ ∈ Img(ψ),

π(ψ−1(σ′)) =
n2
∑

�=n

∑

σ∈Fl:ψ(σ)=σ′

π(σ)

=
n2
∑

�=n

∑

σ∈Fl:ψ(σ)=σ′

π(σ′) · γ−�

≤
n2
∑

�=n

2n64�6� · π(σ′) · γ−�

< 2n3

(
384
γ

)n
π(σ′).

This bound on the pre-image allows us to bound π(F) as follows:

π(F) =
∑

σ′∈Img(ψ)

π(ψ−1(σ′))

<
∑

σ′∈Img(ψ)

2n3

(
384
γ

)n
π(σ′)

= 2n3

(
384
γ

)n
π(Img(ψ))

< 2n3

(
384
γ

)n
.

Taking λ > 384 yields the lemma.
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The final step of the proof of Theorem 2 is to show that this lemma is sufficient
to bound the conductance. Consider the cut defined by the setW . By symmetry
π(W) = π(B) = (1− π(F))/2. Therefore

Φ ≤ ΦW ≤
π(F)
π(W)

≤ .49c−n,

where c > 1. Appealing to Theorem 3, this proves Theorem 2.
Using essentially the same arguments, we can extend the slow mixing result

presented in this section to weighted even orientations on regions with periodic
boundary conditions, as well as Cartesian lattice regions in higher dimensions.
We leave these details for the full version of the paper.

4 Independent Sets on the Triangular Lattice

Let Λ be a 3n × 3n rhomboidal region of the triangular lattice with periodic
boundary conditions and let ΩIS be the set of all independent sets on Λ. Given
a constant λ > 0, define a probability distribution π(I) = λ|I|/Z, where Z is
the normalizing constant. The Glauber dynamics MIS are as follows: choose a
vertex of Λ uniformly at random and add or remove that vertex from I with
the correct conditional probabilities, if possible. That is, if the vertex could be
included without violating the independence condition, add it with probability
λ/(1 + λ) and remove it with probability 1/(1 + λ).

The lattice has a natural tri-partition, which we color black, white, and gray.
Call a face of Λ empty if it is not incident to any vertex of I, as illustrated in
Figure 4.

Call two faces of Λ adjacent if they share at least one vertex. We then define
a fault line to be a non-contractible cycle of empty faces. We let F ⊂ ΩIS be
the set of all independent sets with at least one fault line.

The obstruction preventing a fault line must be a set of tightly packed vertices
of I. Call two vertices of an independent set touching if they are incident to faces
which share an edge. Note that touching vertices must have the same color. We
define a monochromatic bridge to be a non-contractible cycle of touching vertices
of I. For any non-contractible cycle, the winding number is an ordered pair of

Fig. 4. An independent set on Λ and the corresponding empty faces
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integers representing the number of times it winds around a fundamental domain
in the horizontal and vertical directions before returning to the starting point.
We say a configuration has a monochromatic cross if it contains two bridges
with different winding numbers. Let B,W , and G be the set of independent sets
containing black, white, and gray crosses, respectively.

We first show that these sets define a partition of ΩIS .

Lemma 5. Every independent set in ΩIS has a fault line or a white, black, or
gray cross, but no two of these.

Proof. This proof is similar to the argument in [11] that shows that independent
sets on the Cartesian lattice without fixed boundary conditions must have hori-
zontal and vertical bridges of one color or there must be a fault line. A key point
we use here is that any two non-contractible cycles of different winding numbers
must intersect.

The sets B, W , and G are disjoint, as an independent set cannot have two
crosses of different colors; that would involve two bridges of different winding
numbers and different colors, whose intersection would lead to a contradiction.
Similarly, F is disjoint from B, W , and G, as no set can have both a cross and
a fault line; the fault line must intersect at least one of the bridges, which is
impossible.

To see that there must be either a cross or a fault line, examine the torus
after the removal of a bridge. The remaining space is a non-contractible strip of
the torus of the same winding number as the bridge. If there exists a path of
touching vertices across this strip, we find a bridge of a different winding number
and therefore a cross. However, if no such path exists, then there must exist a
fault line along the strip.

We now show that removing F disconnects W , B, and G. Let P (·, ·) be the
transition probabilities ofMIS .

Lemma 6. Let I1 ∈ W, I2 ∈ B and I3 ∈ G be three independent sets. Then
P (Ii, Ij) = 0 for all i �= j.

Proof. Individual moves of MIS add or remove single vertices. Clearly it takes
multiple moves to eliminate one cross and complete another.

We now show that the stationary probability of F is exponentially small. In doing
so, we again extend fault lines to 2-dimensional regions. Define a fat contour to
be a maximally connected set of empty faces containing a fault line. We define a
mapping ψ : F → ΩIS which eliminates at least one fat contour. Although the
mapping is not one-to-one, we will show that each I ′ ∈ Img(ψ) has a pre-image
whose total weight is exponentially smaller.

To bound the number of sets in this pre-image, we bound the number of fat
contours.

Lemma 7. If F is a fat contour with � faces, then there are at most 2n236�

choices for the locations of those faces.
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Fig. 5. Adjacent faces which are point-adjacent, edge-adjacent, and neither

Proof. First, we limit the notion of adjacencies in F . Define two adjacent faces
to be edge-adjacent if they share an edge. Call them point-adjacent if they share
a single vertex and yet are not both adjacent to a common face. As illustrated
in Figure 5, not all pairs of adjacent faces are edge- or point-adjacent. However,
note that edge- and point-adjacencies suffice to connect F , as a vertex of I
removes a complete hexagon from F . We can therefore find a traversal of F that
uses only edge- and point-adjacencies.

There are 2n2 choices for a face to start the DFS of F . Then each step of
the DFS has six possible directions (three edge-adjacencies and three point-
adjacencies), so there are at most 62l possible traversals starting at f .

Our definition of ψ is slightly more complicated than in Section 3 because we
are considering toroidal regions. Suppose first that F contains two fault lines
with different winding numbers. Then the complement of F contains only regions
whose boundaries are contractible. By the maximality of F , each of these regions
has a monochromatic boundary, so we may refer to these connected components
(or “islands”) by the colors of their boundaries. Note that if we shift all white
islands one space East so that their boundaries become gray, and shift all black
islands one space to the North-East so that their boundaries also become gray
(and leave gray islands as they are), we form a new independent set of the same
size. After this shift, all vertices incident to F are gray, so ψ may fill the entire
fat contour with gray vertices. If F has � faces, ψ adds at exactly �/6 vertices to
I, each the center of a vacant hexagon.

Unfortunately, fat contours need not contain multiple fault lines with differing
winding numbers and indeed the complement of F can contain regions whose
boundaries are non-contractible. If this is the case, then F has a bridge on each
side. Define a bulge to be a maximal set of touching vertices of I which contain
a bridge. In this case F must be incident to two bulges. If these are of the same
color, ψ can shift all islands within F to that color and fill F .

Complicating matters further, there may be no fat contour incident to two
bulges of the same color. For instance, let F1 be a fat contour incident to a white
bulge on the left and a black one on the right. To the right of the black bulge
there must be another fat contour, F2. If F2 is incident to a white bulge, ψ can
shift the islands of F1 and F2 and the black bulge all to white. Then ψ can
fill both fat contours with white vertices. If F1 and F2 contain �1 and �2 faces
(respectively), then ψ adds (�1 + �2)/6 vertices to I.

In one final case, suppose we have no pair of neighboring fat contours bordered
by bulges of the same color. Then there must then be a third fat contour F3 which
is incident to still another bulge. Luckily we only have three colors of bulges; at
some point these colors must repeat. For example, if we have, in order, a black
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bulge, F1, a white bulge, F2, a gray bulge, F3, and then a black bulge, then ψ
can shift the white bulge, the gray bulge, and all islands of the fat contours to
black. We may then fill all three fat contours with black vertices.

To find the inverse of ψ, note that we need only the faces of the fat contour(s);
the colors of the neighboring vertices can be inferred from the shape of F , and
these colors define the direction of the shift.

We may now bound the stationary probability of F .

Lemma 8. There exists constants λ0, n0, c > 1 such that, if λ > λ0 and n > n0,
then π(F) < c−n.

Proof. For each � ∈ [n, 2n2], let Fl ⊂ F be the independent sets where the
fat contours chosen by ψ contain a total of � faces. Given �1,�2,�3 such that
�1 + �2 + �3 = �, Lemma 7 shows that there are at most

∏3
i=1 2n236�i = 8n636�

choices of faults such that |Fi| = �i. Then, for each I ′ ∈ Img(ψ),

π(ψ−1(I ′)) =
2n2
∑

�=n

∑

I∈Fl:ψ(I)=I′

π(I)

=
2n2
∑

�=n

∑

I∈Fl:ψ(I)=I′

π(I ′) · λ−
�1+�2+�3

6

<

2n2
∑

�=n

l38n636� · π(I ′) · λ− �
6

< 64n12

(
366

λ

)n
6

π(I ′).

The bound on the pre-image then allows us to bound π(F) as follows:

π(F) =
∑

I′∈Img(ψ)

π(ψ−1(I ′))

<
∑

I′∈Img(ψ)

64n12

(
366

λ

)n

π(I ′)

= 64n12

(
366

λ

)n
6

π(Img(ψ))

< 64n12

(
366

λ

)n
6

.

Taking λ > 366 completes the proof.

Note that by symmetry the sets W ,B and G have equal stationary probabil-
ity. Observing now that their total weight is at least 1 − c−n, the conductance
arguments of Sections 2 allow us to finish the proof of Theorem 1.
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Abstract. We give a polynomial time construction of binary codes with
the best currently known trade-off between rate and error-correction ra-
dius. Specifically, we obtain linear codes over fixed alphabets that can
be list decoded in polynomial time up to the so called Blokh-Zyablov
bound. Our work builds upon [7] where codes list decodable up to the
Zyablov bound (the standard product bound on distance of concatenated
codes) were constructed. Our codes are constructed via a (known) gener-
alization of code concatenation called multilevel code concatenation. A
probabilistic argument, which is also derandomized via conditional ex-
pectations, is used to show the existence of inner codes with a certain
nested list decodability property that is appropriate for use in multi-
level concatenated codes. A “level-by-level” decoding algorithm, which
crucially uses the list recovery algorithm for folded Reed-Solomon codes
from [7], enables list decoding up to the designed distance bound, aka
the Blokh-Zyablov bound, for multilevel concatenated codes.

1 Introduction

1.1 Background and Context

A fundamental trade-off in the theory of error-correcting codes is the one between
the proportion of redundancy built into codewords and the fraction of errors that
can be corrected. Let us say we are interested in binary codes that can be used
to recover the correct codeword even when up to a fraction ρ of its symbols
could be corrupted by the channel. Such a channel can distort a codeword c
(that is n bits long) into about 2H(ρ)n possible received words, where H(ρ) =
−ρ log2 ρ − (1 − ρ) log2(1 − ρ) stands for the binary entropy function. Now for
each of these words, the error-recovery procedure must identify c as a possibility
for the true codeword. (In fact, even if the errors are random, the algorithm
must identify c as a candidate codeword for most of these 2H(ρ)n received words,
if we seek a low decoding error probability.) To put it differently, if we require
� Supported in part by NSF CCF-0343672, a Sloan Research Fellowship and a David

and Lucile Packard Foundation Fellowship.
�� Supported in part by NSF CCF-0343672.

M. Charikar et al. (Eds.): APPROX and RANDOM 2007, LNCS 4627, pp. 554–568, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Better Binary List-Decodable Codes Via Multilevel Concatenation 555

the error-recovery procedure to pin down a relatively small number of candidate
codewords for all (or even most) received words, then there must be “nearly-
disjoint” Hamming balls of size 2H(ρ)n centered at each of the codewords. This
implies that there can be at most about 2(1−H(ρ))n codewords. Therefore the
best rate of communication we can hope for when a fraction ρ of the bits can be
corrupted is 1−H(ρ).

If we could pack about 2(1−H(ρ))n pairwise disjoint Hamming balls of radius ρn
in {0, 1}n, then one can achieve a rate approaching 1−H(ρ) while guaranteeing
correct and unambiguous recovery of the codeword from an arbitrary fraction
ρ of errors. Unfortunately, it is well known that such a “perfect” packing of
Hamming balls in {0, 1}n does not exist. Perhaps surprisingly (and fortunately),
it turns out that it is possible to pack more than 2(1−H(ρ)−ε)n such Hamming
balls such that no O(1/ε) of them intersect at a point. In fact a random packing
has such a property with high probability.

In turn, this implies that for 0 < ρ < 1/2 and any ε > 0, and all large
enough n, there exist binary codes of rate 1 − H(ρ) − ε that enable correcting
a fraction ρ of errors, outputting a list of at most O(1/ε) answers in the worst-
case (this error-recovery model is called “list decoding”).1 Therefore, one can
approach the information-theoretically optimal rate of 1−H(ρ). A similar result
holds for codes over alphabet with q symbols – for correction of a fraction ρ,
0 < ρ < 1−1/q, of errors, we can approach the optimal rate of 1−Hq(ρ), where
Hq(ρ) = ρ logq(q−1)−ρ logq ρ− (1−ρ) logq(1−ρ) is the q-ary entropy function.

While the above pinpoints R = 1 − H(ρ) as the optimal trade-off between
the rate R of the code and the fraction ρ of errors that can corrected, it is a
non-constructive result. The codes achieving this trade-off are shown to exist
via a random coding argument and are not explicitly specified. Further, for a
code to be useful, the decoding algorithm must be efficient, and for a random,
unstructured code only brute-force decoders running in exponential time are
known.

The big challenge then is to approach the above trade-off with explicit codes
and polynomial time list decoding algorithms. Recently, in [7], we were able to
achieve such a result for large alphabets. For large q, the optimal rate 1−Hq(ρ)
approaches 1 − ρ, and in [7], we give explicit codes of rate 1 − ρ − ε over an
alphabet of size 2(1/ε)O(1)

with a polynomial time list decoding algorithm for a
fraction ρ of errors (for any 0 < ρ < 1). However, approaching the list decoding
capacity of 1−Hq(ρ) for any fixed small alphabet size q, such as q = 2, remains
an important open question.

The best known tradeoff between R and ρ (from [7]) that can be achieved
by an explicit binary code along with efficient list decoding algorithm is the so
called Zyablov bound [12]. Figure 1 gives a pictorial comparison between the
Zyablov bound and the list decoding capacity. As one can see, there is a still
a huge gap between the nonconstructive results and what is known explicitly,

1 The proof of Shannon’s theorem for the binary symmetric channel also says that for
most received words at most one codeword would be output.
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Fig. 1. Rate R of our binary codes plotted against the error-correction radius ρ of
our algorithm. The best possible trade-off, i.e., capacity, is ρ = H−1(1 − R), and the
Zyablov bound are also plotted.

Table 1. Values of rate at different error correction radius for List decoding capacity,
Zyablov bound and Blokh Zyablov bound in the binary case. For rates above 0.4, the
Blokh Zyablov bound is 0 up to 3 decimal places, hence we have not shown this.

ρ 0.01 0.02 0.03 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Capacity rate 0.919 0.858 0.805 0.713 0.531 0.390 0.278 0.188 0.118 0.065

Zyablov rate 0.572 0.452 0.375 0.273 0.141 0.076 0.041 0.020 0.009 0.002

Blokh Zyablov rate 0.739 0.624 0.539 0.415 0.233 0.132 0.073 0.037 0.017 0.006

closing which is a challenging open problem. Narrowing this gap serves as the
primary motivation for this work.

1.2 Our Results and Techniques

In this paper, we present linear codes over any fixed alphabet that can be con-
structed in polynomial time and can be efficiently list decoded up to the so
called Blokh-Zyablov bound. This achieves a sizable improvement over the pre-
vious best known result (see Figure 1 and Table 1 for the binary case).

Our codes are constructed via multilevel concatenated codes. We will pro-
vide a formal definition later on — we just sketch the basic idea here. For an
integer s � 1, a multilevel concatenated code C over Fq is obtained by com-
bining s “outer” codes C0

out, C
1
out, . . . , C

s−1
out of the same block length , say N ,
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over large alphabets of size say qa0 , qa1 , . . . , qas−1 , respectively, with a suitable
“inner” code over Fq. The inner code, say Cin, is of dimension a0 +a1 · · ·+as−1.
Given messages m0,m1, . . . ,ms−1 for the s outer codes, the encoding as per the
multilevel generalized concatenation codes proceeds by first encoding each mj

as per Cjout. Then for every 1 � i � N , the collection of the ith symbols of
Cjout(mj) for 0 � j � s − 1, which can be viewed as a string over Fq of length
a0 + a1 + · · ·+ as−1, is encoded by the inner code. For s = 1 this reduces to the
usual definition of code concatenation. In other words, this is like normal code
concatenation with inner code Cin and outer code obtained by juxtaposing the
symbols of codewords of C0

out, . . . , C
s−1
out .

We present a list decoding algorithm for C, given list recovering algorithms
for the outer codes (list recovering is a generalization of list decoding that will
be defined later) and list decoding algorithms for the inner code and some of its
subcodes. What makes this part more interesting than the usual code concatena-
tion, is that the inner code in addition to having list decodable properties, also
needs to have good list decodable properties for certain subcodes. Specifically,
the subcodes of dimension aj+aj+1+ · · ·+as−1 of the inner code obtained by ar-
bitrarily fixing the first a0 + · · ·+aj−1 symbols of the message, must have better
list-decodability properties for increasing j (which is intuitively possible since
they have lower rate). In turn, this allows the outer codes Cjout to have rates
increasing with j, leading to an overall improvement in the rate for a certain
list-decoding radius.

To make effective use of the above approach, we also prove, via an application
of the probabilistic method, that a random linear code over Fq has the required
stronger condition on list decodability. By applying the method of conditional
expectation ([1]), we can construct such a code deterministically in time singly
exponential in the block length of the code (which is polynomial if the inner
code encodes messages of length O(log n)). Note that constructing such an inner
code, given the existence of such codes, is easy in quasi-polynomial time by
trying all possible generator matrices. The lower time complexity is essential for
constructing the final code C in polynomial time.

1.3 Related Work

Our work can be seen as a generalization of the result of list decoding concate-
nated codes from [7]. The outer codes used in our work are the same as the
ones used in [7]. However, the inner codes used in [7] are not sufficient for our
purposes. Our proof of existence of the requisite inner codes (and in particular
the derandomization of the construction of such codes using conditional expecta-
tion) is similar to the one used to establish list decodability properties of random
“pseudolinear” codes in [6] (see also [5, Sec. 9.3]).

Concatenated codes were defined in the seminal thesis of Forney [4]. Its gen-
eralizations to linear multilevel concatenated codes were introduced by Blokh
and Zyablov [2] and general multilevel concatenated codes were introduced by
Zinoviev [10]. Our list decoding algorithm is inspired by the argument for “un-
equal error protection” property of multilevel concatenated codes [11].
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1.4 Organization of the Paper

In Section 2, we start with some definitions and preliminaries. Section 3 presents
a construction of a linear code that has good “nested” list decodable properties.
In section 4, we present our algorithm for list decoding multilevel concatenated
codes. Finally, in Section 5, we present the main result of the paper.

2 Preliminaries

2.1 Basic Coding Definitions

A code of dimension k and block length n over an alphabet Σ is a subset of Σn

of size |Σ|k. The rate of such a code equals k/n. Each vector in C is called a
codeword. In this paper, we will focus on the case when Σ is a finite field. We
will denote by Fq the field with q elements. A code C over Fq is called a linear
code if C is a subspace of Fnq . In this case the dimension of the code coincides
with the dimension of C as a vector space over Fq. By abuse of notation we
will also think of a code C as a map from elements in Fkq to their corresponding
codeword in Fnq . If C is linear, this map is a linear transformation, mapping a
row vector x ∈ Fkq to a vector xG ∈ Fnq for a k × n matrix G over Fq called the
generator matrix.

The Hamming distance between two vectors inΣn is the number of places they
differ in. The (minimum) distance of a code C is the minimum hamming distance
between any two pairs of distinct codewords from C. The relative distance is the
ratio of the distance to the block length.

2.2 Multilevel Concatenated Codes

We will be working with multilevel concatenation coding schemes [3]. We start
this section with the definition of multilevel concatenated codes. As the name
suggests, these are generalizations of the well-studied concatenated codes. Recall
that for a concatenated code, we start with a code Cout over a large alphabet
(called the outer code). Then we need a code Cin that maps all symbols of the
larger alphabet to strings over a smaller alphabet (called the inner code). The
encoding for the concatenated code (denoted by Cout◦Cin) is done as follows. We
think of the message as being a string over the large alphabet and then encode
it using Cout. Now we use Cin to encode each of the symbols in the codeword
of Cout to get our codeword (in Cout ◦ Cin) over the smaller alphabet. Most of
the constructions of good binary codes are achieved via code concatenation. In
particular, binary codes with the best known tradeoff (called the Zyablov bound)
between rate and list decoding radius are constructed via code concatenation [7].
These codes have folded Reed-Solomon codes as outer codes and suitably chosen
binary codes as inner codes, and can be list decoded up to the designed minimum
distance, which is equal to the product of the outer and inner code distances.

Multilevel concatenation codes generalize the usual code concatenations in
the following manner. Instead of there being one outer code, there are multiple
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outer codes. In particular, we “stack” codewords from these multiple outer codes
and construct a matrix. The inner codes then act on the columns of these inter-
mediate matrix. We now formally define multilevel concatenated codes (this will
also contain the formal definition of the concatenated codes as a special case).

There are s � 1 outer codes, denoted by C0
out, C

1
out, . . . , C

s−1
out . For every 0 �

i � s− 1, Ciout is a code of block length N and rate Ri and defined over a field
FQi . The inner code Cin is code of block length n and rate r that maps tuples
from FQ0 × FQ1 × · · · × FQs−1 to symbols in Fq. In other words,

Ciout : (FQi)
RiN → (FQi)

N ,

Cin : FQ0 × FQ1 × · · · × FQs−1 → (Fq)n.

The multilevel concatenated code, denoted by (C0
out × C1

out × . . . Cs−1
out ) ◦ Cin is

a map of the following form:

(C0
out×C1

out×. . . Cs−1
out )◦Cin : (FQ0)

R0N×(FQ1)
R1N×· · ·×(FQS−1)

Rs−1N → FnNq .

We now describe the encoding scheme. Given a message (m0,m1, . . . ,ms−1) ∈
(FQ0)R0N × (FQ1)R1N × · · · × (FQS−1)Rs−1N , we first construct an s×N matrix
M , whose ith row is the codeword Ciout(mi). Note that every column of M is an
element from the set FQ0×FQ1×· · ·×FQs−1 . Let the jth column (for 1 � j � N)
be denoted by Mj. The codeword corresponding to the multilevel concatenated

code (C
def
= (C0

out × C1
out × . . . Cs−1

out ) ◦ Cin) is defined as follows

C(m0,m1, . . . ,ms−1) = (Cin(M1), Cin(M2), · · · , Cin(MN )) .

(The codeword can be naturally be thought of as an n ×N matrix, whose i’th
column corresponds to the inner codeword encoding the i’th symbols of the s
outer codewords.)

For the rest of the paper, we will only consider outer codes over the same
alphabet, that is, Q0 = Q1 = · · · = Qs−1 = Q. Further, Q = qa for some
integer a � 1. Note that if C0

out, . . . , C
s−1
out and Cin are all Fq linear, then so is

(C0
out × C1

out × · · · × Cs−1
out ) ◦ Cin.

The gain from using multilevel concatenated codes comes from looking at
the inner code Cin along with its subcodes. For the rest of the section, we will
consider the case when Cin is linear (though the ideas can easily be generalized
for general codes). Let G ∈ Fas×nq be the generator matrix for Cin. Let r0 = as/n
denote the rate of Cin. For 0 � j � s − 1, define rj = r0(1 − j/s), and let Gj
denote rjn × n submatrix of G containing the last rjn rows of G. Denote the
code generated by Gj by Cjin; the rate of Cjin is rj . For our purposes we will
actually look at the subcode of Cin where one fixes the first 0 � j � s − 1
message symbols. Note that for every j these are just cosets of Cjin. We will be
looking at Cin, which in addition to having good list decoding properties as a
“whole,” also has good list decoding properties for each of its subcode Cjin.

The multilevel concatenated code C (= (C0
out × · · · × Cs−1

out ) ◦ Cin) has rate
R(C) that satisfies

R(C) =
r0
s

s−1∑

i=0

Ri . (1)
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The Blokh-Zyablov bound is the trade-off between rate and relative distance
obtained when the outer codes meet the Singleton bound (i.e., Cjout has relative
distance 1−Rj), and the various subcodes Cjin of the inner code, including the
whole inner code Cin = C0

in, lie on the Gilbert-Varshamov bound (i.e., have
relative distance δj � H−1

q (1− rj)). The multilevel concatenated code then has
relative distance at least min0�j�s−1(1 − Rj)H−1

q (1 − rj). Expressing the rate
in terms of distance, the Blokh-Zyablov bound says that there exist multilevel
concatenated C with relative distance at least δ with the following rate:

RsBZ(C) = max
0<r<1−Hq(δ)

r − r

s

s−1∑

i=0

δ

H−1
q (1− r + ri/s)

. (2)

As s increases, the trade-off approaches the integral

RBZ(C) = 1−Hq(δ)− δ
∫ 1−Hq(δ)

0

dx

H−1
q (1 − x)

. (3)

The convergence of RsBZ(C) to RBZ(C) happens quite quickly even for small s
such as s = 10.

2.3 List Decoding and List Recovering

Definition 1 (List decodable code). For 0 < ρ < 1 and an integer L � 1, a
code C ⊆ Fnq is said to be (ρ, L)-list decodable if for every y ∈ Fnq , the number of
codewords in C that are within Hamming distance ρn from y is at most L.

We will need to work with two different generalizations of list decoding. The
first one is motivated by multilevel concatenation schemes. The definition looks
more complicated than it really is.

Definition 2 (Nested linear list decodable code). Given a linear code C
in terms of some generator matrix G ∈ Fk×nq , an integer s that divides k, a
vector L = 〈L0, L1, . . . , Ls−1〉 of integers Lj (0 � j � s − 1), a vector ρ =
〈ρ0, ρ1 . . . , ρs−1〉 with 0 < ρj < 1, and a vector r = 〈r0, . . . , rs−1〉 of reals where
r0 = k/n and 0 � rs−1 < · · · < ri < r0, C is called an (r, ρ,L)-nested list
decodable if the following holds:

For every 0 � j � s − 1, Cj is a rate rj code that is (ρj , Lj)-list decodable,
where Cj is the subcode of C generated by the the last rjn rows of the generator
matrix G.

The second generalization of list decoding called list recovering, a term first
coined in [6] even though the notion existed before, has been extremely useful in
list decoding concatenated codes. The input for list recovering is not a sequence
of symbols but rather a sequence of lists (or more accurately sets, since the
ordering of elements in the input lists does not matter).

Definition 3 (List recoverable code). A code C ⊆ Fnq , is called (ρ, �, L)-
list recoverable if for every sequence of sets S1, S2, . . . , Sn, where Si ⊆ Fq and
|Si| � � for every 1 � i � n, there are at most L codewords in c ∈ C such that
ci ∈ Si for at least (1 − ρ)n positions i.
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The following simple folklore lemma shows how, for suitable parameters, a list
recoverable outer code can be concatenated with a list decodable inner code to
give a new list decodable code. The approach is simply to run the list decoding
algorithm for each of the inner blocks, returning a list of possible symbols for
each possible outer codeword symbol, which are then used as input to the list
recovering algorithm for the outer code.

Lemma 1. If Cout is a (ξ, �, L)-list recoverable over an alphabet of size Q, and
Cin is a (ρ, �)-list decodable code with Q codewords, then the concatenated code
Cout ◦ Cin is (ξ · ρ, L)-list decodable.

2.4 Known Result on List Recoverable Codes

We will use the following powerful result concerning good list recoverable codes
from [7]; these codes will serve as the outer codes in our multilevel concatenation
scheme.

Theorem 1. For every integer � � 1, for all constants ε > 0, for all R,R′;
0 < R � R′ < 1, and for every prime p, there is an explicit family of folded
Reed-Solomon codes, over fields of characteristic p that have rate at least R and
which can be (1 − R − ε, �, L(N))-list recovered in polynomial time, where for
codes of block length N , L(N) = (N/ε2)O(ε−1 log(�/R)) and the code is defined
over alphabet of size (N/ε2)O(ε−2 log �/(1−R′)).

We remark that the above theorem was stated with R′ = R in [7], though the
above follows immediately from the proof for R′ = R and properties of the
folded Reed-Solomon codes [9]. The proof for R′ > R uses folded Reed-Solomon
codes with a larger “folding” parameter. A larger folding parameter increases
the fraction of errors that can be tolerated at the expense of a larger alphabet
size.

3 Linear Codes with Good Nested List Decodability

In this section, we will prove the following result concerning the existence (and
constructibility) of linear codes over any fixed alphabet with good nested list
decodability properties.

Theorem 2. For any integer s � 1 and reals 0 < rs−1 < rs−2 < · · · < r1 < r0 <
1, ε > 0, let ρj = H−1

q (1−rj−2ε) for every 0 � j � s−1. Let r = 〈r0, . . . , rs−1〉,
ρ = 〈ρ0, ρ1, . . . , ρs−1〉 and L = 〈L0, L1, . . . , Ls−1〉, where Lj = q1/ε. For large
enough n, there exists a linear code (over fixed alphabet Fq) that is (r, ρ,L)-nested
list decodable. Further, such a code can be constructed in time qO(n/ε).

Proof. We will show the existence of the required codes via a simple use of
the probabilistic method (in fact, we will show that a random linear code has
the required properties with high probability). We will then use the method of
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conditional expectation ([1]) to derandomize the construction with the claimed
time complexity.

Define kj = �rin� for every 0 � j � s−1. We will pick a random k0×n matrix
G with entries picked independently from Fq. We will show that the linear code C
generated by G has good nested list decodable properties with high probability.
Let Cj , for 0 � j � s − 1 be the code generated by the “bottom” kj rows of
G. Recall that we have to show that with high probability Cj is (ρj , q1/ε) list
decodable for every 0 � j � s−1 (Cj obviously has rate rj). Finally for integers
J, k � 1, and a prime power q, let Ind(q, k, J) denote the collection of subsets
{x1, x2, . . . , xJ} ⊆ Fkq such that all vectors x1, . . . , xJ are linearly independent
over Fq.

We recollect the following two straightforward facts: (i) Given any L dis-
tinct vectors from Fkq , for some k � 1, at least �logq L� of them are linearly
independent; (ii) Any set of linearly independent vectors in Fkq are mapped to
independent random vectors in Fnq by a random k × n matrix over Fq.

We now move on to the proof of existence of linear codes with good nested
list decodability. We will actually do the proof in a manner that will facilitate
the derandomization of the proof. Define J = �logq(q1/ε + 1)�. For any vector
r ∈ Fnq , integer 0 � j � s − 1, subset T = {x1, . . . , xJ} ∈ Ind(q, kj , J) and any
collection S of subsets S1, S2, . . . , SJ ⊆ {1, . . . , n} of size at most ρjn, define
an indicator variable I(j, r, T,S) in the following manner. I(j, r, T,S) = 1 if
and only if for every 1 � i � J , C(xi) differs from r in exactly the set Si.
Note that if for some 0 � j � s − 1, there are q1/ε + 1 codewords in Cj all
of which differ from some received word r in at most ρjn places, then this set
of codewords is a “counter-example” that shows that C is not (r, ρ,L)-nested
list decodable. Since the q1/ε + 1 codewords will have some set T of J linearly
independent codewords, the counter example will imply that I(j, r, T,S) = 1
for some collection of subsets S. In other words, the indicator variable captures
the set of bad events we would like to avoid. Finally define the sum of all the
indicator variables as follows:

SC =
s−1∑

j=0

∑

r∈Fn
q

∑

T∈Ind(q,kj ,J)

∑

S={S1,...,SJ},
Si⊆{1,...,n},|Si|�ρjn

I(j, r, T,S).

Note that if SC = 0, then C is (r, ρ,L)-nested list decodable as required. Thus,
we can prove the existence of such a C if we can show that EC[SC ] < 1. By
linearity of expectation, we have

E[SC ] =
s−1∑

j=0

∑

r∈Fn
q

∑

T∈Ind(q,kj ,J)

∑

S={S1,...,SJ},
Si⊆{1,...,n},|Si|�ρjn

E[I(j, r, T,S)]. (4)

Fix some arbitrary j, r, T = {x1, x2, . . . , xJ},S = {S1, S2, . . . , SJ} (in their cor-
responding domains). Then we have
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E[I(j, r, T,S)] = Pr[I(j, r, T,S) = 1]

=
∏

xi∈T
Pr[C(xi) differ from r in exactly the positions in Si]

=
J∏

i=1

(
q − 1
q

)|Si|(1
q

)n−|Si|
=

J∏

i=1

(q − 1)|Si|

qn
, (5)

where the second and the third equality follow from the definition of the indicator
variable, the fact that vectors in T are linearly independent and the fact that
a random matrix maps linearly independent vectors to independent uniformly
random vectors in Fnq . Using (5) in (4), we get

E[SC ] =
s−1∑

j=0

∑

r∈Fn
q

∑

T∈Ind(q,kj ,J)

∑

S={S1,...,SJ},
Si⊆{1,...,n},|Si|�ρjn

J∏

i=1

(q − 1)|Si|

qn

=
s−1∑

j=0

∑

r∈Fn
q

∑

T∈Ind(q,kj ,J)

∑

(�1,�2,...,�J )∈{0,1,...,ρjn}J

J∏

i=1

(
n

�i

)
(q − 1)�i

qn

=
s−1∑

j=0

∑

r∈Fn
q

∑

T∈Ind(q,kj ,J)

(ρjn∑

�=0

(
n

�

)
(q − 1)�

qn

)J

�
s−1∑

j=0

∑

r∈Fn
q

∑

T∈Ind(q,kj ,J)

qnJ(Hq(ρj)−1) �
s−1∑

j=0

qn · qJkj · qnJ(Hq(ρj)−1)

�
s−1∑

j=0

qnJ(1/J+rj+1−rj−2ε−1) � sq−εnJ . (6)

The first inequality follows the following known inequality for p < 1− 1/q ([8]):∑pn
i=0

(
n
i

)
(q−1)i � qHq(p)n. The second inequality follows by upper bounding the

number of J linearly independent vectors in Fkj
q by qJkj . The third inequality

follows from the fact that kj = �rjn� and ρj = H−1
q (1 − rj − 2ε), The final

inequality follows from the fact that J = �logq(q1/ε + 1)�.
Thus, (6) shows that there exists a code C (in fact with high probability)

that is (r, ρ,L)-nested list decodable. In fact, this could have been proved using
a simpler argument. However, the advantage of the argument above is that we
can now apply the method of conditional expectations to derandomize the above
proof.

The algorithm to deterministically generate a linear code C that is (r, ρ,L)-
nested list decodable is as follows. The algorithm consists of n steps. At any step
1 � i � n, we choose the ith column of the generator matrix to be the value
vi ∈ Fk0q that minimizes the conditional expectation E[SC |G1 = v1, . . . ,Gi−1 =
vi−1,Gi = vi], where Gi denotes the ith column of G and v1, . . . ,vi−1 are the
column vectors chosen in the previous i−1 steps. This algorithm would work only
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if for any 1 � i � n and vectors v1, . . . ,vi, we can exactly compute E[SC |G1 =
v1, . . . ,Gi = vi]. Indeed from (4), we have E[SC |G1 = v1, . . . ,Gi = vi] is

s−1∑

j=0

∑

r∈Fn
q

∑

T∈Ind(q,kj ,J)

∑

S={S1,...,SJ},
Si⊆{1,...,n},|Si|�ρjn

E[I(j, r, T,S)|G1 = v1, . . . ,Gi = vi].

Thus, we would be done if we can compute the following for every value of
j, r, T = {x1, . . . , xJ},S = {S1, . . . , SJ}: E[I(j, r, T,S) = 1|G1 = v1, . . . ,Gi =
vi]. Note that fixing the first i columns of G implies fixing the value of the
codewords in the first i positions. Thus, the indicator variable is 0 (or in other
words, the conditional expectation we need to compute is 0) if for some message,
the corresponding codeword does not disagree with r exactly as dictated by S
in the first i positions. More formally, I(j, r, T,S) = 0 if the following is true for
some 1 � � � i and 0 � i′ � J : xi′ ·G� �= r�, if � �∈ Si′ and xi′ ·G� = r� otherwise.
However, if none of these conditions hold, then using argument similar to the
ones used to obtain (5), one can show that

E[I(j, r, T,S)|G1 = v1, . . . ,Gi = vi] =
J∏

�=1

(
q − 1
q

)|S′
�|(1

q

)n−i−|S′
�|
,

where S′
� = S� \ {1, 2, . . . , i} for every 1 � � � J .

To complete the proof, we need to estimate the time complexity of the above
algorithm. There are n steps and at every step i, the algorithm has to consider
qk0 � qn different choices of vi. For every choice of vi, the algorithm has to
compute the conditional expectation of the indicator variables for all possible
values of j, r, T,S. It is easy to check that there are

∑s
i=1 q

n·qJkj ·2nJ � sqn(1+2J)

possibilities. Finally, the computation of the conditional expected value of a
fixed indicator variable takes time O(snJ). Thus, in all the total time taken is
O(n · qn · sqn(1+2J) · snJ) = qO(n/ε), as required.

4 List Decoding Multilevel Concatenated Codes

In this section, we will see how one can list decode multilevel concatenated codes,
provided the outer codes have good list recoverability and the inner code has
good nested list decodability. We have the following result, which generalizes
Lemma 1 for regular concatenated codes (the case s = 1).

Theorem 3. Let s � 1 and � � 1 be integers. Let 0 < R0 < R1 < · · · <
Rs−1 < 1, 0 < r0 < 1, 0 < ξ0, · · · , ξs−1 < 1, 0 < ρ0, · · · , ρs−1 < 1 and ε > 0 be
reals. Let q be a prime power and let Q = qa for some integer a > 1. Further,
let Cjout (0 � j � s − 1) be an Fq-linear code over FQ of rate Rj and block
length N that is (ξj , �, L)-list recoverable. Finally, let Cin be a linear (r, ρ,L)-
nested list decodable code over Fq of rate r0 and block length n = as/r0, where
r = 〈r0, · · · , rs−1〉 with ri = (1−i/s)r0, ρ = 〈ρ0, · · · , ρs−1〉 and L = 〈�, �, · · · , �〉.
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Then C = (C0
out × · · · × Cs−1

out ) ◦ Cin is a linear (minj ξj · ρj , Ls)-list decodable
code. Further, if the outer code Cjout can be list recovered in time Tj(N) and the
inner code Cin can be list decoded in time tj(n) (for the jth level), then C can

be list decoded in time O
(∑s−1

j=0 L
j (Tj(N) +N · tj(n))

)
.

Proof. Given list recovering algorithms for Cjout and list decoding algorithms for
Cin (and its subcodes Cjin), we will design a list decoding algorithm for C. Recall
that the received word is an n×N matrix over Fq. Each consecutive “chunk” of
n/s rows should be decoded to a codeword in Cjout. The details follow.

Before we describe the algorithm, we will need to fix some notation. Define
δ = minj ξjρj . Let R ∈ FnNq be the received word, which we will think of as an
n×N matrix over Fq (note that s divides n). For any n×N matrix M and for
any 1 � i � N , let Mi ∈ Fnq denote the ith column of the matrix M . Finally, for
every 0 � j � s− 1, let Cjin denote the subcode of Cin generated by all but the
first ja rows of the generator matrix of Cin. We are now ready to describe our
algorithm.

Recall that the algorithm needs to output all codewords in C that differ from
R in at most δ fraction of positions. For the ease of exposition, we will consider
an algorithm that outputs matrices from C0

out × · · · × Cs−1
out . The algorithm has

s phases. At the end of phase j (0 � j � s− 1), the algorithm will have a list of
matrices (called Lj) from C0

out×· · ·×C
j
out, where each matrix in Lj is a possible

submatrix of some matrix that will be in the final list output by the algorithm.
The following steps are performed in phase j (where we are assuming that the
list decoding algorithm for Cjin returns a list of messages while the list recovering
algorithm for Cjout returns a list of codewords).

1. Set Lj to be the empty set.
2. For every c = (c0, · · · , cj−1) ∈ Lj−1 repeat the following steps (if this is the

first phase, that is j = 0, then repeat the following steps once):
(a) Let Gj be the first aj rows of the generator matrix of Cin. Let X =

(Gj)T ·c, where we think of c as an ja×N matrix over Fq. Let Y = R−X
(for j = 0 we use the convention that X is the all 0s matrix). For every
1 � i � N , use the list decoding algorithm for Cjin on column Yi for up
to ρj fraction of errors to obtain list Sji ⊆ (FQ)s−j . Let T ji ⊆ FQ be the
projection of every vector in Sji on to its first component.

(b) Run the list recovery algorithm for Cjout on set of lists {T ji }i obtained
from the previous step for up to ξj fraction of errors. Store the set of
codewords returned in Ij .

(c) Add {(c,v)|v ∈ Ij} to Lj .

At the end, remove all the matricesM ∈ Ls−1, for which the codeword (Cin(M1),
Cin(M2), · · · , Cin(MN)) is at a distance more than δ from R. Output the re-
maining matrices as the final answer.

We will first talk about the running time complexity of the algorithm. It is easy
to check that each repetition of steps 2(a)-(c) takes time O(Tj(N) +N · tj(n)).
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To compute the final running time, we need to get a bound on number of times
step 2 is repeated in phase j. It is easy to check that the number of repetitions is
exactly |Lj−1|. Thus, we need to bound |Lj−1|. By the list recoverability property
of Cjout, we can bound |Ij | by L. This implies that |Lj | � L|Lj−1|, and therefore
by induction we have

|Li| � Li+1 for i = 0, 1, . . . , s− 1. (7)

Thus, the overall running time and the size of the list output by the algorithm
are as claimed in the statement of the theorem.

We now argue the correctness of the algorithm. That is, we have to show that
for every M ∈ C0

out × · · · × Cs−1
out , such that (Cin(M1), Cin(M2) · · · , Cin(MN ))

is at a distance at most δ from R (call such an M a good matrix), M ∈ Ls−1.
In fact, we will prove a stronger claim: for every good matrix M and every
0 � j � s − 1, M j ∈ Lj , where M j denotes the submatrix of M that lies in
C0
out×· · ·×C

j
out (that is the first j “rows” of M). For the rest of the argument fix

an arbitrary good matrix M . Now assume that the stronger claim above holds
for j′ − 1 (< s− 1). In other words, M j′−1 ∈ Lj′−1. Now, we need to show that
M j′ ∈ Lj′ .

For concreteness, let M = (m0, · · · ,ms−1)T . As M is a good matrix and
δ � ξj′ρj′ , Cin(Mi) can disagree with Ri on at least a fraction ρj′ of positions
for at most ξj′ fraction of column indices i. The next crucial observation is that
for any column index i, Cin(Mi) = (Gj′ )T · (m0,i, · · · ,mj′−1,i) + (G \ Gj′ )T ·
(mj′,i, · · · ,ms−1,i), where Gj′ is as defined in step 2(a), G\Gj′ is the submatrix
of G obtained by “removing” Gj′ and mj′,i is the ith component of the vector
mj′ . The following might help the reader to visualize the different variables.

GT ·M =

⎛

⎝ (Gj′ )T (G \Gj′ )T

⎞

⎠ ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m0,1 · · · m0,i · · · m0,N

...
mj′−1,1 · · · mj′−1,i · · · mj′−1,N

mj′,1 · · · mj′,i · · · mj′,N

...
ms−1,1 · · · ms−1,i · · · ms−1,N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎝
↑ ↑ ↑

Cin(M1) · · · Cin(Mi) · · · Cin(MN )
↓ ↓ ↓

⎞

⎠

Note that G \Gj′ is the generator matrix of Cj
′

in. Thus, for at most ξj′ fraction
of column indices i, (mj′,i, · · · ,ms−1,i) · (G \Gj′ ) disagrees with Ri −Xi on at
least ρj′ fraction of places, where X is as defined in Step 2(a), and Xi denotes
the i’th column of X. As Cj

′

in is (ρj′ , �)-list decodable, for at least 1− ξj′ fraction
of column index i, M j′

i will be in Sj
′

i (where M j′

i is Mi projected on it’s last
s − j′ co-ordinates and Sj

′

i is as defined in Step 2(a)). In other words, mj′,i is
in T j

′

i for at least 1 − ξj′ fraction of i’s. Further, as |Sj
′

i | � �, |T j
′

i | � �. This
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implies with the list recoverability property of Cj
′

out that mj′ ∈ Ij′ , where Ij′ is
as defined in step 2(b). Finally, step 2(c) implies that M j′ ∈ Lj′ as required.

The proof of correctness of the algorithm along with (7) shows that C is
(δ, Ls)-list decodable, which completes the proof.

5 List Decoding Up to the Blokh-Zyablov Bound

We combine the results we have proved in the last couple of sections to get our
main result.

Theorem 4 (Main). For every fixed field Fq, reals 0 < δ < 1, 0 < r � 1 −
Hq(δ), ε > 0 and integer s � 1, there exists linear codes C over Fq of block
length N that are (δ − ε, L(N))-list decodable with rate R such that

R = r − r

s

s−1∑

i=0

δ

H−1
q (1 − r + ri/s)

, (8)

and L(N) = (N/ε2)O(sε−3δ/(H−1
q (1−r)−δ)). Finally, C can be constructed in time

(N/ε2)O(s/(ε6rδ)) and list decoded in time polynomial in N .

Proof. Let γ > 0 (we will define its value later). For every 0 � j � s − 1
define rj = r(1 − j/s) and Rj = 1 − δ

H−1
q (1−rj)

. The code C is going to be

a multilevel concatenated code (C0
out × · · · × Cs−1

out ) ◦ Cin, where Cjout is the
code from Theorem 1 of rate Rj and block length N ′ (over Fqa) and Cin is
an (〈r0, . . . , rs−1〉, ρ,L)-nested list decodable code as guaranteed by Theorem 2,
where for 0 � j � s − 1, ρj = H−1

q (1 − rj − 2γ2) and Lj = q1/γ
2
. Finally, we

will use the property of Cjout that it is (1−R− γ, q1/γ2
, (N ′/γ2)O(γ−3 log(1/Rj)))-

list recoverable. Theorem 1 implies that such codes exist with (where we apply
Theorem 1 with R′ = maxj Rj = 1− δ/H−1

q (1− r/s))

qa = (N ′/γ2)O(γ−4H−1
q (1−r/s)/δ). (9)

Further, as codes from Theorem 1 are Fq-linear [7], C is a linear code.
The claims on the list decodability of C follows from the choices of Rj and rj

and Theorems 1, 2 and 3. In particular, note that we invoke Theorem 3 with the
following parameters: ξj = 1−Rj−γ and ρj = H−1

q (1−rj−2γ2) (which implies2

that ξjρj � δ−ε as long as γ = Θ(ε)), � = q1/γ
2

and L = (N ′/γ2)O(γ−1 log(�/Rj)).
The choices of � and γ imply that L = (N/ε2)O(ε−3 log(1/Rj)). Now log(1/Rj) �
log(1/Rmin), where Rmin = minj Rj = 1−δ/H−1

q (1−r). Finally, we use the fact
that for any 0 < y < 1, ln(1/y) � 1/y − 1 to get that log(1/Rj) � O(1/Rmin −
1) = O(δ/(H−1

q (1 − r) − δ)). The claimed upper bound of L(N) follows as
L(N) � Ls (by Theorem 3).

2 As for any 0 < x < 1 and small enough α > 0, H−1
q (x − α2) � H−1

q (x) − Θ(α) [9].
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By the choices of Rj and rj and (1), the rate of C is as claimed. The con-
struction time for C is the time required to construct Cin, which by Theorem 2
is 2O(n/γ2) where n is the block length of Cin. Note that n = as/r, which by (9)
implies that the construction time is (N/ε2)O(ε−6sH−1

q (1−r/s)/(rδ)). The claimed
running time follows by using the bound H−1

q (1− r/s) � 1.
We finally consider the running time of the list decoding algorithm. We list

decode the inner code(s) by brute force, which takes 2O(n) time, that is, tj(n) =
2O(n). Thus, Theorems 1, 3 and the bound on L(N) implies the claimed running
time complexity.

Choosing the parameter r in the above theorem so as to maximize (8) gives us
linear codes over any fixed field whose rate vs. list decoding radius tradeoff meets
the Blokh-Zyablov bound (2). As s grows, the trade-off approaches the integral
form (3) of the Blokh-Zyablov bound.
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Abstract. A fundamental goal of computational complexity (and foun-
dations of cryptography) is to find a polynomial-time samplable distribu-
tion (e.g., the uniform distribution) and a language in NTIME(f(n)) for
some polynomial function f , such that the language is hard on the av-
erage with respect to this distribution, given that NP is worst-case hard
(i.e. NP �= P, or NP �⊆ BPP). Currently, no such result is known even if we
relax the language to be in nondeterministic sub-exponential time. There
has been a long line of research trying to explain our failure in proving such
worst-case/average-case connections [FF93,Vio03,BT03,AGGM06]. The
bottom line of this research is essentially that (under plausible assump-
tions) non-adaptive Turing reductions cannot prove such results.

In this paper we revisit the problem. Our first observation is that the
above mentioned negative arguments extend to a non-standard notion
of average-case complexity, in which the distribution on the inputs with
respect to which we measure the average-case complexity of the language,
is only samplable in super-polynomial time. The significance of this result
stems from the fact that in this non-standard setting, [GSTS05] did show
a worst-case/average-case connection. In other words, their techniques
give a way to bypass the impossibility arguments. By taking a closer
look at the proof of [GSTS05], we discover that the worst-case/average-
case connection is proven by a reduction that ”almost” falls under the
category ruled out by the negative result. This gives rise to an intriguing
new notion of (almost black-box) reductions.

After extending the negative results to the non-standard average-case
setting of [GSTS05], we ask whether their positive result can be extended
to the standard setting, to prove some new worst-case/average-case con-
nections. While we can not do that unconditionally, we are able to show
that under a mild derandomization assumption, the worst-case hardness
of NP implies the average-case hardness of NTIME(f(n)) (under the
uniform distribution) where f is computable in quasi-polynomial time.

1 Introduction

Proving that the worst-case hardness of NP implies the average-case hardness
of NP, is a fundamental open problem in the fields of computational complexity

M. Charikar et al. (Eds.): APPROX and RANDOM 2007, LNCS 4627, pp. 569–583, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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and foundations of cryptography (as it is a necessary step towards basing the
existence of one-way functions on worst-case NP hardness). Bogdanov and Tre-
visan [BT03] (building on Feigenbaum and Fortnow [FF93]), show that ”it is
impossible (using non-adaptive reductions) to base the average-case hardness
of a problem in NP or the security of a one-way function on the worst-case
complexity of an NP complete problem (unless the polynomial hierarchy col-
lapses)”. This result is taken as demonstrating a major obstacle for showing a
worst-case/average-case equivalence within NP.

Our first observation is that the arguments of [BT03] can be extended to a
non-standard notion of average-case complexity, in which hardness is measured
with respect to distributions that are samplable in super-polynomial time (rather
than in fixed polynomial time):

Theorem 1. Suppose that there is a language L ∈ NP and a distribution D
samplable in time nlogn such that there is a non-adaptive reduction from solving
SAT on the worst-case to solving L on the average with respect to D. Then
every language in coNP can be computed by a family of nondeterministic Boolean
circuits of size npolylog(n).

Similar to the original result of [BT03], this should be taken as demonstrating
a major obstacle for showing a worst-case/average-case equivalence within NP,
even for this non-standard notion of average-case complexity. Nevertheless, Gut-
freund, Shaltiel and Ta-Shma [GSTS05] do prove exactly the worst-case/average-
case connection ruled out in Theorem 1 (by virtue of non-adaptive reductions).

Theorem 2. [GSTS05] There exists a distribution D samplable in time nlogn,
such that if there exists a BPP algorithm solving SAT on the average with respect
to D, then there exists a BPP algorithm solving SAT on the worst-case.

This surprising state of affairs gives rise to two questions. First, what can we learn
from the proof of [GSTS05] about worst-case to average-case reductions, given
that their technique bypasses the limitations imposed by Theorem 1? Second,
after showing that the negative arguments can be extended to the non-standard
notion of [GSTS05], can we turn the argument around and show that their
positive result be extended and serve as a basis to prove new worst-case/average-
case connections under the standard notion of average-case complexity?

Let us start with the first question. Looking at the proof of [GSTS05], we
observe that it follows by constructing a distribution D as in the statement, and
a fixed polynomial time machine R, s.t. for every probabilistic polynomial-time
machine A solving SAT well on the average with respect to D, the machine RA

(i.e. R with oracle access to A) solves SAT well in the worst case. In fact, the
machine R is easy to describe, and unexpectedly turns out to be the familiar
search-to-decision reduction for SAT.1 I.e., given a SAT formula φ, RA runs a
1 A search to decision reduction for SAT uses an oracle that decides SAT to find a

satisfying assignment for a given formula if such an assignment exist. The known
reductions are either sequential and deterministic or parallel, non-adaptive and ran-
domized [BDCGL90].
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search to decision reduction on φ, where for each SAT query in the reduction it
queries A. At the end RA holds an assignment, and it accepts φ iff the assign-
ment satisfies φ. Since the proof works with any search to decision reduction,
we can use the non-adaptive search-to-decision reduction of [BDCGL90], and
obtain what seems to be a non-adaptive worst-case to average-case reduction
that by Theorem 1 implies that every language in coNP can be computed by a
family of nondeterministic Boolean circuits of size npolylog(n). So did we prove
an unexpected collapse?

The answer is of course no. Instead we showed a way to bypass the limitation
imposed by Theorem 1. But to understand how, we need to give a careful look
at the seemingly innocent term ”reduction”.

1.1 What Is a Reduction?

The term ”reduction” (or more precisely ”Turing reduction”) used in [BT03],
and many other papers, is defined as follows. Suppose P and P ′ are two com-
putational tasks. E.g., P might be solving SAT on the worst case, and P ′ might
be solving SAT on the average with respect to the distribution D. We say that
P reduces to P ′ if there exists a probabilistic polynomial-time oracle machine R
such that for every oracle A that solves P ′, RA solves P . So in our example, P
reduces to P ′ if there exists one fixed polynomial time machine R s.t. for every
A solving SAT well on the average with respect to D, the machine RA solves
SAT well in the worst case. From such a reduction, one in particular can deduce
that if P ′ is easy (e.g., for BPP) then so does P . Reversing it, one may conclude
that if P is hard then so does P ′.

So does the proof of [GSTS05] uses a reduction? On the one hand, R is indeed
a probabilistic, polynomial time oracle machine. However, the proof shows some-
thing weaker than a reduction regarding R: for every probabilistic, polynomial-
time oracle machine A that solves P ′, RA solves P . Namely, instead of showing
that for every A that solves P ′, RA solves P , it is only shown that for every
efficient A this is the case. Thus, the argument of [GSTS05] is not a reduction.
Nevertheless, it is still useful. That is, we can still conclude that if efficient ma-
chines cannot solve SAT on the worst-case then efficient machines cannot solve
SAT on the average with respect to D. The fact that we restrict the proof of
correctness only to apply to efficient machines, does not make a difference since
efficient machines is all that we care about!

We believe that this state of affairs calls for some new notation. First, to make
matters more precise, we believe what we simply called ”a reduction” should be
called ”a black-box reduction”. This is because the key property captured in the
definition is the black-box use of A by R (i.e., the reduction is oblivious to the
actual solution of P ′) and the black-box use of A in the correctness proof (i.e.,
RA is correct whenever A is correct, regardless of what A is). We then suggest
a new kind of reduction:

Definition 1 (Class-specific black-box reductions). Let P, P ′ be two com-
putational problems, and C a class of functions. We say that R is a C-black-box
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reduction from P to P ′, if R is a probabilistic polynomial-time oracle machine
such that for every oracle A ∈ C that solves P ′, RA solves P .

If R queries A non-adaptively, we say that the reduction is non-adaptive. If C
is the class of all functions, we simply say that R is a black-box reduction.

Later we will also consider reductions that run in super-polynomial time, and
we will state the running time explicitly when this is the case. If we do not state
the running time then it is polynomial. Also, unless stated otherwise, whenever
we say reduction, we mean black-box reduction.

Note that Definition 1 is only meaningful when the class C is more powerful
than R. Otherwise R can run the oracle by itself. This is indeed the case in
[GSTS05] where R runs in linear time and A runs in arbitrary polynomial time.

In Definition 1 the reduction R is still black-box in A, but now the correctness
proof is not black-box in A, and works only when A comes from a bounded
class. As we said before, normally a reduction is used to prove that if some
task P ′ is easy then so does P (or the contra-positive: if P is hard then so
does P ′). Notice that for this purpose class black-box reductions are as useful as
general reductions, because the argument is that if an efficient A solves P ′, then
an efficient algorithm RA solves P . The big advantage is that class black-box
reductions are more flexible, and as Theorems 1 and 2 show, we can construct a
class black-box reduction that is impossible to achieve with a general reduction
(assuming the hierarchy does not collapse).

1.2 Back to Average-Case Complexity

We now turn to the second question we raised, whether we can leverage the result
(or the proof) of [GSTS05] to prove a new worst-case/average-case connection
under the standard notion of average-case complexity. Indeed we are able to
show such a result but only assuming an unproven derandomization assumption.
Before we state and discuss our result, some background is needed.

Most cryptographic primitives require at least the existence of One-Way
Functions (OWFs) [IL89]. A function f : {0, 1}∗ → {0, 1}∗ is one-way if f is com-
putable in a fixed polynomial time, and, for every constant c > 0, for every poly-
nomial time algorithm A, for all large enough input lengths, Pry∈f(Un) [ A(y) ∈
f−1(y) ] < 1

nc . In words, f can be computed by an algorithm that runs in some
fixed polynomial time, while f−1 is hard (on the average) for all polynomial-time
algorithms.

It is a common belief that OWFs exist, and a standard assumption in cryptog-
raphy. The question whether it can be based on the worst-case hardness of NP is
a major open problem. There are several relevant notions of hardness involved,
and we identify the following hierarchy of conjectures:

– (Worst-case) Some function in NP is worst-case hard for a class of adversaries
(usually BPP).

– (Average-case) Some function in NP is average-case hard for a class of ad-
versaries (usually BPP).
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– (One-way) Some function in P is hard to invert on average by a class of
adversaries (usually BPP).

– (Pseudo-randomness) Some function in P generates distributions of low en-
tropy that are indistinguishable from uniform by a class of adversaries (usu-
ally BPP).

The only non-trivial relation among these assumptions that is known today
is that the one-wayness assumption is equivalent to the pseudo-randomness as-
sumption when the class of adversaries is BPP [HILL99].

In all the above assumptions we assume that some function ”fools” some
class of adversaries, where the meaning of ”fooling” varies (being worst-case
hardness, average-case hardness, one-wayness or pseudo-randomness). The usual
choice in cryptography is that the function lies in P or NP (according to the
assumption we work with), while the class of adversaries is BPP (or sometimes
even BPTIME(t(n)) for some super-polynomial t(n)). Thus, while the function
is computable in a fixed polynomial time, the adversary may run in unbounded
polynomial time, and so has more resources than the algorithm for the function
itself. We therefore call this setting the ”weak-fooling-strong” setting.

Another setting that often arises in complexity, is almost identical to the
above except that the class of adversaries is weaker than the class it tries to
fool. E.g., a key observation of Nisan and Wigderson [NW94] is that generators
that are used to derandomize probabilistic complexity classes, can run in time
nc while fooling algorithms running in time nb for some b) c. We call this the
”strong-fooling-weak” setting.

This difference is a crucial (though subtle) dividing line. The canonic example
for this distinction is the Blum-Micali-Yao PRG v.s. the Nisan-Wigderson PRG.
This distinction applies not only to PRGs, and in particular we believe it is
a central issue when discussing worst-case to average-case reductions for NP.
Indeed the techniques that we use, apply to the strong-fooling-weak setting, but
not to the weak-fooling-strong setting.

So now we focus on the strong-fooling-weak setting, and review previous work
on the problem. We begin by listing the exponential-time analogues of the as-
sumptions we listed above:

– (Worst-case hardness in EXP) Some function in EXP is worst-case hard for
BPP.

– (Average-case hardness in EXP) Some function in EXP is average-case hard
for BPP.

– (Exponential-time pseudo-random generators) For every constant ε > 0,
there exists a pseudorandom generator G : nε → n fooling BPP, and the
generator is computable in time 2n

ε

(i.e. exponential in the seed length).

Note that each of the above statements is implied by the corresponding state-
ment in the weak-fooling-strong setting. Impagliazzo and Wigderson [IW98] (see
also [TV02]), building on a long line of works such as [NW94,BFNW93, IW97],
show that all three assumptions are equivalent. Their work was done in the
context of understanding the power of randomness in computation, and indeed
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the equivalence above easily extends to include the following statement about
the ability to reduce the amount of randomness used by efficient probabilistic
algorithms.

– (Subexponential-time derandomization) For every probabilistic polynomial-
time TM A (that outputs one bit), and a constant ε > 0, there exists another
probabilistic TM Aε, that runs in time 2n

ε

, uses at most nε random coins,
and behaves essentially the same as A.2

These beautiful and clean connections shed light on some of the fundamen-
tal questions in complexity theory regarding randomness and computational
hardness of functions. Unfortunately, no such connections are known below the
exponential level. As an example consider the following question that lies in the
strong-fooling-weak setting, yet in the sub-exponential regime.

Open Problem 1. Does NP �⊆ BPP imply the existence of a language L in
ÑP = NTIME(nO(log n)) such that L is hard on average for BPP with respect to
the uniform distribution?

We believe that solving Open Problem 1 will be a major breakthrough. Here
we give an affirmative answer under a weak derandomization assumption. We
begin with the derandomization assumption. Following Kabanets [Kab01], we
say that two probabilistic TM’s are δ-indistinguishable if no samplable distri-
bution can output with δ probability an instance on which the answers of the
machines differ significantly (the acceptance probabilities, averaging over their
randomness, differ by at least δ). See Definition 3 for a formal definition. We can
now formalize the derandomization hypothesis:

Hypothesis 1. For every probabilistic polynomial-time decision algorithm A
(that outputs one bit), and every constant ε > 0, there exists another proba-
bilistic polynomial-time algorithm Aε that on inputs of length n, tosses at most
nε coins, and A,Aε are 1

100 -indistinguishable.

We then prove:

Theorem 3. (Informal) If NP is worst-case hard and weak derandomization of
BPP is possible (i.e. Hypothesis 1 is true) then there exists a language in ÑP
that is hard on average for BPP.3

2 Here we mean that Aε maintains the functionality of A on the average in the sense
of Kabanets [Kab01] (see Definition 3 and Hypothesis 1). This notion of derandom-
ization is standard when working with hardness against uniform TM’s (rather than
circuits) and with generators that fool TM’s (rather than circuits).

3 Our result is actually slightly stronger than the one stated here. It gives a hard
on average language in the class NTIME(nω(1)) with the additional constraint that
membership witnesses are of polynomial length, i.e. only the verification takes super-
polynomial time, making it closer to NP. In particular, this class is contained in EXP.
Also, standard separation techniques (such as the nondeterministic time hierarchy)
can not separate this class from NP.
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The formal statement is given in Section 4 (Theorem 7). The weak
derandomization assumption is the precise (polynomial-time) analogue of the
subexponential-time derandomization assumption stated above. That is, in both
assumptions, Aε reduces the randomness of A by a polynomial factor, and the
result is indistinguishable to polynomial time adversaries (see Definition 3). How-
ever, in the latter we let Aε run in subexponential-time, while in Theorem 3 we
demand it runs in polynomial time.

We remark that there is an almost trivial proof of the theorem if we replace
the weak derandomization assumption by a strong derandomization assumption,
namely that BPP = P. In our notation, this is like assuming that Aε can replace
the poly(n) random coins of A by logarithmically many random coins. This as-
sumption is much stronger than the assumption in Theorem 3, where we assume
Aε reduces the number of coins just by a polynomial factor. Indeed, under the
strong assumption, we can apply standard hierarchy theorems to separate ÑP
from BPP (which is now P) even under average-case complexity measure. Note
however, that our weak derandomization does not imply that BPP is (strictly)
contained in ÑP and therefore we cannot apply hierarchy theorems.

Another strong assumption that implies the average-case hardness in our con-
clusion, is the existence of ceratin pseudo-random generators. Again, our as-
sumption is much weaker than that since it only states that derandomization is
possible (not necessarily via a construction of pseudo-random generators).

We therefore believe that the relationship that we obtain between worst-case
hardness, average-case hardness and derandomization, is intriguing as it shows
that highly non-trivial connections between these notions do exist below the
exponential level.

2 Preliminaries

BPTIME(t(n), c(n)) is the class of languages that can be decided by randomized
Turing machines that run in time t(n) and use c(n) random coins. NTIME(t(n),
w(n)) is the class of languages that can be decided by nondeterministic Turing
machines that run in time t(n), and take witnesses of lengthw(n). BPTIME(t(n))
and NTIME(t(n)) stand for BPTIME(t(n), t(n)) and NTIME(t(n), t(n)) respec-
tively. PPM denotes the class of probabilistic polynomial-time TM’s.

An ensemble of distributions D is an infinite set of distributions {Dn}n∈N ,
where Dn is a distribution over {0, 1}n. We denote by U the uniform distribution.
Let A(·; ·) be a probabilistic TM, using m(n) bits of randomness on inputs of
length n. We say that A is a sampler for the distribution D = {Dn}n∈N , if for
every n, the random variable A(1n, y) is distributed identically to Dn, where
the distribution is over the random string y ∈R {0, 1}m(n). In particular, A
always outputs strings of length n on input 1n. If A runs in polynomial time we
simply say D is samplable. A distributional problem is a pair (L,D), where L is
a language and D is an ensemble of distributions.
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Definition 2 (Average BPP). Let (L,D) be a distributional problem, and
s(n) a function from N to [0, 1]. We say that (L,D) can be efficiently decided on
average with success s(n), and denote it by (L,D) ∈ Avgs(n)BPP, if there is an
algorithm A ∈ PPM such that for every large enough n, Pr[A(x) = L(x)] ≥ s(n),
where the probability is over an instance x ∈ {0, 1}n sampled from Dn and the
internal coin tosses of A.

We mention that the average-case definition that we give here is from [Imp95]
(there it is denoted Heur-BPP). It differs from the original definition of Levin
[Lev86]. Generally speaking, all previous works about hardness amplification and
worst-case to average-case reductions, and in particular those that we use here
(e.g. [BT03, IL90,GSTS05]), hold under Definition 2.

We denote the computational problem of deciding (L,D) on average with
success s by (L,D)s. For a language L defined by a binary relation R ⊆ {0, 1}∗×
{0, 1}∗ (i.e. L = {x : ∃y s.t. (x, y) ∈ R}), the search problem associated with L
is given x find y such (x, y) ∈ R if such a y exist (i.e. if x ∈ L) and output ’no’
otherwise. The average-case analogue of solving the search problem of (L,D)
with success s, is to solve the search problem of L with probability at least s,
over an instance of L drawn from D (and the internal coins of the search process).
We denote this computational problem by (L,D)search,s.

We need to define a non-standard (and weaker) solution to search problems,
by letting the searching procedure output a list of candidate witnesses rather
than one, and not requiring that the algorithm recognize ’no’ instances.4 For
a langauge L defined by a binary relation R, the list-search problem associated
with L is given x find a list y1, . . . , ym (where m = poly(|x|)) such that ∃i ∈ [m]
for which (x, yi) ∈ R, if x ∈ L. Note that for x �∈ L we are not required to answer
’no’. We denote by (L,D)list−search,s the average-case analogue.

Indistinguishability. Following Kabanets [Kab01], we say that two probabilis-
tic TM’s are indistinguishable if no samplable distribution can output with high
probability an instance on which the answers of the machines differ significantly
(averaging over their randomness). Below is the formal definition.

Definition 3. Let A1 and A2 be two probabilistic TM’s outputting 0/1, such
that on inputs of length n A1 uses m1(n) random coins and A2 uses m2(n)
random coins. For ε, δ > 0, we say that A1 and A2 are (ε, δ)-indistinguishable,
if for every samplable distribution D = {Dn}n∈N and every n ∈ N ,

Pr
x∈Dn

[∣
∣
∣
∣
∣

Pr
r∈R{0,1}m1(n)

[A1(x, r) = 1]− Pr
r′∈R{0,1}m2(n)

[A2(x, r′) = 1]

∣
∣
∣
∣
∣
> ε

]

≤ δ

To save on parameters, we will sometimes take ε to be equal to δ and then we
will say that A1, A2 are δ-indistinguishable (meaning (δ, δ)-indistinguishable).
4 The reason we need this is that we are going to apply search procedures on languages

in NTIME(nω(1), poly(n)). In this case an efficient procedure cannot check whether
a candidate witness is a satisfying one. We therefore cannot amplify the success
probability of such procedures. On the other hand, when we only require a list that
contains a witness we can apply standard amplification techniques.
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3 Impossibility Results and How to Bypass Them

We begin with showing that under standard assumptions, the [GSTS05] result
cannot be proven via black-box and non-adaptive reductions. We then take a
closer look at the reduction of [GSTS05], in order to understand what enables
it to bypass the impossibility result.

The following statement can be obtained by generalizing the proof of [BT03]
to arbitrary time bounds.

Theorem 4 (Implicit in [BT03]). Suppose that there is a language L ∈
NTIME(nO(logn)) and a reduction R from solving SAT on the worst-case, to
solving (L,U) on the average with success 1 − 1/nO(logn). Further suppose that
R is non-adaptive and black-box, and is computable in time npolylog(n). Then ev-
ery language in coNP can be computed by a family of nondeterministic Boolean
circuits of size npolylog(n).

From that we can conclude Theorem 1, which we now re-state more formally
(the proof is omitted due to space limitation).

Theorem 5. Suppose there is a language L ∈ NP and a distribution D sam-
plable in time nlogn, such that there is a black-box and non-adaptive reduction
from solving SAT on the worst-case, to solving (L,D) on the average with suc-
cess 1−1/n. Then every language in coNP can be computed by nondeterministic
Boolean circuits of size npolylog(n).

3.1 A Closer Look at the Reduction of [GSTS05]

There are two steps in the argument of [GSTS05]. First it is shown that assuming
NP �⊆ BPP, any probabilistic, polynomial-time algorithm BSAT for SAT has
a hard polynomial-time samplable distribution DBSAT, and then they show
one quasi-polynomial time distribution D that is hard for all polynomial-time,
probabilistic algorithms.

We now recall how the first step is achieved. Given BSAT we define the
probabilistic polynomial time algorithm SSAT that tries to solve the search
problem of SAT using oracle calls to BSAT (via the downwards self-reducibility
property of SAT), and answers ”yes” if and only if it finds a satisfying assignment.
We then define the SAT formula:

∃x∈{0,1}n [ SAT(x) = 1 and SSAT(x) �= ’yes’ ] (1)

The assumption NP �⊆ BPP implies that SSAT does not solve SAT and the
sentence is true. We now ask SSAT to find a satisfying assignment to it. If
it fails doing so, then BSAT is wrong on one of the queries made along the
way. Otherwise, the search algorithm finds a SAT sentence x on which SSAT is
wrong. This means that BSAT is wrong on one of the queries SSAT makes on
input x. Things are somewhat more complicated because SSAT is a probabilistic
algorithm and not a deterministic one, and so the above sentence is not really a
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SAT formula, but we avoid these technical details and refer the interested reader
to [GSTS05]. In any case, we produce a small set of queries such that on at least
one of the sentences in the set, BSAT is wrong, i.e., we get a polynomial-time
samplable distribution on which BSAT has a non-negligible error probability.

To implement the second step, [GSTS05] define the distribution D that on
input 1n picks at random a machine from the set of probabilistic machines with
description size at most, say, logn and runs it up to, say, nlog n time. We know
that for any probabilistic polynomial-time algorithm BSAT there is a hard dis-
tribution DBSAT, and this distribution is sampled by some polynomial-time
algorithm with a fixed description size. Thus, for n large enough, we pick this
machine with probability at least 1/n (because its description size is smaller
than logn) and then we output a bad input for BSAT with probability 1/n. The
sampling time for D is nlogn (or, in fact, any super-polynomial function).

We now ask: Can we interpret the [GSTS05] result as a worst-case to average-
case reduction?

Indeed, given an algorithm BSAT for solving (SAT,D), we define the algo-
rithm RBSAT = SSAT, where R is a search-to-decision reduction. The analysis
shows that if BSAT indeed solves SAT well on the average with respect to D,
then it also solves it well on the average with respect to DBSAT. This implies
that necessarily the sentence in Eq (1) is true, i.e., SSAT solves SAT in the
worst-case. In other words, the standard search to decision reduction for SAT is
also a worst-case to average-case reduction!

Another question is now in place: is the reduction black-box?
Looking at Definition 1 we see that a reduction is black-box if it has the

following two properties:

1. (Property 1) Rmakes a black-box use of the adversaryA (in our case BSAT).
I.e., R may call A on inputs but is not allowed to look into the code of A.

2. (Property 2) The reduction is correct for any A that solves the problem (in
our case SAT), putting no limitations on the nature of A. E.g. A may even
be undecidable.

We see that in the reduction of [GSTS05], the first condition is satisfied. R
is merely the standard search-to-decision reduction for SAT which queries the
decision oracle on formulas along a path of the search tree. We can replace
the standard search-to-decision reduction with the one by Ben-David et. al.
[BDCGL90]. The latter makes only non-adaptive queries to the decision oracle.
Thus we get a non-adaptive reduction. However, the second condition is violated.
Indeed, the key point in the analysis of [GSTS05] is that it works only for efficient
oracles BSAT. This is so because the analysis encodes the failure of RBSAT as an
NP statement. Here the analysis crucially uses the fact that BSAT (and therefore
RBSAT) is in BPP, and therefore its computation has a short description as a
Boolean formula.

So let us now summarize this surprising situation: from the reduction R’s
point of view, it is black-box, i.e. Property 1 holds (R does not rely on the
inner working of the oracle BSAT or its complexity), but for the analysis to
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work, the oracle BSAT has to be efficient, i.e. Property 2 is violated.5 This
motivates the definition of class-specific black-box reductions that we gave in
the introduction.

Given this definition and the discussion about non-adaptivity above, we can
restate the result of [GSTS05] as follows:

Theorem 6. There exists a distribution D samplable in time nlogn, such that
there is a BPP-black-box and non-adaptive reduction from solving SAT on the
worst-case to solving (L,D) on average with success 1− 1/n.

Theorem 6 is in sharp contrast to Theorem 5. Theorem 5, as well as [FF93,
BT03, AGGM06], say that the requirement in black-box reductions that they
succeed whenever they are given a ”good” oracle, regardless of its complexity,
is simply too strong, i.e. such reductions are unlikely to exist. Theorem 6, on
the other hand, says that weakening the requirement to work only for efficient
oracles (i.e. allowing to violate Property 2, but not property 1) is enough to
bypass the limitation.

We mention that there are other cases of non-black-box reductions in com-
plexity theory that bypass black-box limitations. For example, the fact that the
polynomial-time hierarchy collapses under the assumption NP = P is proven via
a non-black-box reduction from solving SAT efficiently to solving QSAT 2 effi-
ciently (QSAT 2 is the canonic Σ2-complete problem of deciding the validity of a
Boolean first-order formula with two quantifier alternations). Indeed if a black-
box reduction between these tasks exists then the hierarchy collapses uncondi-
tionally. It is interesting, however, that in this argument both the reduction and
the proof of correctness are non-black-box, because the reduction queries the NP-
oracle on statements that are encodings of the computation of the oracle itself
(assuming that this oracle can be realized efficiently). I.e. both Properties 1 and
2 are violated. Examples from the field of cryptography can be found in the work
of Barak [Bar01] (and some following papers that use similar ideas). Again his
proof (when considered as a reduction) violates both properties of black-boxness.

The only other BPP-black-box reduction that we are aware of appears in the
work of Imapgliazzo and Wigderson [IW98].6 Their proof shows that given an

5 We mention that recently, Atserias [Ats06] gave an alternative proof to [GSTS05]
where he shows that even the analysis can be done almost black-box. That is, it does
not need to use the description of BSAT, it only needs to know the running time of
BSAT. In contrast, the analysis in [GSTS05] does use the description of BSAT.

6 Although some proofs of security in cryptography appear to use the fact that the
adversary is efficient (e.g. in zero-knowledge proofs with black-box simulation), when
written as reductions they are in fact black-box in the standard sense. That is, it is
shown that any adversary that breaks the cryptographic primitive, implies breaking
the security assumption (e.g. bit-commitments in the case of zero-knowledge). Of
course, the contradiction with the security assumption is only true when the ad-
versary is efficient. However, this is an artifact of the security assumption, not the
way the proof is derived (or in other words, if we change the security assumption
to hold against say, sub-exponential-time adversaries rather than polynomial-time
adversaries, the same proof of security holds).
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efficient oracle that breaks a ceratin pseudo-random generator, one can use it to
compute an EXP-complete language. We do not know if this reduction can be
done in a black-box way, nor do we have evidence that it cannot.

Finally, we want to mention that one should not confuse black-box limitations
with non-relativizing arguments. The proof of [GSTS05] (as well as the collapse
of the polynomial-time hierarchy) can be done in a relativizing way.

4 Top-Down Overview of Theorem 3

We re-state Theorem 3 in a formal way.

Theorem 7. If Hypothesis 1 is true and SAT �∈ RP then there exists a language
L ∈ NTIME(t(n), poly(n)), such that, (L,U) �∈ Avg1/2+1/ logα nBPP, where t(n) =
nω(1) is an arbitrary time-constructible super-polynomial function, and α > 0 is a
universal constant.

We now explain the intuition and give a top-down overview of the proof. The
full proof is omitted due to space limitations and will appear in the final version
of the paper.

Our starting point is Theorem 2, which says that if SAT is worst-case hard,
then there exist a single distribution on SAT instances, Dhard, on which every
probabilistic polynomial-time algorithm errs with relatively high probability, but
the distribution is only samplable in quasi-polynomial-time (for this reason we
denote it by Dhard). Our goal is to somehow extract from Dhard a simple dis-
tribution on which the same holds. Ideally, the uniform distribution will be
good enough. The key tool that we use is a reduction given by Impagliazzo and
Levin [IL90] that shows that if there exists a polynomial-time samplable distri-
bution D that is hard on average for some language L ∈ NP, then there exists
another language L′ ∈ NP for which the uniform distribution U is hard on aver-
age. We would like to apply this reduction on SAT and the distribution Dhard.

However we immediately run into a problem because Dhard is samplable in
super-polynomial time, while the argument of [IL90] only applies to distributions
that are samplable in polynomial time. To understand this, let us elaborate on
how the complexity of the distribution influences the reduction of [IL90]. There
are several different entities to consider in this reduction: The language L, The
distribution Dhard, The language L′ we reduce to, and the reduction R itself
that solves (L,Dhard) on average given an oracle that solves (L′,U) on average.

We can expect that both the complexity of L′ as well as the complexity of
the reduction R depend on Dhard. Indeed, using the [IL90] reduction, the non-
deterministic procedure for the language L′ involves checking membership in the
language L as well as running the sampler for Dhard. In our case, since Dhard is
samplable in super-polynomial-time, this results in L′ having a super-polynomial
non-deterministic complexity (and so puts us in the strong-fooling-weak setting).

It seems that the same should hold for the reduction R. Indeed the reduction
of [IL90] is from search problems to search problems, which means that R must
handle the membership witnesses for the language L′. As we said above, this
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involves computing Dhard and in particular, the complexity of R is at least that
of Dhard. This however means that we can not deduce from the hardness on
average of (L,Dhard) the hardness on average of (L′,U), because the hardness
of (L,Dhard) is only against algorithms with complexity smaller than that of
Dhard, and the reduction’s complexity is at least that of Dhard. This makes the
reduction of [IL90] useless for us (at least a direct use of it).

The surprising thing, and the main observation here, is that in the Impagliazzo-
Levin argument the running time of the reduction does not depend on the time
complexity of Dhard ! It only depends on the number of random coins the sampler
for Dhard uses: while the reduction R does look at the membership witnesses for
L′, the size of these witnesses is only a function of the number of random coins
the sampler uses. Furthermore, during this process, R is never required to verify
the witnesses and therefore does not need to run the sampler. We formalize this
observation in the following lemma.

Lemma 1. For every Distribution D samplable in BPTIME(t(n), c(n)), a lan-
guage L ∈ NTIME(tL(n), cL(n)) and 0 < δ(n) < 1, there exists L′∈NTIME(t(n)
+tL(n)+poly(n, c(n)), c(n)+cL(n)) such that there is a probabilistic non-adaptive
reduction, R, from (L,D)search,1−O(δ(n)·c2(n)) to (L′,U)list−search,1−δ(n).

Furthermore, the running time of R is poly(n, c(n), tL(n)), and note that it is
independent of t(n).

The conclusion of the Lemma is that in order to keep the reduction efficient, we
need to reduce the randomness complexity of the sampler for Dhard to a fixed
polynomial, but we do not need to reduce its time complexity. This is fortunate
because while in general there is no reason to believe that we can reduce the
running time of algorithms, it is widely believed that randomness can be reduced
without paying much penalty in running time. To that end we use Hypothesis
1, and prove:

Lemma 2. Assume Hypothesis 1 is true. Let t(n) be an arbitrary super-polynomial
function. There is a distribution D samplable in BPTIME(O(t(n), O(n3)) such
that, (SAT,D) ∈ Avg1−1/nBPP⇒ SAT ∈ RP.

Note that Hypothesis 1 does not seem to derandomize general distributions that
are samplable in super-polynomial-time. First, Hypothesis 1 only derandom-
izes polynomial-time algorithms and only by polynomial factors (while here we
want to derandomize a sampler that runs in super-polynomial time and uses
a super-polynomial number of coins). And second, Hypothesis 1 only applies
to decision algorithms.7 We show, however, that the specific distribution Dhard
from [GSTS05] can be derandomized under Hypothesis 1. The proof is quite
technical and involves getting into the details of [GSTS05].

7 In general, standard derandomization results do not apply to probabilistic proce-
dures that output many bits. We refer the reader to [DI06] for a discussion about
derandomizing procedures that output many bits versus decision procedures (that
output a single bit).
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The above two lemmas give us 1− 1/poly(n) hardness on the average for the
list-search version of the problem (given the worst-case hardness and the deran-
domization assumptions). To get 1/2+1/ logα n hardness on the average for the
decision problem, we use generalizations of known techniques in average-case
complexity [BDCGL90,Tre05]. The tricky part is doing the hardness amplifica-
tion using a reduction whose running time is poly(n, c(n)) and, in particular,
independent of t(n). By using careful generalizations of [BDCGL90], Trevisan’s
amplification technique [Tre05] goes through, and we obtain Theorem 7.
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Abstract. We consider the problem of finding the most frequent ele-
ments in the data stream model; this problem has a linear lower bound
in terms of the input length. In this paper we obtain sharper space lower
bounds for this problem, not in terms of the length of the input as is
traditionally done, but in terms of the quantitative properties (in this
case, distribution of the element frequencies) of the input per se; this
lower bound matches the best known upper bound for this problem.
These bounds suggest the study of data stream algorithms through an
instance-specific lens.

1 Introduction

The data stream model of computation has evolved into an indispensable tool
to cope with processing massive data sets. In this model, the input is processed
as and when it arrives by a computational device that has only a limited storage
space. The complexity in this model is typically measured in terms of the space
required by the algorithm; this is often quantified as a function of the length
of the input (n) and the size of the domain from which the elements of the in-
puts are drawn (m). Data stream algorithms are deemed interesting, efficient,
and usable only if their space requirement is sublinear in n; this is especially so
since n is assumed to be extremely large. Efficient data stream algorithms are
out of question for most problems if neither randomization nor approximation
is permitted. With randomization, sublinear space data stream algorithms have
been developed for approximating several statistical data analysis primitives,
ranging from frequency moments and Lp differences to histograms. For an ex-
cellent account of the important results in the area, see the recent monograph
by Muthukrishnan [1] and the survey by Babcock et al. [2].

Motivation. Even though many problems are shown to have efficient data stream
algorithms, it is provably impossible to obtain o(n) space algorithms for many
other interesting data processing problems, even with the allowances of approx-
imation and randomization. This is a consequence of both the limitations of the
data stream model itself and the inherent difficulty of the underlying problem.

An important problem that falls in this doomed class is the MostFrequent
problem: given an input sequence X = x1, . . . , xn, output the element(s) that
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occur the most in the sequence X . This is an important and recurring problem in
databases, information retrieval, and web analysis; for instance, search engines
would like to quickly distill the frequently-issued queries from their daily query
logs. Unfortunately, Alon, Matias, and Szegedy [3] showed an Ω(n) lower bound
for estimating the frequency of the largest item given an arbitrary data stream.
An approximation version of this problem involves finding an element whose
frequency is close that of the optimum; unfortunately even this version needs
linear space in the worst case. Throughout the rest of the paper, MostFrequent
will always refer to the approximation version.

Despite this seemingly insurmountable lower bound for the MostFrequent
problem, a wide variety of heuristics that work very well in practice have been
proposed; for example, see [4,5,6,7]. These heuristics are successful because the
lower bound assumes a certain (near uniform) distribution of the frequencies
of the elements in the stream, where as, in practice one can exploit the fact
that the frequencies are power law or Zipfian. Charikar, Chen, and Colton [7]
obtained an algorithm along with a performance guarantee for a relaxed version
of the MostFrequent problem — given a parameter ε they can find an element
with frequency at least (1− ε) times that of the most frequent element in space
Õ(F2/F

2
∞), where F2 is the second frequency moment of the input and F∞ is the

frequency of the most frequent input element.1 Although F2/F
2
∞ may be linear

in n in the worst case, for many distributions including the Zipfian or power law
distributions encountered in practice, it is sublinear. A natural question arises:
for such (and other) distributions in order to find the most frequent elements,
do we need Ω(F2/F

2
∞) space or can we do better?

Our Contributions. For the MostFrequent problem, where we are given the fre-
quency distribution of the elements in a stream and an adversary is allowed to
choose the order in which the elements arrive, we show tight space bound (up
to logarithmic factors) of Θ̃(F2/F

2
∞), where F2 is the second frequency moment

of the input and F∞ is the frequency of the most frequent input element. The
upper bound can be inferred from the algorithm of Charikar, Chen, and Colton
[7]; see also [8]. We show a matching lower bound for multi-pass data stream
algorithms that are even allowed to approximate the most frequent element.2

The lower bound is established by information-theoretic arguments as in Bar-
Yossef et al. [9] and consists of two steps. The first step involves obtaining an
information complexity lower bound for a functional version of set disjointness.
The second step constructs separate instances of the set disjointness problem,
carefully interleaves them, and uses the lower bound from the first step together
with additional information-theoretic arguments to obtain the final lower bound.
1 For a sequence X = x1, . . . , xn where each xi ∈ Y , let fy(X) denote the number of

times y ∈ Y appears in the sequence. Then, F2(X) =
∑

y∈Y f2
y (X) and F∞(X) =

maxy∈Y fy(X).
2 Since F0 ≥ F2/F 2

∞, it is tempting to exploit this relationship towards a lower bound
in terms of F0 via a reduction to the indexing problem. However, this approach does
not seem to lead to tight bounds even for one-pass algorithms and certainly does
not say much for multi-pass algorithms.
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In particular, our bounds show the precise behavior of the space requirements
as a function of the second and the infinity frequency moments of the input. In
particular, it shows that the algorithm in [7] for Zipf distributions is essentially
optimal.

At a philosophical level, our results suggest that the worst-case lower bounds
for many data stream problems are perhaps way too pessimistic and stronger and
better bounds could be stated if one were to take the properties of inputs them-
selves into account and parametrize the complexity of the algorithms differently.
To quote [1]:

“. . . the goal would be to find workable approximations under suitable
assumptions on input data distributions.”

Our results makes a modest progress towards this goal. In fact, we propose
the study of data stream algorithms through an instance-specific lens. Roughly
speaking, the plan is to obtain optimal space bounds, both upper and lower, for
data stream algorithms parametrized in terms of the actual properties of the
input sequence than just its length, n. We call these the instance-specific data
stream bounds.

Notation. Let X = x1, . . . , xn denote the input sequence of length n. We assume
that the input sequence X arrives in an arbitrary order. We work with random-
ized approximation algorithms, i.e., algorithms that given an error parameter
ε > 0 and a confidence parameter δ > 0, output a value that is an (1± ε) multi-
plicative approximation to the correct value, with probability at least 1− δ. We
use Õ, Ω̃, Θ̃ to suppress factors that are logarithmic in n.

2 Main Result

First, we formally state the MostFrequent problem. Let F∞ = F∞(X) denote the
frequency of the most frequent element in the input sequenceX . Let F2 = F2(X)
denote the second frequency moment of the input sequence X .

Problem 1 (MostFrequent). In the MostFrequent problem, we are given the dis-
tribution of the frequencies of the elements, i.e., we are told how many elements
have a certain frequency but not the identity of those elements. The objective
is to find an element with frequency at least (1− ε) · F∞, in one or more passes
over the input.

2.1 Upper Bound

For sake of completeness, we briefly discuss the known algorithm for the MostFre-
quent problem. For simplicity of exposition, we stated it as a two-pass algorithm;
it is possible to make it run in a single pass.

The algorithm maintains h hash tables of size b buckets each. In the first pass,
each input element is hashed into the h tables using pairwise-independent hash
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functions, keeping a counter per bucket. In the second pass, input elements that
hash to a large number buckets with a high counter value — above a threshold
τ — are reported as frequent elements.

Here is a glimpse of the analysis. Focusing on one hash table, if there are b
buckets, then the expected count in a bucket cell is n/b. The variance of this
count can be computed to be at most F2/b. But the expected count of the bucket
with the most frequent element is at least n/b+F∞(1− 1/b). So, as long as the
gap between the expectations F∞(1 − 1/b) is at least c ·

√
F2/b for sufficiently

chosen constant c > 0, we can set the threshold τ so that there is a constant gap
in the probability of a count exceeding the threshold for the frequent element
versus any other element. This gives a bound on the number of buckets to be
b > Ω(F2/F

2
∞). By using several (constant) such tables and using the median

count, the probability gap can be amplified arbitrarily.

Theorem 1 ([7]). There is a randomized data stream algorithm for the Most-
Frequent problem that uses space Õ(F2/F

2
∞).

2.2 Tools for the Lower Bound

We assume the reader is familiar with communication complexity and informa-
tion theory. See the book by Kushilevitz and Nisan [10] for the former and the
book by Cover and Thomas [11] for the latter.

In our usage, X ⊥ Y will denote the random variables X and Y are in-
dependent. We use H(·) to denote the entropy and I(·; ·) to denote the mu-
tual information between two random variables.3 Some basic properties of the
information-theoretic quantities can be found in [11].

First, we need the following simple lemma that relates the entropies of two
random variables to the mutual information with two other random variables
that are independent.

Lemma 1. For random variables A,B,X, Y such that X ⊥ Y , we have

H(A) +H(B) ≥ I(AB;XY ) + I(A;B) ≥ I(AB;X) + I(A;Y ) + I(B;Y ).

Proof. The first inequality follows easily since

H(A) +H(B) = H(AB) + I(A;B) ≥ I(AB;XY ) + I(A;B).

To show the second inequality, we first show

I(AB;XY ) = H(XY )−H(XY | AB)
= H(X) +H(Y )−H(XY | AB) (by X ⊥ Y )
≥ H(X) +H(Y )−H(X | AB)−H(Y | AB) (by subadditivity)
= I(AB;X) + I(AB;Y ). (1)

3 Let A,B be random variables. Then, the entropy H(A) = −
∑

a Pr[A = a] log Pr[A =
a], the conditional entropy H(A | B) =

∑
b H(A | B = b) Pr[B = b] and the mutual

information I(A;B) = H(A) − H(A | B) = H(B) − H(B | A).
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Next, we show that

I(B;Y | A) + I(A;B) = H(B | A)−H(B | A, Y ) +H(B)−H(B | A)
= H(B)−H(B | A, Y )
≥ H(B)−H(B | Y ) (by dropping condition)
= I(B;Y ). (2)

Finally, the second inequality follows as

I(AB;XY ) + I(A;B) ≥ I(AB;X) + I(AB;Y ) + I(A;B) by (1)
= I(AB;X) + I(A;Y ) + I(B;Y | A) + I(A;B)
≥ I(AB;X) + I(A;Y ) + I(B;Y ). by (2)

Next, we generalize this to a collection of random variables defined on a tree.

Theorem 2. Given random variables U0, . . . , U2k−1 and k + 1 random vari-
ables X0, . . . , Xk that are independent. Consider a binary tree of height k, with
U0, . . . , U2k−1 at the leaves in that order and each node is the labeled by the con-
catenation of all the variables in leaves of the subtree rooted at that node. That
is, the parents of the leaves have labels U0U1, U2U3, U4U5, ...., U2k−2U2k−1 in that
order; the root has label U0U1..U2k−1; and in general the j-th node from leftat the
i-th level (root is at level 0) is labeled by Vij = Uj2iUj2i+1 · · ·U(j+1)2i−1 where
i ∈ {0, . . . , k}, j ∈ j(k, i) = {0, . . . , 2(k−i) − 1}.

Then
2k−1∑

j=0

H(Uj) ≥
∑

i∈[k],j∈j(k,i)
I(Vij ;Xi).

Note that the order in which the U ’s appear in Vij is immaterial as the order
does not affect the entropy and the mutual information. All that is used here is
that each node is labeled with a concatenation of labels of its descendant leaves
in any order.

Proof. We prove by induction on k. The base case for k = 1 is given by the
Lemma 1. For notational simplicity, we first illustrate the proof for k = 2.

H(U0) +H(U1) +H(U2) +H(U3)
= H(U0U1) +H(U2U3) + I(U0;U1) + I(U2;U3)
≥ I(U0U1U2U3;X0) + I(U0U1;X1X2) + I(U2U3;X1X2) + I(U0;U1) + I(U2;U3)

(by Lemma 1)
≥ I(U0U1U2U3;X0) + I(U0U1;X1) + I(U0;X2) + I(U1;X2) + I(U2U3;X1)

+I(U2;X2) + I(U3;X2). (by Lemma 1 applied twice)

This completes the proof for k = 2. For general k > 2, we proceed by induction.
Let X ′ be a sequence of k independent random variables such that X ′

i = Xi for
i = 0, . . . , k − 1 and X ′

k−1 = Xk−1Xk.
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2k−1∑

j=0

H(Uj)

=
2k−1−1∑

j′=0

H(U2j′U2j′+1) +
k∑

j′=0

I(U2j′ ;U2j′+1)

≥
∑

i∈[k−1],j∈j(k−1,i)

I(Vij ;X ′
i) +

k∑

j′=0

I(U2j′ ;U2j′+1)

(by induction hypothesis and using X ′)

=
∑

i∈[k−2],j∈j(k−2,i)

I(Vij ;Xi) +
k∑

j′=0

I(U2j′U2j′+1;Xk−1Xk) +
k∑

j′=0

I(U2j′ ;U2j′+1)

≥
∑

i∈[k−2],j∈j(k−2,i)

I(Vij ;Xi) +
k∑

j′=0

I(U2j′U2j′+1;Xk−1)

+
k∑

j′=0

I(U2j′ ;Xk) + I(U2j′+1;Xk) (by Lemma 1 applied k times)

=
∑

i∈[k],j∈j(k,i)
I(Vij ;Xi).

Note that the above theorem easily extends to a conditional version where all
entropies and mutual information quantities are conditioned on some random
variable. Such a conditional version will be used later.

We consider both multi-party communication protocols. A protocol specifies
the rules of interaction between the players and a transcript Π(X) contains the
messages exchanged between the players upon the input X . If A is a random
variable corresponding to a distribution on the inputs, then I(A;Π(A)) mea-
sures the mutual information between the input and the transcript; this is called
information cost. The information complexity of a function is the minimum in-
formation cost of a protocol that correctly computes the function. Conditional
version of these quantities are defined in an analogous manner; the reader is
referred to [9] for more details.

2.3 The IndexedAnd Problem

We consider the following communication problem with t players, where each
player has a bit vector. The objective is to find an index in the vector so that
all t players have a ‘1’ in that index.

Problem 2 (IndexedAnd). In the IndexedAnd problem, there are t players each
with a binary vector of length n. Viewing the input to the players as a n × t
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binary matrix, the goal of the players is to output an index i ∈ [n], if any, so
that the i-th row in the matrix is all 1’s; here a i-th row corresponds to the i-th
bit of all players. If there is no such row with all 1’s, then any output is valid.

Note that IndexedAnd is a functional version of the t-player set disjointness
problem. Despite this close relationship, it is not clear if the communication
lower bounds for set disjointness directly translate to the IndexedAnd problem.

We consider the following input instances for the problem.

(1) NO instance. In the inputs corresponding to the NO instance, each row
has one 1 with probability 1/2 at a random column. As stated before, any output
is considered valid if the input is a NO instance.

(2) YES instance. The inputs corresponding to the YES instance is the same
as above except that exactly one row has all 1’s; the correct answer in this case
would be the index of that row.

A random NO instance can be generated as follows. Let D = (D1, . . . , Dn)
where Di denotes the column number in row i that is set to 1 with probability
1/2; so each Di takes a random value in the range [t]. Let X ∈ {0, 1}n×t be the
random variable denoting the input and let X1, . . . Xn denote the rows of X ;
so Xij = 1 with probability 1/2 if Di = j and always 0 otherwise. Note that
X1, . . . , Xn are independent random variables, even conditioned on D.

We consider protocols that work correctly on the above YES and NO promise
instances; note that the protocol is allowed to output any answer on a NO
instance. Let ICIndexedAnd = minΠ I(X ;Π(X) | D) be the conditional infor-
mation complexity over all protocols that solve the above promise instances of
IndexedAnd. Note that we use the above distribution corresponding to the NO
instances to measure the information complexity. Let Π be the (randomized)
protocol that achieves the minimum conditional information cost.

We also need the one-bit version of the IndexedAnd problem.

Problem 3 (And). In the And problem, there are t players with one bit each.
The inputs are restricted to the cases where either all the t players have 1’s or
at most one player as a 1. The objective is to decide which case.

2.4 Lower Bound for the IndexedAnd Problem

We show the main theorem in this section.

Theorem 3. There is a constant c so that for n > ct, ICIndexedAnd ≥ Ω̃(n/t).
(Alternately, we may say ICIndexedAnd ≥ Ω̃(n/t− c).)

To show this theorem, we first argue that there is a row i about which the
protocol does not reveal much information. For simplicity let IC = ICIndexedAnd

and let Π = Π(X).

Lemma 2. There is a row i ∈ [n] such that Pr[i is output in NO instance] ≤
2/n and I(Xi;Π | D) ≤ (2/n) · IC.
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Proof. Since X1, . . . , Xn are independent given D, it follows (à la [9]) that

IC = I(X ;Π | D)
= H(X1, . . . , Xn | D)−H(X1, . . . , Xn | Π,D)

≥
(

n∑

i=1

H(Xi | D)

)

−
(

n∑

i=1

H(Xi | Π,D)

)

=
n∑

i=1

I(Xi;Π | D). (3)

Since the protocol is allowed to output anything on a NO instance, by av-
eraging over the rows, there are at least n/2 rows so that for such row i,
Pr[i is output in NO instance] ≤ 2/n. Using (3) and averaging once more over
the rows, there are at least n/2 rows so that for each such row i, we have
I(Xi;Π | D) ≤ 2 · IC/n. Putting these together, the proof is complete.

Let D−i denote the entries of D except for the entry i. We now obtain a condi-
tional version of Lemma 2.

Lemma 3. There is a row i ∈ [n] and values d−i for D−i so that
Pr[i is output in NO case | Di, D−i = d−i] ≤ 6/n and I(Xi;Π | Di, D−i =
d−i) ≤ 6 · IC/n.

Proof. We use the i provided by Lemma 2. First, we have the guarantee I(Xi;Π |
DiD−i) ≤ 2 · IC/n. This is equivalent to Ed−i [I(Xi;Π | Di, D−i = d−i] ≤
2 · IC/n over different values d−i of D−i. So by Markov’s inequality, for at
least 2/3-fraction of values d−i of D−i, we have I(Xi;Π | Di, D−i = d−i) ≤
6 · IC/n. Similarly, for at least 2/3-fraction of values d−i of D−i, we have
Pr[i is output in NO case | Di, D−i = d−i] ≤ 6/n. Together the two events
must happen in at least 1/3-fraction of the cases completing the proof.

To prove theorem 3 we provide a reduction from the And problem. A lower
bound on the information complexity of the one-bit And problem was proved in
[9,12].

Theorem 4 ([9,12]). ICAnd ≥ Ω̃(1/t).

We are now ready to prove Theorem 3.

Proof (Proof of Theorem 3). To complete the proof, we provide a reduction.
Given an instance of the one-bit And problem and a protocol for IndexedAnd,
we embed the one-bit And problem in row i that is given by Lemma 3. We use
the values of d−i to fill rows other than i. Note that once the values of d−i are
known, these rows can be filled without any communication among players, but
by just using the players’ private randomness.

The protocol for IndexedAnd is run on this input. Answer YES if output of
this protocol equals i and NO otherwise. Note that in the NO instance of one-bit
AND chosen randomly by setting a random position to 1 with probability 1/2,
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the probability of outputting YES is at most 6/n and in the YES instance it
is 1. Out of the total t + 1 NO instances of the And problem each occurs in
this random distribution with probability at least 1/(2t). So the probability of
outputting YES when any of the t+ 1 NO instances is implanted on row i is at
most 12t/n. For n > ct, this probability is small and results in a protocol for the
And problem. Therefore, 6 ∗ IC/n ≥ ICAnd and thus IC ≥ Ω(n) ∗ ICAnd .

2.5 Lower Bound for the MostFrequent Problem

We now prove a lower bound on the space required for the MostFrequent problem.
The set up is that we are given a vector f = {(n1, k1), (n2, k2), . . . , (ns, ks), (1, t)}
where ni elements occur with frequency ki (i ∈ [s]) and the most frequent element
occurs with frequency t that is the greater than all other frequencies ki.

For the purposes of proving a lower bound we will make the following re-
laxations on the frequency vectors and the input instance. We assume that all
the frequencies ki and t are powers of 2; for such distributions any hardness on
finding the most frequent element will directly mean a hardness on finding an
approximate most frequent element to within factor 2.

Allowing Randomness in Frequency Counts. Next, instead of producing a stream
with frequency vector exactly f , we will allow some randomness in the number
of elements with the different frequencies — the number of elements with fre-
quency ki will be sharply concentrated around ni. Precisely, frequency counts
are obtained by drawing elements from a universe U that is a disjoint union
U1 ∪ U2 ∪ · · · ∪ Us where |Ui| = 2ni. Each element of Ui occurs independently
and randomly in the stream either 0 or ki times with probability 1/2. So the
expected count of number of elements with frequency ki is ni; if ni is large,
this count is sharply concentrated around its ni. Each element of the universe U
occurs in the stream independently and randomly in this way, except that one
element may occur t times.

If there is such an element in the stream with frequency t, then the algorithm
is required to identify that element; if no such element occurs any output is
allowed.

Theorem 5. The space complexity for the above problem is Ω̃(
∑
i nik

2
i /t

2).

We prove the lower bound by reduction from the IndexedAnd problem.

Reduction Idea. If all the frequencies ki were the same, say k (i.e., s = 1),
then the reduction is easy: given an instance of the IndexedAnd problem with
2n rows and t/k players we can construct a sub-stream for each player where
the element is present or absent based on the bit in the input. Further each
element is replicated k times. The final stream is the concatenation of the sub-
streams for each player, where each element occurs k times and the element
corresponding to the all 1’s row occurs t times. Recall that IndexedAnd problem
is hard even if we restrict to YES instances where one row has all 1’s and each
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of the other rows have a 1 in a random column with probability 1/2 and all
0’s with probability 1/2. So if a YES instance is translated into a stream, the
count of the number of elements with frequency k is sharply concentrated around
n. By Theorem 3, the total communication complexity is at least Ω̃( n

(t/k) ). So
the average communication between successive players among the t/k players is
Ω̃( n

(t/k)2 ) = Ω̃(nk2/t2).

Reduction for Multiple Frequencies. When the number of frequencies s is more
than 1 the reduction is more complicated. Instead of working with one instance
of the IndexedAnd problem we will look at s instances each with t/ki players.
We will then interleave the sub-streams corresponding the different players over
all the instances in such as way as to be able to add up their individual commu-
nication complexities.

Formally, we prove the lower bound by assuming a data stream algorithm
to solve the MostFrequent problem and use it to obtain a communication pro-
tocol for IndexedAnd. Consider a collection of s random NO instances of the
IndexedAnd problem, where the i-th instance has 2ni rows and t/ki players. We
will show how a solution to MostFrequent can be used to solve a random YES in-
stance of IndexedAnd implanted on any of these instances. Construct an instance
of MostFrequent as follows.

By assumption t = 2t
′
. Also assume without loss of generality that all the

frequencies between 1 and t that are powers of 2 are present — this is easily
achieved by setting the ni corresponding to the absent ones to 0. So, s = t′, ki =
2i−1, i = 1, . . . , s.

Interleaving the Different Inputs. A block in the stream is constructed for
each player; the j-th player in the i-th instance (for i ∈ {1, .., t′} and j ∈
{1, .., 2t′−i+1}) constructs a block bij by looking at its input column and in-
cluding ki copies of the element if a bit 1 is present in the corresponding row
and none otherwise. To construct the stream we first arrange the blocks in a
binary tree of height t′ + 1 with a dummy root; the blocks b1j corresponding to
the first instance are at the leaves in order of increasing j; the blocks bij corre-
sponding to the i-th instance are at height i; and the children of the root are
two blocks bt′,1 and bt′,2 corresponding to the t′ − 1-th instance. We construct
a data stream from these blocks by laying them down in the depth-first search
(preorder) traversal order;

Observe that if one of the s = t′ instances of the IndexedAnd problem is
a YES instance and all the others are NO instances then there is an element
in the stream that occurs t times that corresponds to the solution to the YES
instance. Further the number of elements in the stream with frequency ki is
sharply concentrated around ni. The essential idea is that a protocol for the
MostFrequent problem can be used to solve a YES instance implanted into one
of the s instances and random NO instances for the others.

Let Yi denote a random NO input for the i-th instance. Let Y = (Y1, . . . , Ys)
denote the combination of all these inputs. Let D denote the union of all the
conditioning variables for all the instances. The first instance has t blocks. Let
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Πr denote the output of the block b1r in the streaming algorithm; by the output
of a block we mean the content in memory after processing the block. We will
lower bound

∑t
r=1H(Πr | D).

Define V1,1 =Π1, . . . , Πt. Define V2,1 =Π1Π3 . . . Πt−1 and V2,2 = Π2Π4 . . .Πt.
Recursively define Vi,1, Vi,2, ..., Vi,2i where Vi,2j−1 and Vi,2j are obtained from
Vi−1,j by taking all odd and even elements respectively (for example V3,1 =
Π1Π5 . . . Πt−3, V3,2 = Π3Π7 . . .Πt−1).

Lemma 4. I(Vi,j ;Yj | D) ≥ ICni,t/ki
where ICni,t/ki

is the conditional infor-
mation complexity of the IndexedAnd problem with ni rows and t/ki players.

Proof. For simplicity let us prove first for i = j = 1. Assume that I(V1,1;Y1 |
D) < ICn1,t/k1 . Again let Di denote the conditioning variables for the i-th
instance and D−i denote the conditioning variables for all the other instances.
Then there is a value d−i forD−i so that I(V1,1;Y1 | D1, D−1 = d−1) < ICn1,t/k1 .
Then we have a protocol for the first instance of the IndexedAnd problem with
improved conditional information complexity than the best possible which is a
contradiction. Given an IndexedAnd instance with n1 rows and t players, it can
be implanted in the first instance of the reduction. The other instances can be
generated using private random coin tosses based on d−i.

Similarly for V2,1 = Π1Π3 . . .Πt−1 and V2,2 = Π2Π4 . . . Πt, observe that
because of our specific ordering of blocks in the stream outputs Π1, Π3, . . . , Πt−1

partition the stream into t/2 parts and each block of the second instance resides
in a different partition. So again I(V2,1;Y2 | D) > ICn2,t/k2 as otherwise we have
a protocol for the second instance of the IndexedAnd problem with improved
conditional information complexity. Similarly since the outputs Π2, Π4, . . . , Πt

also separate the t/2 blocks of the second instance into different partitions we
have I(V2,2;Y2 | D) > ICn2,t/k2 .

In this manner, the outputs in Vi,j can be used to design a protocol for the
i-th instance of the IndexedAnd problem giving I(Vi,j ;Yi | D) > ICni,t/ki

.

We now view the variables Vi,j arranged in a binary tree of depth t′ to invoke
Theorem 2; Vi−1,j is the j-th node at depth i − 1 and has children Vi,2j−1 and
Vi,2j . Each left (right) child has the even (odd) alternate variables of its parent.
The leaves of this tree are Π1, . . . , Πt (not in that order). Further as required
by Theorem 2, each node Vi,j in the tree is a concatenation of the labels of the
leaves of the subtree rooted at that node (note that although the order in which
they are concatenated is different from one in the statement of Theorem 2; as
noted earlier, this ordering does not make any difference in the entropy values).
So Theorem 2 along with lemma 4 and Theorem 3 gives

t∑

i=1

H(Πi | D) ≥
t′∑

i=1

2i
∑

j=1

I(Vi,j ;Yi|D)

≥
t′∑

i=1

2i
∑

j=1

ICni,t/ki
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≥
t′∑

i=1

2kiΩ̃(ni/(t/ki − c)))

=
t′∑

i=1

Ω̃(nik2
i /t)−O(t).

By averaging, for some i ∈ [t], H(Πi | D) ≥ Ω̃(
∑
nik

2
i /t

2) − O(1). Recall
that the space complexity of the MostFrequent problem is at least maxiH(Πi |
D). So ignoring the constant additive term, the space complexity is at least
Ω̃(
∑
nik

2
i /t

2) completing the proof of Theorem 5.
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Abstract. Consider a scenario where one desires to simulate the execu-
tion of some graph algorithm on huge random G(N, p) graphs, where N =
2n vertices are fixed and each edge independently appears with probabil-
ity p = pn. Sampling and storing these graphs is infeasible, yet Goldreich
et al. [7], and Naor et al. [12] considered emulating dense G(N, p) graphs
by efficiently computable ‘random looking’ graphs. We emulate sparse
G(N, p) graphs - including the densities of the G(N, p) threshold for
containing a giant component (p ∼ 1/N), and for achieving connectiv-
ity (p′ ∼ ln N/N). The reasonable model for accessing sparse graphs is
neighborhood queries where on query-vertex v, the entire neighbor-set
Γ (v) is efficiently retrieved (without sequentially deciding adjacency for
each vertex). Our emulation is faithful in the sense that our graphs are
indistinguishable from G(N, p) graphs from the view of any efficient al-
gorithm that inspects the graph by neighborhood queries of its choice. In
particular, the G(N, p) degree sequence is sufficiently well approximated.

1 Introduction

Consider a scenario where one desires to simulate the execution of some graph
algorithm on random input graphs of huge size, perhaps even exponentially large
in the input length, n, of the corresponding algorithms. Sampling and storing
these huge random graphs is clearly infeasible, but can they be emulated by
‘random looking’ graphs that are efficiently computable?

This question of emulating huge random graphs continues a rich body of
research regarding the implementation of huge random objects. Huge random
objects can often be faithfully replaced by some ‘random-looking’ counterparts
that are sampled from distributions of significantly smaller support, and can
thus be efficiently utilized (namely, using polynomially bounded resources). In
general, huge objects are not represented explicitly, but rather by an efficient
procedure that evaluates queries regarding the object (e.g. input-output queries
on functions). These queries are evaluated using a succinct (poly(n)-length) rep-
resentation of the object called seed. Thus, random looking distributions are
sampled by randomly picking the seed.
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Examples of highly influential random looking objects, which, in fact, un-
derly the foundations of modern cryptography, are pseudorandom functions
f : {0, 1}n → {0, 1}n and pseudorandom permutations over similar domains.
The former were defined and constructed by Goldreich, Goldwasser and Mi-
cali [6] (under the necessary assumption that one-way functions exist1), and
the latter were provided by Luby and Rackoff [10] (based on [6]). The crite-
rion introduced in [6] for faithful emulation of random objects is computational
indistinguishability. Namely, no efficient distinguishing algorithm that inspects
the function (permutation, resp.) via a sequence of input-output queries of its
choice, can tell with probability significantly better then 1

2 whether the function
(permutation, resp.) is sampled from the pseudorandom distribution or from the
uniform distribution over functions (permutations, resp.) f : {0, 1}n → {0, 1}n.

1.1 Implementing Huge Random Graphs

Recently, Goldreich et al. [7], and Naor et al. [12] studied the implementation of
huge random graphs. They considered the canonical random graphs G(N, pn),
where N = 2n labeled vertices are fixed and each edge appears with probability
p = pn independently of all other edges. These works focused on relatively dense
graphs, where the natural access model is via edge-queries that inquire whether
a specific edge appears in the graph.

In contrast, the focus of this work is sparse graphs. The latter term refers
to a wide range of densities p, including the Erdös-Rényi threshold density for
containing a giant component (p ∼ 1/N [4]), and for achieving connectivity
(p′ ∼ lnN/N [3]). As edge-queries rarely detect any adjacency in sparse graphs,
the reasonable model for accessing them is by providing the entire neighborhood
(namely, the entire list of adjacent vertices) Γ (v) in response to a query-vertex
v (this neighborhood-queries model is the common one in the context of sparse
graphs, and in particular, in the field of testing graph properties without in-
specting the entire graph [8]).

Supporting neighborhood-queries is far from trivial, as one has to specify
which of the exponentially many potential vertices indeed appears in Γ (v). In
addition, since the graphs are undirected, consistency is required in the sense
that u ∈ Γ (w) iff w ∈ Γ (u). In particular, previous works [7,12] implement
a graph via a Boolean function f , where f(e) = 1 iff the edge e appears in
the graph. Using pseudorandom Boolean functions [6] guarantees efficiency (in
the usage of randomness and memory), but eventually fails in our context, as
supporting even a single neighborhood-query requires the evaluation of f on
exponentially many inputs.

To overcome this, a different approach was applied by Goldreich et al. to
support neighborhood-queries [7]. They construct sparse d-regular graphs that
achieve computational pseudo-randomness w.r.t. the uniform distribution over

1 A one-way function is an efficiently computable function h : {0, 1}∗ → {0, 1}∗ that
cannot be inverted efficiently on random inputs with non-negligible probability of
success.
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d-regular graphs. They rely on the fact that the views observed by efficient dis-
tinguishers (that examine sparse random regular graphs) are typically cycle-free
and are symmetric (w.r.t. the role of different vertices in the view). Thus, ran-
domly shuffling the vertex-names of any single large-girth d-regular graph will
produce a random looking cycle-free view, as desired. Cycle-free views character-
ize non-regular sparse random graphs too. Yet our main challenge in the present
work is (not only to construct graphs that produce cycle-free views, but) mainly
to properly approximate the degree distribution of G(N, p).

1.2 Our Contribution

We construct computationallypseudorandomgraphsw.r.t. neighborhood-queries,
under the necessary assumption that one-way functions (OWF) exist. Pseudoran-
domness is achieved (even)w.r.t. adaptive distinguishers, thatmay choose the next
query depending on previous replies (in particular, the next query vertex may ap-
pear in a previous reply). Our results hold for the entire range of densities where
typical degrees are poly(n)-bounded, namely, for arbitrary pn ≤ nO(1)

N .
Standard pseudorandomness arguments imply the necessity of the OWF as-

sumption whenever p ≥ 1
NnO(1) . Thus, the OWF assumption is necessary to cap-

ture the threshold densities for containing a giant component (p ∼ 1/N), and for
achieving connectivity (p′ ∼ lnN/N . For smaller densities p ≤ 1

Nnω(1) , OWFs are
no longer needed sinceG(N, p)-views rarely include any adjacencies, and therefore
the empty graph provides the desired pseudorandom implementation.

We remark that one may consider a weaker notion of efficiency, under which it
is possible to handle (again, under the OWF assumption) higher densities: here
neighborhoods are allowed to have super-polynomial size, yet each query is han-
dled in polynomial time in the size of the reply. With respect to this weaker effi-
ciency definition, our construction applies whenever the density is negligible. The
latter roughly captures the entire range where the edge-queries model is no longer
reasonable (so neighborhood-queries are used instead). We stress that subsequent
definitions and results in this paper relate only to the stronger (and more standard)
notion of efficiency.

Description of our Construction. We first provide a costly interim construc-
tion that emulates G(N, p) well, and then ‘de-randomize’ our interim implemen-
tation to obtain an efficient one. In the interim construction, GΠBin, the degree of
each specific vertex has Binomial distribution Bin(N − 1, p) (just as in G(N, p)).
However, unlike theG(N, p) case, all the degrees inGΠBin are independent of each
other2 (for instance, the sum of degrees in GΠBin is allowed to be odd). Given the
degrees, edges are assigned to the graph via the traditional configuration method
(Bollobás [2]) where each vertex of degree d is associated with d unique ‘ports’. A
uniformly random matching over the ports decides the edges of the graph s.t. two

2 Thus the notation ΠBin stands for the fact that the joint distribution of the degrees
(d1, ..., dn) is the product-distribution of N Binomial distributions.
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vertices are adjacent iff any of their ports are matched (self-loops and multi-edges
are ignored3).

The indistinguishability of GΠBin from G(N, p) is established by showing that
the distribution of GΠBin-replies is statistically close4 to the corresponding distri-
bution in the G(N, p) case - as long as the number of queries is poly(n)-bounded.
To this end, it is observed that in the G(N, p) case the size of the next reply Γj
has Binomial distribution, with each specific vertex being equally likely to appear
in Γj (this holds regardless of the previous replies Γ1, ...., Γj−1). Thus, the main
technical part of the proof is to analyze the distribution of the next reply in the
GΠBin model and to establish it’s closeness (up to a negligible difference) to the
G(N, p) case.

The interim construction is ‘de-randomized’ as follows. Neighborhood-queries
are handled by using random-looking functions that efficiently support interval-
queries where on interval-query (α, β) the entire sum

∑
α≤x≤β f(x) is retrieved.

Implementing such functions is due to Goldreich et al. [7] and to Naor and Reingold
(in [5]). Specifically, we use a Boolean function f over N(N − 1) inputs that are
partitioned intoN blocks of sizeN−1.The sum of f over the v’th block corresponds
to the number of ports dv of vertex v. Thus, the integers 1, ..., d1 are the ports of the
first vertex, d1 + 1, ..., d1 + d2 are the ports of the second vertex, etc.. To retrieve
the neighborhood Γ (v), we use interval-queries over f to identify the exact set of
ports that v possesses, and then apply the random matching on these ports. To
resembleGΠBin, the aforementioned construction [7,5] guarantees our functions f
to be computationally indistinguishable (w.r.t. interval-queries) from the (truly
random) functions that correspond toN(N−1) independent Bernoulli trials with
success probability p.

Finally, as the total number of ports is typically exponentially large, the required
random matching over the ports is formalized as a random involution (with no
fixed-points) and Naor and Reingold’s construction of pseudorandom involutions
[13] is applied to efficiently match the ports and decide Γ (v).

Achieving almost k-Wise Independence. We briefly discuss (k, ε)-wise inde-
pendence, which is an alternative criterion (incomparable to computational pseu-
dorandomness) for being a good ‘random looking’ graph. Meeting this criterion
means that for any k vertices u1, ..., uk (fixed in advance) the distribution of
the neighborhoods Γ (u1), ..., Γ (uk) is within ε statistical distance from the cor-
responding distribution in the G(N, p) case.

Our construction can achieve (k, ε)-wise independence for any prescribed
poly(n) bounded value of k and any prescribed exponentially small ε. This is done
by slightly modifying the implementation of the pseudorandom involutions and
the implementation of the pseudorandom functions that support interval-queries.
Rather than using computationally pseudorandom bits for the two latter imple-

3 When the total number of ports is odd, a single port remains unmatched and thus
induces no edge.

4 The statistical distance between two distributions D1, D2 is defined as
1
2

∑
x | PrD1 [x] − PrD2 [x]| where the sum ranges over the entire sample space.
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mentations (as originally done in [5,7,13]), k′-wise independent bits are used
instead. The latter refer to distributions s.t. for any fixed k′ bits, their joint dis-
tribution is precisely uniform. It can be shown that taking some k′ ≤ poly(n, k)
suffices for our resulting graphs to be (k, ε)-wise independent. Thus by applying
known efficient constructions of k′-wise independent bits (cf. [1] chp. 15) the effi-
ciency of our modified construction is retained. Constructions of bits that are both
pseudorandom and k′-wise independent are easily given (by combining the origi-
nal constructions for each type), thus providing graphs which are simultaneously
pseudorandom as well as (k, ε)-wise independent.

Emulating Related Models of Random Graphs. Consider the original
Erdös-Rényi modelsG(N,M) and {G(N, t)}t which are closely related toG(N, p)
graphs. In both modelsN labeled vertices are fixed (as before), withG(N,M) be-
ing the uniform distribution over all graphs with precisely M edges, whereas
{G(N, t)}t is the random graph process, where the initial graph G(N, 0) is empty
and at each time step,G(N, t+ 1) is obtained fromG(N, t) by adding a uniformly
random edge (that hasn’t been chosen before). Thus, {G(N, t)}t at time t = M
is identical to G(N,M), and it is well known that the combinatorial properties of
G(N, p) and G(N,M) graphs are very similar when p ∼M/

(
N
2

)
.

We demonstrate how to emulate G(N,M) and {G(N, t)}t graphs where for
{G(N, t)}t graphs the reasonable types of queries are: i) which edge was added
at time step t, and ii) whether some specific edge already appears at time t. The
efficiency and pseudorandomness of the following constructions is easy to establish
given the main theorems of this paper.

The first construction (appropriate for dense graphs too) uses a pseudoran-
dom bijection σ from the set of all possible time-steps {1, ...,

(
N
2

)
} to the set of all

(
N
2

)
potential edges. Thus, σ(t) is the edge joined to the graph at time t, and the

edge e appears in the graph at time t iff σ−1(e) ≤ t. Similarly,G(N,M) is emulated
by including in the graph precisely those edges s.t. σ−1(e) ≤M .

For sparse graphs, the {G(N, t)}t process is bounded a-priori at some T =
nΘ(1)N time, andneighborhood-queries shouldbe supported. To this end, themain
construction of this paper is used with the following two adaptations. i) We first
(trivially) modify the construction of the pseudorandom range-summable func-
tions, s.t. precisely 2T ports are produced (instead of a Binomially distributed
number of ports). Deciding the edge-set of the resulting graph, and supporting
neighborhood-queries in a pseudorandom manner is done as before. ii) In addition,
we use a pseudorandom bijection σ from the set of all possible time-steps {1, ..., T}
to the set of T edges that match the ports in our construction s.t. σ(t) is the edge
joined to the graph at time t. Deciding whether the edge {u, v} already appears
at time t, is done by enumerating all poly(n) ports ρi of u, and for each of them
checking whether ρi was matched to a port of v prior to time t. Unfortunately, this
account of time steps fails to ignore double-edges and self loops, in contrast with
{G(N, t)}t, (but in line with the variant of {G(N, t)}t where at each step a uni-
formly random vertex-pair is added, with repetitions allowed).
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2 Preliminaries

The main definitions provided are of the models GΠBin and GOTF
ΠBin (under ‘graphs

and configurations’), and the definitions (derived from [7]) of pseudorandomness
not only for graphs, but also for interval-summable functions and for involutions.

Basics,Arithmetics andAsymptoticAnalysis.Efficient procedures are algo-
rithms that run in worst-casepolynomial time in their input lengthn. Throughout,
all graphs have N = 2n vertices. Negligible terms ε(n) are ones that vanish faster
than the reciprocal of any polynomial (for all j, |ε(n)| = o(n−j)). The notation
X(1± δ) stands for some term E s.t.X(1− δ) ≤ E ≤ X(1 + δ), and the notation
A ∼ B implies that A = B(1± ε) for some negligible ε. We often use the fact that
∼ is a transitive relation that behaves well under summation, multiplication and
division. Some of the inequalities used throughout hold only for sufficiently large
(yet very reasonable) values of n. We let [m] = {1, ...,m}.

Graphs and Configurations. We consider only simple, undirected graphs (no
self-loops or multi-edges allowed), over the vertex-set {1, ..., N}. A port sequence is
any sequence t = (t1, ..., tN ) ∈ {0, ..., N − 1}N , regardless of whether t is indeed
a graphic-sequence (namely the degree sequence of someN -vertex graph). In par-
ticular we allow the sum

∑N
v=1 tv to be odd. The term ‘degree’ and the notation

‘dv’ are abused to refer not only to degrees of vertices, but also to the number of
ports that a vertex v has in the configurational model.

• TheGΠBin model. In this model each vertex v is associated with dv unique ports
where the number of ports has Binomial distribution dv ∼ Bin(N − 1, p), and
all the random variables dv are independent of each other. If the sum

∑N
v=1 dv is

odd, a single ‘parity-vertex’ with a single port is added (to obtain an even sum). A
matching over the ports is later chosen uniformly at random (among all possible
matchings), s.t. two vertices are adjacent iff any of their ports are matched. Self-
loops, multi-edges, and (possibly) the edge connected to the parity vertex are all
ignored in the final graph.

•TheGOTF
ΠBin model. Here the port sequence is produced as inGΠBin, but the match-

ing over the ports is decided ‘on-the-fly’, during a single interaction with some dis-
tinguishing algorithmC. On query-vertex v, the available ports associated with v
are matched one after the other to a uniformly random available port. After the
execution of C terminates, the remaining available ports are uniformly matched
at random. It is not too hard to see, that the graph distribution produced by the
two models is identical.

Computational Pseudorandomness. As in [7], the following definitions
capture pseudorandomness not only for graphs (w.r.t. neighborhood-queries) but
also for interval-summable functions and for involutions. To this end, we use query
representation functions.

•Query representation functions (QRFs). Given the type of querieswewish to sup-
port, we represent each specific object o (e.g. a single graph) by a specific function
fo s.t. evaluating fo on a single input corresponds to supporting a single (possibly



602 M. Naor and A. Nussboim

complex) query over o. We call fo the QRF of o. For instance to support neigh-
borhood queries over N vertex graphs, each specific graph g is represented by a
function fg : [N ] → 2[N ] s.t. for any vertex v, fg(v) = Γ (v). Similarly, to sup-
port interval-queries over Boolean functions with domain [M ], each specific func-
tion h is represented by another function f ′

h : [M ] × [M ] → [M ] s.t. f ′
h(α, β) =∑

α≤x≤β h(x) for all α, β ∈ [M ]. The QRF for involutions (w.r.t. input-output
queries) is the original involution itself.

•Pseudorandomness w.r.t. complex queries. Note that any distributionD over the
original objects induces a corresponding distribution FD over the QRFs. Conse-
quently, pseudorandomness of the original objectsD w.r.t. a given type of queries,
reduces to the pseudorandomness of the QRFs FD w.r.t. simple input-output
queries. We thus define pseudorandomness w.r.t. complex queries simply as pseu-
dorandomness (in the classical sense of GGM [6]) of the corresponding QRFs. For
a given sequence of densities {pn}n∈N pn ∈ [0, 1] the following definitions are used:

i) Neighborhood queries pseudorandom graphs. Let {Gn}n∈N be a sequence of
distributions, where each Gn is taken over N -vertex graphs. Then {Gn}n∈N is
neighborhood-queries pseudorandom w.r.t. {G(N, pn)}n∈N if the neighborhood
QRFs {FGn}n∈N induced by {Gn}n∈N is pseudorandom w.r.t. the neighborhood
QRFs induced by {G(N, pn)}n∈N.
ii) Interval-sum queries pseudorandom functions. Consider a sequence of distribu-
tions {Hn}n∈N where each Hn is taken over Boolean functions with domain Dn.
Then {Hn}n∈N is interval-sum query pseudorandom if its interval-sum QRFs are
pseudorandom w.r.t. the interval-sum QRFs of the truly random functions. The
latter refer to the distribution over Boolean functions hn with domain Dn, where
for each input x we have hn(x) = 1 with probability pn independently of the value
of hn over other inputs.
iii) Pseudorandom involutions. A sequence of integers {Mn}n∈N forms proper in-
volutions domains if allMn are even andMn = nω(1). A sequence of distributions
{Πn}n∈N over involutions with no fixed-points πn : [Mn] → [Mn] are pseudoran-
dom involutions if it is pseudo-random w.r.t. the sequence of uniform distributions
over all involutions with no fixed-points and same domains [Mn].

Finally, recall that efficiently constructing pseudorandom functions is possible
iff one-way functions (OWFs) exist, which are efficiently computable functions f :
{0, 1}∗ → {0, 1}∗ that cannot be inverted efficiently on uniformly random inputs
with non-negligible probability of success.

3 Our Main Construction

This section formally describes our construction of sparse pseudorandom graphs.
We first define the range of ‘proper densities’ p that our arguments handle. To en-

sure that all the degrees are poly(n)-bounded, proper densities are upper bounded.
Our techniques also require a lower bound which guarantees that the total number
of ports is (almost surely) (i) super-polynomial (in n) and (ii) extremely close to its
expectation. These facts are (i) frequently used while proving the similarity of the
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models GΠBin and G(N, p), and (ii) used to validate the usage of the pseudoran-
dom involutions. For densities too small to be proper,G(N, p)-views rarely include
any adjacencies, so G(N, p) graphs are emulated well by the empty graph.

Definition 1 (Proper density). A sequence of densities {pn}n∈N is proper if for
all n, 0 < pn < 1 and (lgN)ω(1)

N2 ≤ pn ≤ (lgN)O(1)

N .

We next present the main constructions we use as sub-routines.

Theorem 1 ([7,5] Interval-summable functions). Let {pn}n∈N be proper den-
sities. Assuming the existence of one-way functions, then [7,5] provide interval-
summable queries pseudorandom functions with domains Dn = [N ]× [N − 1].

Theorem 2 ([13] Pseudorandom involutions). Let {Mn}n∈N be a proper in-
volutions domains.5 Assuming the existence of one-way functions, [13] provide
pseudorandom involutions w.r.t. the domains {[Mn]}n∈N.

Our main construction is given bellow. The underlying intuition is discussed in the
introduction.

Construction 1 (Implementing sparse random graphs). On input (1n, p),
construct a graph on vertex-set [N ] as follows. If p ≤ N−1.5 pick the empty graph
so each query is replied with the empty set. Otherwise,

– Sampling - Pick an Interval-summable function f over domain X = [N(N −
1)] with parameter p, as in Theorem 1. SetE =

∑
x∈X f(x) to be the total num-

ber of ports. If E is odd increase it by 1 (adding the parity port). Sample a pseu-
dorandom involution (with no fixed points) π : [E]→ [E], as in Theorem 2.

– Supporting neighborhood-queries - On query-vertex v:
(i) Compute Sv =

∑(v−1)(N−1)
x=1 f(x), S′

v =
∑v(N−1)

x=1 f(x) and dv = S′
v − Sv

(thus Sv + 1, ..., Sv + dv are the ports associated with v).
(ii) For i = 1, ..., dv compute Ti = π(Sv + i) (Ti is the port matched with Si).
Unless Ti is the parity-port, conduct a binary search to decide to which vertex
ui the port Ti belongs (the space of the search is the vertex-set [N ]. At each stage
of the search step (i) is invoked to check whether Ti belongs to u or to a previous
or consequent vertex u′).
(iii) Output the set {u1, ..., udv} \ {v}.

4 Pseudorandomness of the Main Construction

This section presents our main result (Theorem 3) that establishes the pseudoran-
domness of construction 1. It is proved by reducing it to our main technical result
(Theorem 3.1) which asserts a negligible distance between views produced by the
GΠBin and the G(N, p) models.

5 The original [13] construction handles only domains of size which is a power of 2. How-
ever, the adaptation to the general case is not involved (cf.[11]).
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Theorem 3 (Pseudorandomness of construction 1). Let {pn}n∈N be arbi-
trary proper densities. Then, assuming the existence of one-way functions, the
graphs distributions {Gn}n∈N produced by construction 1 on inputs (1n, pn) are
neighborhood-queries pseudorandom w.r.t. {G(N, pn)}n∈N.

Proof (Theorem 3). Correctness is trivial for pn ≤ N−1.5, since the views
of a G(N, p) graph reveal adjacencies only with negligible probability. For larger
densities, by Theorems 1 and 2 the interval-sum function sub-routine and the in-
volution sub-routine used by our construction are efficient. Since the remaining
computations executed by our construction are trivial, the entire construction is
efficient. Pseudorandomness - Using the transitivity of indistinguishability, we es-
tablish the pseudorandomness of Gn by demonstrating (i) the indistinguishability
of Gn from GΠBin(N, pn), and (ii) the indistinguishability of GΠBin(N, pn) from
G(N, pn). Part (i) follows by a standard argument from the pseudorandomness of
both the interval summable functions and the involutions used. Indeed, if (i) was
false there would exist an efficient distinguisher D between Gn and GΠBin(N, pn).
This means that by combining our construction with D, one gets an efficient pro-
cedure for distinguishing between truly random interval summable functions and
involutions and the pseudorandom ones - a contradiction to their pseudorandom-
ness. Part (ii) follows immediately from Theorem 3.1, since the statistical distance
between views produced by GΠBin and G(N, p) upper-bounds the distinguishing
advantage of the distinguisher. ��

Theorem 3.1. (Statistical distance between views produced by GΠBin

and G(N,p)). Let C be an efficient distinguisher and let V , V denote the distribu-
tions of the view of C as the input graphs are sampled from either GΠBin(N, pn) or
G(N, pn), respectively. Then, the statistical distance between V and V is negligible.

Proof (Theorem 3.1). Fix n and assume w.l.o.g. that the distinguisher C is a
circuit.6 We may further assume C to be deterministic, as the coin-tosses that
produce the largest statistical distance between the views V , V can be hard-wired
into the circuit. Let v1, ..., vq denote the vertex-queries of C, and let R1, ..., Rq de-
note the responses that C receives. Thus Rj is the entire neighbor-set of vj , and
R = {R1, ..., Rq} denotes the entire view. Note that vj , Rj ,R are all random vari-
ables as probabilities are taken over the choice of the graph (from either GΠBin or
G(N, p)). Next, let uj, Γj and Γ , respectively denote specific values of vj , Rj and
R. As Pr [·] ,Pr [·] denote probabilities taken overG(N, pn) and GΠBin(N, pn), re-
spectively, our goal is to establish a negligible upper bound on

ΣΓ

∣
∣Pr [R = Γ ]− Pr [R = Γ ]

∣
∣ . (1)

The proof proceeds as follows. (i) We first separate the sum in equation 1
into ‘likely’ terms and into terms with either an unlikely port sequence or an
unlikely view (formal definitions are given in the next paragraph). (ii) Next,
the (un-surprising) negligible bound on the contribution of the unlikely terms is
claimed in Lemma 2 (it is proved in [11]). (iii) Then, the negligible bound for the
6 We thus strengthen the distinguisher without assuming our OWFs to be hard to invert

even for circuits (and not only for Turing machines).
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likely terms is claimed in Lemma 1. Lemma 1 (which considers the entire view) is
proved by reducing it to Claim 1 which considers the distributions of the next re-
ply in the view (given the previous replies) and establishes sufficient closeness of
these distributions in theGΠBin and theG(N, p) models. (iv) Finally, claim 1 itself
is proved by first observing that in the G(N, p) case the size of the next neighbor-
hood Γj has Binomial distribution, with each specific vertex being equally likely
to appear in Γj . Thus, the main technical part of the proof is to analyze the dis-
tribution of the next reply in the GΠBin model. It will turn out that some terms
concerning the distribution of the random port sequence will cancel nicely with
other terms concerning the distribution of the random matching (given the port
sequence). This way an (almost) Binomial distribution is established for the size
of the next reply in the GΠBin case and claim 1 follows.

•Definitions and notation. An improper edge is either a self-edge, a multi-edge
or an edge connected to the parity-vertex. A port is called proper if the edge it
induces is proper, and a vertex is proper if all it’s ports are. A degree tv is likely if
0 ≤ tv ≤ dmax for dmax = lgN�p(N − 1)�. An entire port sequence t is likely if all
the degrees tv are likely and in addition

∑N
v=1 tv = μ(1± ε), where μ = N(N−1)p

is the expected value of the sum, and the error-term is ε = lg lgN√
pN . We let D denote

the set of all likely port sequences. The random variable that indicates the resulting
port sequence is denoted d.

A view Γ is improper if some query-vertex vj is improper. We let V denote the
collection of all ‘likely’ views that are simultaneously (i) Reply-collision-free - for
any i < j, [Γ (vi)

⋂
Γ (vj)] \ {v1, ..., vj} = ∅. Namely, the distinguisher detects no

‘non-trivial’ collisions, but may produce trivial collisions by choosing, say, some
v2 ∈ Γ (v1), and some v3 ∈ Γ (v2) so v2 ∈ [Γ (v1)

⋂
Γ (vj)]. (ii) Have small neighbor-

sets - |Γj | ≤ dmax = lgN�p(N − 1)� for all j. (iii) Contain only proper vertices (as
defined above). Given that a (partial) view {Γ1, ..., Γj−1} is likely, we say that a
following reply Γj is likely if {Γ1, ..., Γj} remains likely.

Separating the likely and unlikely terms. The triangle inequality gives

ΣΓ

∣
∣Pr [R = Γ ]− Pr [R = Γ ]

∣
∣ =

ΣΓ∈V

∣
∣Pr [R = Γ ]− (Pr [R = Γ ,d ∈ D] + Pr [R = Γ ,d /∈ D])

∣
∣+

ΣΓ /∈V

∣
∣Pr [R = Γ ]− Pr [R = Γ ]

∣
∣ ≤

ΣΓ∈V

∣
∣Pr [R = Γ ]− Pr [R = Γ ,d ∈ D]

∣
∣

︸ ︷︷ ︸
def
= T1

+

Pr [R ∈ V,d /∈ D] + Pr [R /∈ V] + Pr [R /∈ V]
︸ ︷︷ ︸

def
= T2

(this a-symmetric separation of events is crucial to our argument). Thus, proving
Theorem 3.1 reduces to establishing the following lemmata.
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Lemma 1 (Statistical distance between likely views). For C,Pr [·] ,Pr [·] ,
R,V,D and T1 as above the term T1 is negligible.

Lemma 2 (Statistical distance between unlikely views). For C, Pr [·] ,
Pr [·] ,R,V, and D as above the term T2 is negligible.

The unsurprising Lemma 2 is proved in [11]. We continue with Lemma 1.

Proof of Lemma 1. Assume w.l.o.g. thatC performs the same number of queries
q on any N -vertex graph. Then for any likely view Γ = {Γ1, ..., Γq} ∈ V we have

P
def= Pr [R = Γ ] = Πq

j=1P j ,

P
def= Pr [R = Γ ,d ∈ D] = Pr [d ∈ D]Πq

j=1P j ,

where
P j = Pr [Rj = Γj R1 = Γ1, ..., Rj−1 = Γj−1]

and
P j = Pr [Rj = Γj d ∈ D, R1 = Γ1, ..., Rj−1 = Γj−1] .

We will show (Claim 1) that for some negligible ε, and any Γ ∈ V and 0 ≤ j ≤ q
we have P j = P j(1± ε), as well as Pr [d ∈ D] ≥ 1− ε. As q is poly(n)-bounded and
ε is negligible, then qε = o(1) so we get

P = P (1± ε)q+1 = P (1 ±Θ(εq)).

Consequently,

T1 = ΣΓ∈VΘ(εq)Pr [R = Γ ] = Θ(εq)ΣΓ∈VPr [R = Γ ] = Θ(εq),

which is negligible. Therefore Lemma 1 follows once we establish claim 1. ��

Claim 1. For P j , P j, and D as above there exist a negligible ε, s.t. for all likely
views Γ ∈ V and all 0 ≤ j ≤ q then P j = P j(1 ± ε), and Pr [d ∈ D] ≥ 1− ε.

Proof (Claim 1). We focus on the P j = P j(1± ε) part, as the Pr [d ∈ D] ≥ 1− ε
part merely states that the port sequence is likely (for a complete proof see [11]).

•Notation. Let W denote the set of vertices w /∈
(
(
⋃j−1
i=1 Γi)

⋃
{v1, ..., vj}

)
that

haven’t appeared in theviewup to stage j,and letN ′ = |W |. LetAdenote the event
that the next reply Γj is likely. Consider an arbitrary likely degree k ≤ dmax, and
letH denote the event that a specific (partial) view has been observed, namely that
(R1 =Γ1, ..., Rj−1 =Γj−1). Similarly, letH ′=(d ∈ D)

⋂
(R1 =Γ1, ..., Rj−1 =Γj−1).

As the claim deals only with likely views, then the view is reply-collision-free (see
notations at page 605) so the next query vertex vj appears in either one or none of
the previous repliesΓ1, ..., Γj−1. Assume w.l.o.g. that the first case holds (adapting
the proof to the complement case is trivial). Therefore, wheneverA occurs, we have:
(|Rj | = k) iff vj has precisely k − 1 neighbors in W .
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The G(N,pn) case (Claim 1). By the above and by the total independence of
edges in G(N, pn),

Pr [A, |Rj | = k H ] =
(
N ′

k − 1

)

pk−1(1− p)N ′−(k−1)

with all specific choices of vertices w1, ..., wk−1 ∈W for Rj being equiprobable.

The GΠBin case (Claim 1). It isn’t too hard to see that whenever A holds,
the symmetry of the GΠBin model implies that all specific choices of vertices
w1, ..., wk−1 ∈ W are equiprobable for Rj (just as in G(N, pn)) . Thus, it remains
to show that (analogously to the G(N, p) case) the next reply has approximately
Binomially distributed size, that is, to prove the following claim:

Claim 1.1 (Establishing the (approximately) Binomial size of the next
reply in the GΠBin case). For A,H ′, N ′ as above,

Pr [A, |Rj | = k H ′] ∼
(
N ′

k − 1

)

pk−1(1− p)N ′−(k−1).

Proof. The following intuitive argument and the formal proof given in [11] apply
similar ideas.

The informal argument. Let d∗v = |Γ (vj)
⋂
W |. Again, since vj appears in the

current view (that is, in {Γ1, ..., Γj−1}) precisely once, then wheneverA occurs, we
have: (|Rj | = k) iff vj has precisely k − 1 neighbors inW . Hence,

Pr [A, |Rj | = k H ′] = Pr [A, d∗v = k − 1 H ′]

=
Pr [A, d∗v = k − 1, H ′]

Pr [H ′]

=
Pr [A H ′, d∗v = k − 1] Pr [H ′ d∗v = k − 1] Pr [d∗v = k − 1]

∑
t Pr [H ′ d∗v = t] Pr [d∗v = t]

,

(the sum taken over all likely degrees t).
We will soon argue that Pr [H ′ d∗v = t′] ∼ Pr [H ′ d∗v = t′′] holds for any pair

of likely degrees t′, t′′. Assuming this, we may cancel out (up to negligible terms)
the Pr [H ′ d∗v = k − 1] from the nominator with the terms Pr [H ′ d∗v = t] from the
denominator. As the event A is extremely likely, the term Pr [A H ′, d∗v = k − 1]
∼ 1 and cancels too. Thus,

Pr [A, |Rj | = k H ′] ∼ Pr [d∗v = k − 1]
∑

t Pr [d∗v = t]
.

Next,
∑

t Pr [d∗v = t] ∼ 1 since we sum over all likely degrees. Therefore,

Pr [A, |Rj | = k H ′] ∼ Pr [d∗v = k − 1]

and the final term could be shown to have Binomial distribution, so our claim
follows.

To demonstrate that Pr [H ′ d∗v = t′] ∼ Pr [H ′ d∗v = t′′] (this is where our argu-
ment becomes informal), we first assume that all the degrees except dvj are fixed.
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We consider the equivalent modelGOTF
ΠBin, where the viewH is produced by repeat-

edly matching each of the available ports σi of the current query vertex with a ran-
dom available port. Let σ1, ..., σz denote the ports of the first j − 1 query vertices.
Clearly, when σi is matched, any available port τ is chosen with probability pre-
cisely 1/Ei forEi = (

∑
v dv)+1−2i. Thus, the difference between the cases dv = t′

and dv = t′′ is that each choice (of matching some τ with σi) occurs w.p. 1/E′
i in-

stead of 1/E′′
i . Since E′

i, E
′′
i are both super-polynomial (as the port sequence is

likely), and since E′
i − E′′

i = t′ − t′′ ≤ poly(n), this induces an insignificant dif-
ference between the resulting distributions. This difference remains insignificant
even as diversities accumulate over the poly(n) many ports σi that are matched to
decide H ′. Finally, as this holds for any choice of the degrees (excluding dvj ), one
can get Pr [H ′ d∗v = t′] ∼ Pr [H ′ d∗v = t′′].

The formal proof of Claim 1.1 is given in [11]. Given Claim 1.1, then Claim 1
follows, so Lemma 1 and hence our main Theorems 3.1 and 3 follow as well. ��
Acknowledgements. We thank Gil Segev, Noam Livne and the anonymous ref-
erees for carefully reading and commenting on a draft of this paper.
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Abstract. We raise the question of approximating the compressibility
of a string with respect to a fixed compression scheme, in sublinear time.
We study this question in detail for two popular lossless compression
schemes: run-length encoding (RLE) and Lempel-Ziv (LZ), and present
sublinear algorithms for approximating compressibility with respect to
both schemes. We also give several lower bounds that show that our
algorithms for both schemes cannot be improved significantly.

Our investigation of LZ yields results whose interest goes beyond the
initial questions we set out to study. In particular, we prove combinatorial
structural lemmas that relate the compressibility of a string with respect
to Lempel-Ziv to the number of distinct short substrings contained in it.
In addition, we show that approximating the compressibility with respect
to LZ is related to approximating the support size of a distribution.

1 Introduction

Given an extremely long string, it is natural to wonder how compressible it
is. This fundamental question is of interest to a wide range of areas of study,
including computational complexity theory, machine learning, storage systems,
and communications. As massive data sets are now commonplace, the ability to
estimate their compressibility with extremely efficient, even sublinear time, al-
gorithms, is gaining in importance. The most general measure of compressibility,
Kolmogorov complexity, is not computable (see [14] for a textbook treatment),
nor even approximable. Even under restrictions which make it computable (such
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as a bound on the running time of decompression), it is probably hard to ap-
proximate in polynomial time, since an approximation would allow distinguish-
ing random from pseudorandom strings and, hence, inverting one-way functions.
However, the question of how compressible a large string is with respect to a spe-
cific compression scheme may be tractable, depending on the particular scheme.

We raise the question of approximating the compressibility of a string with
respect to a fixed compression scheme, in sublinear time, and give algorithms
and nearly matching lower bounds for several versions of the problem. While this
question is new, for one compression scheme, answers follow from previous work.
Namely, compressibility under Huffman encoding is determined by the entropy
of the symbol frequencies. Batu et al. [3] and Brautbar and Samorodnitsky [5]
study the problem of approximating the entropy of a distribution from a small
number of samples, and their results immediately imply algorithms and lower
bounds for approximating compressibility under Huffman encoding.

In this work we study the compressibility approximation question in detail
for two popular lossless compression schemes: run-length encoding (RLE) and
Lempel-Ziv (LZ) [19]. In the RLE scheme, each run, or a sequence of consecutive
occurrences of the same character, is stored as a pair: the character, and the
length of the run. Run-length encoding is used to compress black and white
images, faxes, and other simple graphic images, such as icons and line drawings,
which usually contain many long runs. In the LZ scheme1, a left-to-right pass of
the input string is performed and at each step, the longest sequence of characters
that has started in the previous portion of the string is replaced with the pointer
to the previous location and the length of the sequence (for a formal definition,
see Section 4). The LZ scheme and its variants have been studied extensively in
machine learning and information theory, in part because they compress strings
generated by an ergodic source to the shortest possible representation (given
by the entropy) in the asymptotic limit (cf. [10]). Many popular archivers, such
as gzip, use variations on the LZ scheme. In this work we present sublinear
algorithms and corresponding lower bounds for approximating compressibility
with respect to both schemes, RLE and LZ.

Motivation. Computing the compressibility of a large string with respect to spe-
cific compression schemes may be done in order to decide whether or not to
compress the file, to choose which compression method is the most suitable, or
check whether a small modification to the file (e.g., a rotation of an image) will
make it significantly more compressible2. Moreover, compression schemes are
used as tools for measuring properties of strings such as similarity and entropy.
As such, they are applied widely in data-mining, natural language processing
and genomics (see, for example, Lowenstern et al. [15], Kukushkina et al. [11],

1 We study the variant known as LZ77 [19], which achieves the best compressibility.
There are several other variants that do not compress some inputs as well, but can
be implemented more efficiently.

2 For example, a variant of the RLE scheme, typically used to compress images, runs
RLE on the concatenated rows of the image and on the concatenated columns of the
image, and stores the shorter of the two compressed files.
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Benedetto et al. [4], Li et al. [13] and Calibrasi and Vitányi [8,9]). In these ap-
plications, one typically needs only the length of the compressed version of a file,
not the output itself. For example, in the clustering algorithm of [8], the distance
between two objects x and y is given by a normalized version of the length of
their compressed concatenation x‖y. The algorithm first computes all pairwise
distances, and then analyzes the resulting distance matrix. This requires Θ(t2)
runs of a compression scheme, such as gzip, to cluster t objects. Even a weak
approximation algorithm that can quickly rule out very incompressible strings
would reduce the running time of the clustering computations dramatically.

Multiplicative and Additive Approximations. We consider three approximation
notions: additive, multiplicative, and the combination of additive and multiplica-
tive. On the input of length n, the quantities we approximate range from 1 to n.
An additive approximation algorithm is allowed an additive error of εn, where
ε ∈ (0, 1) is a parameter. The output of a multiplicative approximation algorithm
is within a factor A > 1 of the correct answer. The combined notion allows both
types of error: the algorithm should output an estimate Ĉ of the compression
cost C such that C

A − εn ≤ Ĉ ≤ A ·C + εn. Our algorithms are randomized, and
for all inputs the approximation guarantees hold with probability at least 2

3 .
We are interested in sublinear approximation algorithms, which read few po-

sitions of the input strings. For the schemes we study, purely multiplicative
approximation algorithms must read almost the entire input. Nevertheless, al-
gorithms with additive error guarantees, or a possibility of both multiplicative
and additive error are often sufficient for distinguishing very compressible inputs
from inputs that are not well compressible. For both the RLE and LZ schemes,
we give algorithms with combined multiplicative and additive error that make
few queries to the input. When it comes to additive approximations, however,
the two schemes differ sharply: sublinear additive approximations are possible
for the RLE compressibility, but not for LZ compressibility.

1.1 Results for Run-Length Encoding

For RLE, we present sublinear algorithms for all three approximation notions
defined above, providing a trade-off between the quality of approximation and
the running time. The algorithms that allow an additive approximation run in
time independent of the input size. Specifically, an εn-additive estimate can be
obtained in time3 Õ(1/ε3), and a combined estimate, with a multiplicative error
of 3 and an additive error of εn, can be obtained in time Õ(1/ε). As for a strict
multiplicative approximation, we give a simple 4-multiplicative approximation
algorithm that runs in expected time Õ( n

Crle(w)) where Crle(w) denotes the com-
pression cost of the string w. For any γ > 0, the multiplicative error can be
improved to 1 + γ at the cost of multiplying the running time by poly(1/γ).
Observe that the algorithm is more efficient when the string is less compressible,

3 The notation Õ(g(k)) for a function g of a parameter k means O(g(k) ·polylog(g(k))
where polylog(g(k)) = logc(g(k)) for some constant c.
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and less efficient when the string is more compressible. One of our lower bounds
justifies such a behavior and, in particular, shows that a constant factor approx-
imation requires linear time for strings that are very compressible. We also give
a lower bound of Ω(1/ε2) for εn-additive approximation.

1.2 Results for Lempel-Ziv

We prove that approximating compressibility with respect to LZ is closely related
to the following problem, which we call Colors: Given access to a string τ of
length n over alphabet Ψ , approximate the number of distinct symbols (“colors”)
in τ . This is essentially equivalent to estimating the support size of a distribu-
tion [18]. Variants of this problem have been considered under various guises
in the literature: in databases it is referred to as approximating distinct values
(Charikar et al. [7]), in statistics as estimating the number of species in a pop-
ulation (see the over 800 references maintained by Bunge [6]), and in streaming
as approximating the frequency moment F0 (Alon et al. [1], Bar-Yossef et al.
[2]). Most of these works, however, consider models different from ours. For our
model, there is an A-multiplicative approximation algorithm of [7], that runs in
time O

(
n
A2

)
, matching the lower bound in [7,2]. There is also an almost linear

lower bound for approximating Colors with additive error [18].
We give a reduction from LZ compressibility to Colors and vice versa. These

reductions allow us to employ the known results on Colors to give algorithms
and lower bounds for this problem. Our approximation algorithm for LZ com-
pressibility combines a multiplicative and additive error. The running time of
the algorithm is Õ

(
n
A3ε

)
where A is the multiplicative error and εn is the addi-

tive error. In particular, this implies that for any α > 0, we can distinguish, in
sublinear time Õ(n1−α), strings compressible to O(n1−α) symbols from strings
only compressible to Ω(n) symbols.4

The main tool in the algorithm consists of two combinatorial structural lem-
mas that relate compressibility of the string to the number of distinct short
substrings contained in it. Roughly, they say that a string is well compressible
with respect to LZ if and only if it contains few distinct substrings of length �
for all small � (when considering all n− �+ 1 possible overlapping substrings).
The simpler of the two lemmas was inspired by a structural lemma for grammars
by Lehman and Shelat [12]. The combinatorial lemmas allow us to establish a
reduction from LZ compressibility to Colors and employ a (simple) algorithm
for approximating Colors in our algorithm for LZ.

Interestingly, we can show that there is also a reduction in the opposite direc-
tion: namely, approximating Colors reduces to approximating LZ compress-
ibility. The lower bound of [18], combined with the reduction from Colors to
LZ, implies that our algorithm for LZ cannot be improved significantly. In par-
ticular, our lower bound implies that for any B = no(1), distinguishing strings
compressible by LZ to Õ(n/B) symbols from strings compressible to Ω̃(n) sym-
bols requires n1−o(1) queries.

4 To see this, set A = o(nα/2) and ε = o(n−α/2).
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1.3 Further Research
It would be interesting to extend our results for estimating the compressibility
under LZ77 to other variants of LZ, such as dictionary-based LZ78 [20]. Com-
pressibility under LZ78 can be drastically different from compressibility under
LZ77: e.g., for 0n they differ roughly by a factor of

√
n. Another open ques-

tion is approximating compressibility for schemes other than RLE and LZ. In
particular, it would be interesting to design approximation algorithms for lossy
compression schemes such as JPEG, MPEG and MP3. One lossy compression
scheme to which our results extend directly is Lossy RLE, where some characters,
e.g., the ones that represent similar colors, are treated as the same character.

1.4 Organization

We start with some definitions in Section 2. Section 3 contains our results for
RLE. Section 4 deals with the LZ scheme. All missing details (descriptions of
algorithms and proofs of claims) can be found in [17].

2 Preliminaries

The input to our algorithms is usually a string w of length n over a finite alphabet
Σ. The quantities we approximate, such as compression cost of w under a specific
algorithm, range from 1 to n. We consider estimates to these quantities that
have both multiplicative and additive error. We call Ĉ an (λ, ε)-estimate for
C if C

λ − εn ≤ Ĉ ≤ λ · C + εn , and say an algorithm (λ, ε)-estimates C
(or is an (λ, ε)-approximation algorithm for C) if for each input it produces an
(λ, ε)-estimate for C with probability at least 2

3 .
When the error is purely additive or multiplicative, we use the following

shorthand: εn-additive estimate stands for (1, ε)-estimate and λ-multiplicative
estimate, or λ-estimate, stands for (λ, 0)-estimate. An algorithm computing an
εn-additive estimate with probability at least 2

3 is an εn-additive approxima-
tion algorithm, and if it computes an λ-multiplicative estimate then it is an
λ-multiplicative approximation algorithm, or λ-approximation algorithm.

For some settings of parameters, obtaining a valid estimate is trivial. For a
quantity in [1, n], for example, n2 is an n

2 -additive estimate,
√
n is a

√
n-estimate

and εn is an (λ, ε)-estimate whenever λ ≥ 1
2ε .

3 Run-Length Encoding

Every n-character string w over alphabet Σ can be partitioned into maximal
runs of identical characters of the form σ�, where σ is a symbol in Σ and � is the
length of the run, and consecutive runs are composed of different symbols. In
the Run-Length Encoding of w, each such run is replaced by the pair (σ, �). The
number of bits needed to represent such a pair is �log(�+ 1)�+�log |Σ|� plus the
overhead which depends on how the separation between the characters and the
lengths is implemented. One way to implement it is to use prefix-free encoding for
lengths. For simplicity we ignore the overhead in the above expression, but our
analysis can be adapted to any implementation choice. The cost of the run-length
encoding, denoted by Crle(w), is the sum over all runs of �log(�+ 1)�+�log |Σ|�.
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3.1 An εn-Additive Estimate with Õ(1/ε3) Queries

Our first algorithm for approximating the cost of RLE is very simple: it samples
a few positions in the input string uniformly at random and bounds the lengths
of the runs to which they belong by looking at the positions to the left and to the
right of each sample. If the corresponding run is short, its length is established
exactly; if it is long, we argue that it does not contribute much to the encoding
cost. For each index t ∈ [n], let �(t) be the length of the run to which wt belongs.
The cost contribution of index t is defined as

c(t) =
�log(�(t) + 1)�+ �log |Σ|�

�(t)
. (1)

By definition,
Crle(w)
n

= E
t∈[n]

[c(t)], where Et∈[n] denotes expectation over a

uniformly random choice of t. The algorithm, presented below, estimates the
encoding cost by the average of the cost contributions of the sampled short
runs, multiplied by n.

Algorithm I: An εn-additive Approximation for Crle(w)

1. Select q = Θ
(

1
ε2

)
indices t1, . . . , tq uniformly and independently at random.

2. For each i ∈ [q] :
(a) Query ti and up to �0 = 8 log(4|Σ|/ε)

ε positions in its vicinity to bound
�(ti).

(b) Set ĉ(ti) = c(ti) if �(ti) < �0 and ĉ(ti) = 0 otherwise.
3. Output Ĉrle = n · E

i∈[q]
[ĉ(ti)].

Correctness. We first prove that the algorithm is an εn-additive approximation.
The error of the algorithm comes from two sources: from ignoring the contribu-
tion of long runs and from sampling. The ignored indices t, for which �(t) ≥ �0,
do not contribute much to the cost. Since the cost assigned to the indices mono-
tonically decreases with the length of the run to which they belong, for each
such index,

c(t) ≤ �log(�0 + 1)�+ �log |Σ|�
�0

≤ ε

2
. (2)

Therefore,
Crle(w)
n

− ε

2
≤ 1

n
·
∑

t: �(t)<�0

c(t) ≤ Crle(w)
n

. (3)

Equivalently, Crle(w)
n − ε

2 ≤ Ei∈[n][ĉ(ti)] ≤ Crle(w)
n .

By an additive Chernoff bound, with high constant probability, the sampling
error in estimating E[ĉ(ti)] is at most ε/2. Therefore, Ĉrle is an εn-additive esti-
mate of Crle(w), as desired.

Query and time complexity. (Assuming |Σ| is constant.) Since the number of
queries performed for each selected ti is O(�0) = O(log(1/ε)/ε), the total number
of queries, as well as the running time, is O(log(1/ε)/ε3).
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3.2 Summary of Positive Results on RLE

After stating Theorem 1 that summarizes our positive results, we briefly discuss
some of the ideas used in the algorithms omitted from this version of the paper.

Theorem 1. Let w ∈ Σn be a string to which we are given query access.

1. Algorithm I gives εn-additive approximation to Crle(w) in time Õ(1/ε3).
2. Crle(w) can be (3, ε)-estimated in time Õ(1/ε).
3. Crle(w) can be 4-estimated in expected time Õ

(
n

Crle(w)

)
. A (1 + γ)-estimate

of Crle(w) can be obtained in expected time Õ
(

n
Crle(w) · poly(1/γ)

)
. The al-

gorithm needs no prior knowledge of Crle(w).

Section 3.1 gives a complete proof of Item 1. The algorithm in Item 2 partitions
the positions in the string into buckets according to the length of the runs they
belong to. It estimates the sizes of different buckets with different precision,
depending on the size of the bucket and the length of the runs it contains. The
main idea in Item 3 is to search for Crle(w), using the algorithm from Item 2
repeatedly (with different parameters) to establish successively better estimates.

3.3 Lower Bounds for RLE

We give two lower bounds, for multiplicative and additive approximation, re-
spectively, which establish that the running times in Items 1 and 3 of Theorem 1
are essentially tight.

Theorem 2

1. For all A > 1, any A-approximation algorithm for Crle requires Ω
(

n
A2 logn

)

queries. Furthermore, if the input is restricted to strings with compression
cost Crle(w) ≥ C, then Ω

(
n

CA2 log(n)

)
queries are necessary.

2. For all ε ∈
(
0, 1

2

)
, any εn-additive approximation algorithm for Crle requires

Ω(1/ε2) queries.

A Multiplicative Lower Bound (Proof of Theorem 2, Item 1): The claim follows
from the next lemma:

Lemma 3. For every n ≥ 2 and every integer 1 ≤ k ≤ n/2, there exists a family
of strings, denoted Wk, for which the following holds: (1) Crle(w) = Θ

(
k log(nk )

)

for every w ∈Wk; (2) Distinguishing a uniformly random string in Wk from one
in Wk′ , where k′ > k, requires Ω

(
n
k′

)
queries.

Proof. Let Σ = {0, 1} and assume for simplicity that n is divisible by k. Every
string in Wk consists of k blocks, each of length n

k . Every odd block contains
only 1s and every even block contains a single 0. The strings in Wk differ in the
locations of the 0s within the even blocks. Every w ∈ Wk contains k/2 isolated
0s and k/2 runs of 1s, each of length Θ(nk ). Therefore, Crle(w) = Θ

(
k log(nk )

)
.

To distinguish a random string in Wk from one in Wk′ with probability 2/3, one
must make Ω( n

max(k,k′) ) queries since, in both cases, with asymptotically fewer
queries the algorithm sees only 1’s with high probability.
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Additive Lower Bound (Proof Theorem 2, Item 1): For any p ∈ [0, 1] and suf-
ficiently large n, let Dn,p be the following distribution over n-bit strings. For
simplicity, consider n divisible by 3. The string is determined by n

3 indepen-
dent coin flips, each with bias p. Each “heads” extends the string by three runs
of length 1, and each “tails”, by a run of length 3. Given the sequence of run
lengths, dictated by the coin flips, output the unique binary string that starts
with 0 and has this sequence of run lengths.5

Let W be a random variable drawn according to Dn,1/2 and W ′, according to
Dn,1/2+ε. The following facts are established in the full version [17]: (a) Ω(1/ε2)
queries are necessary to reliably distinguish W from W ′, and (b) With high
probability, the encoding costs of W and W ′ differ by Ω(εn). Together these
facts imply the lower bound.

4 Lempel Ziv Compression

In this section we consider a variant of Lempel and Ziv’s compression algo-
rithm [19], which we refer to as LZ77. In all that follows we use the shorthand
[n] for {1, . . . , n}. Let w ∈ Σn be a string over an alphabet Σ. Each symbol of
the compressed representation of w, denoted LZ(w), is either a character σ ∈ Σ
or a pair (p, �) where p ∈ [n] is a pointer (index) to a location in the string w and
� is the length of the substring of w that this symbol represents. To compress
w, the algorithm works as follows. Starting from t = 1, at each step the algo-
rithm finds the longest substring wt . . . wt+�−1 for which there exists an index
p < t, such that wp . . . wp+�−1 = wt . . . wt+�−1. (The substrings wp . . . wp+�−1

and wt . . . wt+�−1 may overlap.) If there is no such substring (that is, the char-
acter wt has not appeared before) then the next symbol in LZ(w) is wt, and
t = t+1. Otherwise, the next symbol is (p, �) and t = t+ �. We refer to the sub-
string wt . . . wt+�−1 (or wt when wt is a new character) as a compressed segment .

Let CLZ(w) denote the number of symbols in the compressed string LZ(w).
(We do not distinguish between symbols that are characters in Σ, and symbols
that are pairs (p, �).) Given query access to a string w ∈ Σn, we are interested in
computing an estimate ĈLZ of CLZ(w). As we shall see, this task reduces to esti-
mating the number of distinct substrings in w of different lengths, which in turn
reduces to estimating the number of distinct characters (“colors”) in a string.
The actual length of the binary representation of the compressed substring is at
most a factor of 2 logn larger than CLZ(w). This is relatively negligible given
the quality of the estimates that we can achieve in sublinear time.

We begin by relating LZ compressibility to Colors (§4.1), then use this
relation to discuss algorithms (§4.2) and lower bounds (§4.3) for compressiblity.

4.1 Structural Lemmas

Our algorithm for approximating the compressibility of an input string with
respect to LZ77 uses an approximation algorithm for Colors (defined in the
5 Let bi be a boolean variable representing the outcome of the ith coin. Then the

output is 0b101b210b301b41 . . . .
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introduction) as a subroutine. The main tool in the reduction from LZ77 to
Colors is the relation between CLZ(w) and the number of distinct substrings
in w, formalized in the two structural lemmas. In what follows, d�(w) denotes
the number of distinct substrings of length � in w. Unlike compressed segments
in w, which are disjoint, these substrings may overlap.

Lemma 4 (Structural Lemma 1). For every � ∈ [n], CLZ(w) ≥ d�(w)
� .

Lemma 5 (Structural lemma 2). Let �0 ∈ [n]. Suppose that for some integer
m and for every � ∈ [�0], d�(w) ≤ m · �. Then CLZ(w) ≤ 4(m log �0 + n/�0).

Proof of Lemma 4. This proof is similar to the proof of a related lemma
concerning grammars from [12]. First note that the lemma holds for � = 1, since
each character wt in w that has not appeared previously (that is, wt′ �= wt for
every t′ < t) is copied by the compression algorithm to LZ(w).

For the general case, fix � > 1. Recall that wt . . . wt+k−1 of w is a compressed
segment if it is represented by one symbol (p, k) in LZ(w). Any substring of lenth
� that occurs within a compressed segment must have occurred previously in the
string. Such substrings can be ignored for our purposes: the number of distinct
length-� substrings is bounded above by the number of length-� substrings that
start inside one compressed segment and end in another. Each segment (except
the last) contributes (�−1) such substrings. Therefore, d�(w) ≤ (CLZ(w)−1)(�−
1) < CLZ(w) · � for every � > 1.

Proof of Lemma 5. Let n�(w) denote the number of compressed segments of
length � in w, not including the last compressed segment. We use the shorthand
n� for n�(w) and d� for d�(w). In order to prove the lemma we shall show that
for every 1 ≤ � ≤ ��0/2�,

�∑

k=1

nk ≤ 2(m+ 1) ·
�∑

k=1

1
k
. (4)

For all � ≥ 1, since the compressed segments in w are disjoint,
∑n

k=�+1 nk ≤ n
�+1 .

If we substitute � = ��0/2� in the last two equations and sum them up, we get:

n∑

k=1

nk ≤ 2(m+ 1) ·
��0/2�∑

k=1

1
k

+
2n
�0
≤ 2(m+ 1)(ln �0 + 1) +

2n
�0
. (5)

Since CLZ(w) =
∑n

k=1 nk + 1, the lemma follows.
It remains to prove Equation (4). We do so below by induction on �, using

the following claim.

Claim 6. For every 1 ≤ � ≤ ��0/2� ,
�∑

k=1

k · nk ≤ 2�(m+ 1).

Proof. We show that each position j ∈ {�, . . . , n − �} that participates in a
compressed substring of length at most � in w can be mapped to a distinct
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length-2� substring of w. Since � ≤ �0/2, by the premise of the lemma, there are
at most 2� ·m distinct length-2� substrings. In addition, the first �− 1 and the
last � positions contribute less than 2� symbols. The claim follows.

We call a substring new if no instance of it started in the previous portion of
w. Namely, wt . . . wt+�−1 is new if there is no p < t such that wt . . . wt+�−1 =
wp . . . wp+�−1. Consider a compressed substring wt . . . wt+k−1 of length k ≤ �.
The substrings of length greater than k that start at wt must be new, since
LZ77 finds the longest substring that appeared before. Furthermore, every sub-
string that contains such a new substring is also new. That is, every substring
wt′ . . . wt+k′ where t′ ≤ t and k′ ≥ k + (t′ − t), is new.

Map each position j ∈ {�, . . . , n−�} in the compressed substring wt . . . wt+k−1

to the length-2� substring that ends at wj+�. Then each position in {�, . . . , n−�}
that appears in a compressed substring of length at most � is mapped to a distinct
length-2� substring, as desired. (Claim 6)

Establishing Equation (4). We prove Equation (4) by induction on �. Claim 6
with � set to 1 gives the base case, i.e., n1 ≤ 2(m + 1). For the induction step,
assume the induction hypothesis for every j ∈ [� − 1]. To prove it for �, add
the equation in Claim 6 to the sum of the induction hypothesis inequalities
(Equation (4)) for every j ∈ [�−1]. The left hand side of the resulting inequality
is

�∑

k=1

k · nk +
�−1∑

j=1

j∑

k=1

nk =
�∑

k=1

k · nk +
�−1∑

k=1

�−k∑

j=1

nk

=
�∑

k=1

k · nk +
�−1∑

k=1

(�− k) · nk = � ·
�∑

k=1

nk.

The right hand side, divided by the factor 2(m + 1), which is common to all
inequalities, is

�+
�−1∑

j=1

j∑

k=1

1
k

= �+
�−1∑

k=1

�−k∑

j=1

1
k

= �+
�−1∑

k=1

�− k
k

= �+ � ·
�−1∑

k=1

1
k
− (�− 1) = � ·

�∑

k=1

1
k
.

Dividing both sides by � gives the inequality in Equation (4). (Lemma 5)

4.2 An Algorithm for LZ77

This subsection describes an algorithm for approximating the compressibility of
an input string with respect to LZ77, which uses an approximation algorithm for
Colors as a subroutine. The main tool in the reduction from LZ77 to Colors

consists of structural lemmas 4 and 5, summarized in the following corollary.

Corollary 7. For any �0 ≥ 1, let m = m(�0) = max�0�=1
d�(w)
� . Then

m ≤ CLZ(w) ≤ 4 ·
(

m log �0 +
n

�0

)

.
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The corollary allows us to approximate CLZ from estimates for d� for all � ∈ [�0].
To obtain these estimates, we use the algorithm of [7] for Colors as a subrou-
tine (in the full version [17] we also describe a simpler Colors algorithm with
the same provable guarantees). Recall that an algorithm for Colors approxi-
mates the number of distinct colors in an input string, where the ith character
represents the ith color. We denote the number of colors in an input string τ
by CCOL(τ). To approximate d�, the number of distinct length-� substrings in
w, using an algorithm for Colors, view each length-� substring as a separate
color. Each query of the algorithm for Colors can be implemented by � queries
to w.

Let Estimate(�, B, δ) be a procedure that, given access to w, an index � ∈
[n], an approximation parameter B = B(n, �) > 1 and a confidence parameter
δ ∈ [0, 1], computes a B-estimate for d� with probability at least 1− δ. It can be
implemented using an algorithm for Colors, as described above, and employing
standard amplification techniques to boost success probability from 2

3 to 1 −
δ: running the basic algorithm Θ(log δ−1) times and outputting the median.
Since the algorithm of [7] requires O(n/B2) queries, the query complexity of
Estimate(�, B, δ) is O

(
n
B2 � log δ−1

)
. Using Estimate(�, B, δ) as a subroutine,

we get the following approximation algorithm for the cost of LZ77.

Algorithm II: An (A, ε)-approximation for CLZ(w)

1. Set �0 =
⌈

2
Aε

⌉
and B = A

2
√

log(2/(Aε))
.

2. For all � in [�0], let d̂� = Estimate(�, B, 1
3�0

).
3. Combine the estimates to get an approximation of m from Corollary 7:

set m̂ = max
�

d̂�
�

.

4. Output ĈLZ = m̂ · AB + εn.

Theorem 8. Algorithm II (A, ε)-estimates CLZ(w). With a proper implemen-
tation that reuses queries and an appropriate data structure, its query and time
complexity are Õ

(
n
A3ε

)
.

Proof. By the Union Bound, with probability ≥ 2
3 , all values d̂� computed by

the algorithm are B-estimates for the corresponding d�. When this holds, m̂ is
a B-estimate for m from Corollary 7, which implies that

m̂

B
≤ CLZ(w) ≤ 4 ·

(

m̂B log �0 +
n

�0

)

.

Equivalently,
CLZ − 4(n/�0)

4B log �0
≤ m̂ ≤ B · CLZ. Multiplying all three terms by A

B

and adding εn to them, and then substituting parameter settings for �0 and B,
specified in the algorithm, shows that ĈLZ is indeed an (A, ε)-estimate for CLZ.

As explained before the algorithm statement, each call to Estimate(�, B, 1
3�0

)
costs O

(
n
B2 � log �0

)
queries. Since the subroutine is called for all � ∈ [�0], the
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straightforward implementation of the algorithm would result in O
(
n
B2 �

2
0 log �0

)

queries. Our analysis of the algorithm, however, does not rely on independence of
queries used in different calls to the subroutine, since we employ the Union Bound
to calculate the error probability. It will still apply if we first run Estimate

to approximate d�0 and then reuse its queries for the remaining calls to the
subroutine, as though it requested to query only the length-� prefixes of the
length-�0 substrings queried in the first call. With this implementation, the query
complexity is O

(
n
B2 �0 log �0

)
= O

(
n
A3ε log2 1

Aε

)
. To get the same running time,

one can maintain counters for all � ∈ [�0] for the number of distinct length-�
substrings seen so far and use a trie to keep the information about the queried
substrings. Every time a new node at some depth � is added to the trie, the �th
counter is incremented.

4.3 Lower Bounds: Reducing Colors to LZ77

We have demonstrated that estimating the LZ77 compressibility of a string re-
duces to Colors. As shown in [18], Colors is quite hard, and it is not possible
to improve much on the simple approximation algorithm in [7] , on which we
base the LZ77 approximation algorithm in the previous subsection. A natural
question is whether there is a better algorithm for the LZ77 estimation problem.
That is, is the LZ77 estimation strictly easier than Colors? As we shall see, it
is not much easier in general.

Lemma 9 (Reduction from Colors to LZ77). Suppose there exists an al-
gorithm ALZ that, given access to a string w of length n over an alphabet Σ,
performs q = q(n, |Σ|, α, β) queries and with probability at least 5/6 distinguishes
between the case that CLZ(w) ≤ αn and the case that CLZ(w) > βn, for some
α < β.

Then there is an algorithm for Colors taking inputs of length n′ = Θ(αn)
that performs q queries and, with probability at least 2/3, distinguishes inputs
with at most α′n′ colors from those with at least β′n′ colors, α′ = α/2 and
β′ = β · 2 ·max

{
1, 4 log n′

log |Σ|

}
.

Two notes are in place regarding the reduction. The first is that the gap between
the parameters α′ and β′ that is required by the Colors algorithm obtained
in Lemma 9, is larger than the gap between the parameters α and β for which
the LZ-compressibility algorithm works, by a factor of 4 · max

{
1, 4 logn′

log |Σ|

}
. In

particular, for binary strings β′

α′ = O
(
logn′ · βα

)
, while if the alphabet is large,

say, of size at least n′, then β′

α′ = O
(
β
α

)
. In general, the gap increases by at most

O(log n′). The second note is that the number of queries, q, is a function of the
parameters of the LZ-compressibility problem and, in particular, of the length
of the input strings, n. Hence, when writing q as a function of the parameters
of Colors and, in particular, as a function of n′ = Θ(αn), the complexity may
be somewhat larger. It is an open question whether a reduction without such
increase is possible.
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Prior to proving the lemma , we discuss its implications. [18] give a strong
lower bound on the sample complexity of approximation algorithms for Colors.
An interesting special case is that a subpolynomial-factor approximation for
Colors requires many queries even with a promise that the strings are only
slightly compressible: for any B = no(1), distinguishing inputs with n/11 colors
from those with n/B colors requires n1−o(1) queries. Lemma 9 extends that
bound to estimating LZ compressibility: For any B = no(1), and any alphabet
Σ, distinguishing strings with LZ compression cost Ω̃(n) from strings with cost
Õ(n/B) requires n1−o(1) queries.

The lower bound for Colors in [18] applies to a broad range of parameters,
and yields the following general statement when combined with Lemma 9:

Corollary 10 (LZ is Hard to Approximate with Few Samples). For
sufficiently large n, all alphabets Σ and all B ≤ n1/4/(4 logn3/2), there exist
α, β ∈ (0, 1) where β = Ω

(
min

{
1, log |Σ|

4 logn

})
and α = O

(
β
B

)
, such that every

algorithm that distinguishes between the case that CLZ(w) ≤ αn and the case

that CLZ(w) > βn for w ∈ Σn, must perform Ω
((

n
B′

)1− 2
k

)
queries for B′ =

Θ
(
B ·max

{
1, 4 logn

log |Σ|

})
and k = Θ

(√
logn

logB′+ 1
2 log logn

)
.

Proof of Lemma 9. Suppose we have an algorithm ALZ for LZ-compressibility
as specified in the premise of Lemma 9. Here we show how to transform a Colors

instance τ into an input for ALZ, and use the output of ALZ to distinguish τ
with at most α′n′ colors from τ with at least β′n′ colors, where α′ and β′ are
as specified in the lemma. We shall assume that β′n′ is bounded below by some
sufficiently large constant. Recall that in the reduction from LZ77 to Colors,
we transformed substrings into colors. Here we perform the reverse operation.

Given a Colors instance τ of length n′, we transform it into a string of
length n = n′ · k over Σ, where k = � 1

α�. We then run ALZ on w to obtain
information about τ . We begin by replacing each color in τ with a uniformly
selected substring in Σk. The string w is the concatenation of the corresponding
substrings (which we call blocks). We show that:

1. If τ has at most α′n′ colors, then CLZ(w) ≤ 2α′n;
2. If τ has at least β′n′ colors, then Prw[CLZ(w) ≥ 1

2 ·min
{

1, log |Σ|
4 log n′

}
·β′n] ≥ 7

8 .

That is, in the first case we get an input w for Colors such that CLZ(w) ≤ αn for
α = 2α′, and in the second case, with probability at least 7/8, CLZ(w) ≥ βn for
β = 1

2 ·min
{
1, log |Σ|

4 logn′

}
·β′. Recall that the gap between α′ and β′ is assumed to

be sufficiently large so that α < β. To distinguish the case that CCOL(τ) ≤ α′n′

from the case that CCOL(τ) > β′n′, we can run ALZ on w and output its answer.
Taking into account the failure probability of ALZ and the failure probability in
Item 2 above, the Lemma follows.

We prove these two claims momentarily, but first observe that in order to
run the algorithm ALZ, there is no need to generate the whole string w. Rather,
upon each query of ALZ to w, if the index of the query belongs to a block that
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has already been generated, the answer to ALZ is determined. Otherwise, we
query the element (color) in τ that corresponds to the block. If this color was
not yet observed, then we set the block to a uniformly selected substring in Σk.
If this color was already observed in τ , then we set the block according to the
substring that was already selected for the color. In either case, the query to w
can now be answered. Thus, each query to w is answered by performing at most
one query to τ .

It remains to prove the two items concerning the relation between the number
of colors in τ and CLZ(w). If τ has at most α′n′ colors then w contains at
most α′n′ distinct blocks. Since each block is of length k, at most k compressed
segments start in each new block. By definition of LZ77, at most one compressed
segment starts in each repeated block. Hence,

CLZ(w) ≤ α′n′ · k + (1− α′)n′ ≤ α′n+ n′ ≤ 2α′n.

If τ contains β′n′ or more colors, w is generated using at least β′n′ ·log(|Σ|k) =
β′n log |Σ| random bits. Hence, with high probability (e.g., at least 7/8) over the
choice of these random bits, any lossless compression algorithm (and in particular
LZ77) must use at least β′n log |Σ| − 3 bits to compress w. Each symbol of the
compressed version of w can be represented by max{�log |Σ|�, 2�logn�}+1 bits,
since it is either an alphabet symbol or a pointer-length pair. Since n = n′�1/α′�,
and α′ > 1/n′, each symbol takes at most max{4 logn′, log |Σ|} + 2 bits to
represent. This means the number of symbols in the compressed version of w is

CLZ(w) ≥ β′n log |Σ| − 3
max {4 logn′, log |Σ|}) + 2

≥ 1
2
· β′n ·min

{
1, log |Σ|

4 log n′

}

where we have used the fact that β′n′, and hence β′n, is at least some sufficiently
large constant.
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